Move SIMD layout logic to rustc_abi

This commit is contained in:
Moulins 2025-03-07 21:17:16 +01:00
parent 9917173575
commit e69491ac60
5 changed files with 117 additions and 79 deletions

View File

@ -62,17 +62,28 @@ pub enum LayoutCalculatorError<F> {
/// The fields or variants have irreconcilable reprs
ReprConflict,
/// The length of an SIMD type is zero
ZeroLengthSimdType,
/// The length of an SIMD type exceeds the maximum number of lanes
OversizedSimdType { max_lanes: u64 },
/// An element type of an SIMD type isn't a primitive
NonPrimitiveSimdType(F),
}
impl<F> LayoutCalculatorError<F> {
pub fn without_payload(&self) -> LayoutCalculatorError<()> {
match self {
LayoutCalculatorError::UnexpectedUnsized(_) => {
LayoutCalculatorError::UnexpectedUnsized(())
}
LayoutCalculatorError::SizeOverflow => LayoutCalculatorError::SizeOverflow,
LayoutCalculatorError::EmptyUnion => LayoutCalculatorError::EmptyUnion,
LayoutCalculatorError::ReprConflict => LayoutCalculatorError::ReprConflict,
use LayoutCalculatorError::*;
match *self {
UnexpectedUnsized(_) => UnexpectedUnsized(()),
SizeOverflow => SizeOverflow,
EmptyUnion => EmptyUnion,
ReprConflict => ReprConflict,
ZeroLengthSimdType => ZeroLengthSimdType,
OversizedSimdType { max_lanes } => OversizedSimdType { max_lanes },
NonPrimitiveSimdType(_) => NonPrimitiveSimdType(()),
}
}
@ -80,13 +91,15 @@ impl<F> LayoutCalculatorError<F> {
///
/// Intended for use by rust-analyzer, as neither it nor `rustc_abi` depend on fluent infra.
pub fn fallback_fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use LayoutCalculatorError::*;
f.write_str(match self {
LayoutCalculatorError::UnexpectedUnsized(_) => {
"an unsized type was found where a sized type was expected"
UnexpectedUnsized(_) => "an unsized type was found where a sized type was expected",
SizeOverflow => "size overflow",
EmptyUnion => "type is a union with no fields",
ReprConflict => "type has an invalid repr",
ZeroLengthSimdType | OversizedSimdType { .. } | NonPrimitiveSimdType(_) => {
"invalid simd type definition"
}
LayoutCalculatorError::SizeOverflow => "size overflow",
LayoutCalculatorError::EmptyUnion => "type is a union with no fields",
LayoutCalculatorError::ReprConflict => "type has an invalid repr",
})
}
}
@ -127,6 +140,66 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
})
}
pub fn simd_type<
FieldIdx: Idx,
VariantIdx: Idx,
F: AsRef<LayoutData<FieldIdx, VariantIdx>> + fmt::Debug,
>(
&self,
element: F,
count: u64,
repr_packed: bool,
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
let elt = element.as_ref();
if count == 0 {
return Err(LayoutCalculatorError::ZeroLengthSimdType);
} else if count > crate::MAX_SIMD_LANES {
return Err(LayoutCalculatorError::OversizedSimdType {
max_lanes: crate::MAX_SIMD_LANES,
});
}
let BackendRepr::Scalar(e_repr) = elt.backend_repr else {
return Err(LayoutCalculatorError::NonPrimitiveSimdType(element));
};
// Compute the size and alignment of the vector
let dl = self.cx.data_layout();
let size =
elt.size.checked_mul(count, dl).ok_or_else(|| LayoutCalculatorError::SizeOverflow)?;
let (repr, align) = if repr_packed && !count.is_power_of_two() {
// Non-power-of-two vectors have padding up to the next power-of-two.
// If we're a packed repr, remove the padding while keeping the alignment as close
// to a vector as possible.
(
BackendRepr::Memory { sized: true },
AbiAndPrefAlign {
abi: Align::max_aligned_factor(size),
pref: dl.llvmlike_vector_align(size).pref,
},
)
} else {
(BackendRepr::SimdVector { element: e_repr, count }, dl.llvmlike_vector_align(size))
};
let size = size.align_to(align.abi);
Ok(LayoutData {
variants: Variants::Single { index: VariantIdx::new(0) },
fields: FieldsShape::Arbitrary {
offsets: [Size::ZERO].into(),
memory_index: [0].into(),
},
backend_repr: repr,
largest_niche: elt.largest_niche,
uninhabited: false,
size,
align,
max_repr_align: None,
unadjusted_abi_align: elt.align.abi,
randomization_seed: elt.randomization_seed.wrapping_add(Hash64::new(count)),
})
}
pub fn univariant<
'a,
FieldIdx: Idx,

View File

@ -150,6 +150,12 @@ impl<'a, Ty> Deref for TyAndLayout<'a, Ty> {
}
}
impl<'a, Ty> AsRef<LayoutData<FieldIdx, VariantIdx>> for TyAndLayout<'a, Ty> {
fn as_ref(&self) -> &LayoutData<FieldIdx, VariantIdx> {
&*self.layout.0.0
}
}
/// Trait that needs to be implemented by the higher-level type representation
/// (e.g. `rustc_middle::ty::Ty`), to provide `rustc_target::abi` functionality.
pub trait TyAbiInterface<'a, C>: Sized + std::fmt::Debug {

View File

@ -205,6 +205,13 @@ impl ReprOptions {
}
}
/// The maximum supported number of lanes in a SIMD vector.
///
/// This value is selected based on backend support:
/// * LLVM does not appear to have a vector width limit.
/// * Cranelift stores the base-2 log of the lane count in a 4 bit integer.
pub const MAX_SIMD_LANES: u64 = 1 << 0xF;
/// Parsed [Data layout](https://llvm.org/docs/LangRef.html#data-layout)
/// for a target, which contains everything needed to compute layouts.
#[derive(Debug, PartialEq, Eq)]

View File

@ -182,12 +182,7 @@ pub const WIDE_PTR_ADDR: usize = 0;
/// - For a slice, this is the length.
pub const WIDE_PTR_EXTRA: usize = 1;
/// The maximum supported number of lanes in a SIMD vector.
///
/// This value is selected based on backend support:
/// * LLVM does not appear to have a vector width limit.
/// * Cranelift stores the base-2 log of the lane count in a 4 bit integer.
pub const MAX_SIMD_LANES: u64 = 1 << 0xF;
pub const MAX_SIMD_LANES: u64 = rustc_abi::MAX_SIMD_LANES;
/// Used in `check_validity_requirement` to indicate the kind of initialization
/// that is checked to be valid

View File

@ -5,9 +5,9 @@ use hir::def_id::DefId;
use rustc_abi::Integer::{I8, I32};
use rustc_abi::Primitive::{self, Float, Int, Pointer};
use rustc_abi::{
AbiAndPrefAlign, AddressSpace, Align, BackendRepr, FIRST_VARIANT, FieldIdx, FieldsShape,
HasDataLayout, Layout, LayoutCalculatorError, LayoutData, Niche, ReprOptions, Scalar, Size,
StructKind, TagEncoding, VariantIdx, Variants, WrappingRange,
AddressSpace, BackendRepr, FIRST_VARIANT, FieldIdx, FieldsShape, HasDataLayout, Layout,
LayoutCalculatorError, LayoutData, Niche, ReprOptions, Scalar, Size, StructKind, TagEncoding,
VariantIdx, Variants, WrappingRange,
};
use rustc_hashes::Hash64;
use rustc_index::bit_set::DenseBitSet;
@ -16,7 +16,7 @@ use rustc_middle::bug;
use rustc_middle::mir::{CoroutineLayout, CoroutineSavedLocal};
use rustc_middle::query::Providers;
use rustc_middle::ty::layout::{
FloatExt, HasTyCtxt, IntegerExt, LayoutCx, LayoutError, LayoutOf, MAX_SIMD_LANES, TyAndLayout,
FloatExt, HasTyCtxt, IntegerExt, LayoutCx, LayoutError, LayoutOf, TyAndLayout,
};
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::{
@ -124,6 +124,19 @@ fn map_error<'tcx>(
.delayed_bug(format!("computed impossible repr (packed enum?): {ty:?}"));
LayoutError::ReferencesError(guar)
}
LayoutCalculatorError::ZeroLengthSimdType => {
// Can't be caught in typeck if the array length is generic.
cx.tcx().dcx().emit_fatal(ZeroLengthSimdType { ty })
}
LayoutCalculatorError::OversizedSimdType { max_lanes } => {
// Can't be caught in typeck if the array length is generic.
cx.tcx().dcx().emit_fatal(OversizedSimdType { ty, max_lanes })
}
LayoutCalculatorError::NonPrimitiveSimdType(field) => {
// This error isn't caught in typeck, e.g., if
// the element type of the vector is generic.
cx.tcx().dcx().emit_fatal(NonPrimitiveSimdType { ty, e_ty: field.ty })
}
};
error(cx, err)
}
@ -423,65 +436,9 @@ fn layout_of_uncached<'tcx>(
.try_to_target_usize(tcx)
.ok_or_else(|| error(cx, LayoutError::Unknown(ty)))?;
// SIMD vectors of zero length are not supported.
// Additionally, lengths are capped at 2^16 as a fixed maximum backends must
// support.
//
// Can't be caught in typeck if the array length is generic.
if e_len == 0 {
tcx.dcx().emit_fatal(ZeroLengthSimdType { ty });
} else if e_len > MAX_SIMD_LANES {
tcx.dcx().emit_fatal(OversizedSimdType { ty, max_lanes: MAX_SIMD_LANES });
}
// Compute the ABI of the element type:
let e_ly = cx.layout_of(e_ty)?;
let BackendRepr::Scalar(e_abi) = e_ly.backend_repr else {
// This error isn't caught in typeck, e.g., if
// the element type of the vector is generic.
tcx.dcx().emit_fatal(NonPrimitiveSimdType { ty, e_ty });
};
// Compute the size and alignment of the vector:
let size = e_ly
.size
.checked_mul(e_len, dl)
.ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?;
let (abi, align) = if def.repr().packed() && !e_len.is_power_of_two() {
// Non-power-of-two vectors have padding up to the next power-of-two.
// If we're a packed repr, remove the padding while keeping the alignment as close
// to a vector as possible.
(
BackendRepr::Memory { sized: true },
AbiAndPrefAlign {
abi: Align::max_aligned_factor(size),
pref: dl.llvmlike_vector_align(size).pref,
},
)
} else {
(
BackendRepr::SimdVector { element: e_abi, count: e_len },
dl.llvmlike_vector_align(size),
)
};
let size = size.align_to(align.abi);
tcx.mk_layout(LayoutData {
variants: Variants::Single { index: FIRST_VARIANT },
fields: FieldsShape::Arbitrary {
offsets: [Size::ZERO].into(),
memory_index: [0].into(),
},
backend_repr: abi,
largest_niche: e_ly.largest_niche,
uninhabited: false,
size,
align,
max_repr_align: None,
unadjusted_abi_align: align.abi,
randomization_seed: e_ly.randomization_seed.wrapping_add(Hash64::new(e_len)),
})
map_layout(cx.calc.simd_type(e_ly, e_len, def.repr().packed()))?
}
// ADTs.