mirror of
https://github.com/rust-lang/rust.git
synced 2025-01-25 14:13:38 +00:00
Merge pull request #4026 from eduardosm/soft-sqrt
miri: implement square root without relying on host floats
This commit is contained in:
commit
e6946883ec
@ -218,20 +218,19 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
=> {
|
||||
let [f] = check_arg_count(args)?;
|
||||
let f = this.read_scalar(f)?.to_f32()?;
|
||||
// Using host floats (but it's fine, these operations do not have guaranteed precision).
|
||||
let f_host = f.to_host();
|
||||
// Using host floats except for sqrt (but it's fine, these operations do not have
|
||||
// guaranteed precision).
|
||||
let res = match intrinsic_name {
|
||||
"sinf32" => f_host.sin(),
|
||||
"cosf32" => f_host.cos(),
|
||||
"sqrtf32" => f_host.sqrt(), // FIXME Using host floats, this should use full-precision soft-floats
|
||||
"expf32" => f_host.exp(),
|
||||
"exp2f32" => f_host.exp2(),
|
||||
"logf32" => f_host.ln(),
|
||||
"log10f32" => f_host.log10(),
|
||||
"log2f32" => f_host.log2(),
|
||||
"sinf32" => f.to_host().sin().to_soft(),
|
||||
"cosf32" => f.to_host().cos().to_soft(),
|
||||
"sqrtf32" => math::sqrt(f),
|
||||
"expf32" => f.to_host().exp().to_soft(),
|
||||
"exp2f32" => f.to_host().exp2().to_soft(),
|
||||
"logf32" => f.to_host().ln().to_soft(),
|
||||
"log10f32" => f.to_host().log10().to_soft(),
|
||||
"log2f32" => f.to_host().log2().to_soft(),
|
||||
_ => bug!(),
|
||||
};
|
||||
let res = res.to_soft();
|
||||
let res = this.adjust_nan(res, &[f]);
|
||||
this.write_scalar(res, dest)?;
|
||||
}
|
||||
@ -247,20 +246,19 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
=> {
|
||||
let [f] = check_arg_count(args)?;
|
||||
let f = this.read_scalar(f)?.to_f64()?;
|
||||
// Using host floats (but it's fine, these operations do not have guaranteed precision).
|
||||
let f_host = f.to_host();
|
||||
// Using host floats except for sqrt (but it's fine, these operations do not have
|
||||
// guaranteed precision).
|
||||
let res = match intrinsic_name {
|
||||
"sinf64" => f_host.sin(),
|
||||
"cosf64" => f_host.cos(),
|
||||
"sqrtf64" => f_host.sqrt(), // FIXME Using host floats, this should use full-precision soft-floats
|
||||
"expf64" => f_host.exp(),
|
||||
"exp2f64" => f_host.exp2(),
|
||||
"logf64" => f_host.ln(),
|
||||
"log10f64" => f_host.log10(),
|
||||
"log2f64" => f_host.log2(),
|
||||
"sinf64" => f.to_host().sin().to_soft(),
|
||||
"cosf64" => f.to_host().cos().to_soft(),
|
||||
"sqrtf64" => math::sqrt(f),
|
||||
"expf64" => f.to_host().exp().to_soft(),
|
||||
"exp2f64" => f.to_host().exp2().to_soft(),
|
||||
"logf64" => f.to_host().ln().to_soft(),
|
||||
"log10f64" => f.to_host().log10().to_soft(),
|
||||
"log2f64" => f.to_host().log2().to_soft(),
|
||||
_ => bug!(),
|
||||
};
|
||||
let res = res.to_soft();
|
||||
let res = this.adjust_nan(res, &[f]);
|
||||
this.write_scalar(res, dest)?;
|
||||
}
|
||||
|
@ -104,42 +104,39 @@ pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
|
||||
let ty::Float(float_ty) = op.layout.ty.kind() else {
|
||||
span_bug!(this.cur_span(), "{} operand is not a float", intrinsic_name)
|
||||
};
|
||||
// Using host floats (but it's fine, these operations do not have guaranteed precision).
|
||||
// Using host floats except for sqrt (but it's fine, these operations do not
|
||||
// have guaranteed precision).
|
||||
match float_ty {
|
||||
FloatTy::F16 => unimplemented!("f16_f128"),
|
||||
FloatTy::F32 => {
|
||||
let f = op.to_scalar().to_f32()?;
|
||||
let f_host = f.to_host();
|
||||
let res = match host_op {
|
||||
"fsqrt" => f_host.sqrt(), // FIXME Using host floats, this should use full-precision soft-floats
|
||||
"fsin" => f_host.sin(),
|
||||
"fcos" => f_host.cos(),
|
||||
"fexp" => f_host.exp(),
|
||||
"fexp2" => f_host.exp2(),
|
||||
"flog" => f_host.ln(),
|
||||
"flog2" => f_host.log2(),
|
||||
"flog10" => f_host.log10(),
|
||||
"fsqrt" => math::sqrt(f),
|
||||
"fsin" => f.to_host().sin().to_soft(),
|
||||
"fcos" => f.to_host().cos().to_soft(),
|
||||
"fexp" => f.to_host().exp().to_soft(),
|
||||
"fexp2" => f.to_host().exp2().to_soft(),
|
||||
"flog" => f.to_host().ln().to_soft(),
|
||||
"flog2" => f.to_host().log2().to_soft(),
|
||||
"flog10" => f.to_host().log10().to_soft(),
|
||||
_ => bug!(),
|
||||
};
|
||||
let res = res.to_soft();
|
||||
let res = this.adjust_nan(res, &[f]);
|
||||
Scalar::from(res)
|
||||
}
|
||||
FloatTy::F64 => {
|
||||
let f = op.to_scalar().to_f64()?;
|
||||
let f_host = f.to_host();
|
||||
let res = match host_op {
|
||||
"fsqrt" => f_host.sqrt(),
|
||||
"fsin" => f_host.sin(),
|
||||
"fcos" => f_host.cos(),
|
||||
"fexp" => f_host.exp(),
|
||||
"fexp2" => f_host.exp2(),
|
||||
"flog" => f_host.ln(),
|
||||
"flog2" => f_host.log2(),
|
||||
"flog10" => f_host.log10(),
|
||||
"fsqrt" => math::sqrt(f),
|
||||
"fsin" => f.to_host().sin().to_soft(),
|
||||
"fcos" => f.to_host().cos().to_soft(),
|
||||
"fexp" => f.to_host().exp().to_soft(),
|
||||
"fexp2" => f.to_host().exp2().to_soft(),
|
||||
"flog" => f.to_host().ln().to_soft(),
|
||||
"flog2" => f.to_host().log2().to_soft(),
|
||||
"flog10" => f.to_host().log10().to_soft(),
|
||||
_ => bug!(),
|
||||
};
|
||||
let res = res.to_soft();
|
||||
let res = this.adjust_nan(res, &[f]);
|
||||
Scalar::from(res)
|
||||
}
|
||||
|
@ -83,6 +83,7 @@ mod eval;
|
||||
mod helpers;
|
||||
mod intrinsics;
|
||||
mod machine;
|
||||
mod math;
|
||||
mod mono_hash_map;
|
||||
mod operator;
|
||||
mod provenance_gc;
|
||||
|
164
src/tools/miri/src/math.rs
Normal file
164
src/tools/miri/src/math.rs
Normal file
@ -0,0 +1,164 @@
|
||||
use rand::Rng as _;
|
||||
use rand::distributions::Distribution as _;
|
||||
use rustc_apfloat::Float as _;
|
||||
use rustc_apfloat::ieee::IeeeFloat;
|
||||
|
||||
/// Disturbes a floating-point result by a relative error on the order of (-2^scale, 2^scale).
|
||||
pub(crate) fn apply_random_float_error<F: rustc_apfloat::Float>(
|
||||
ecx: &mut crate::MiriInterpCx<'_>,
|
||||
val: F,
|
||||
err_scale: i32,
|
||||
) -> F {
|
||||
let rng = ecx.machine.rng.get_mut();
|
||||
// Generate a random integer in the range [0, 2^PREC).
|
||||
let dist = rand::distributions::Uniform::new(0, 1 << F::PRECISION);
|
||||
let err = F::from_u128(dist.sample(rng))
|
||||
.value
|
||||
.scalbn(err_scale.strict_sub(F::PRECISION.try_into().unwrap()));
|
||||
// give it a random sign
|
||||
let err = if rng.gen::<bool>() { -err } else { err };
|
||||
// multiple the value with (1+err)
|
||||
(val * (F::from_u128(1).value + err).value).value
|
||||
}
|
||||
|
||||
pub(crate) fn sqrt<S: rustc_apfloat::ieee::Semantics>(x: IeeeFloat<S>) -> IeeeFloat<S> {
|
||||
match x.category() {
|
||||
// preserve zero sign
|
||||
rustc_apfloat::Category::Zero => x,
|
||||
// propagate NaN
|
||||
rustc_apfloat::Category::NaN => x,
|
||||
// sqrt of negative number is NaN
|
||||
_ if x.is_negative() => IeeeFloat::NAN,
|
||||
// sqrt(∞) = ∞
|
||||
rustc_apfloat::Category::Infinity => IeeeFloat::INFINITY,
|
||||
rustc_apfloat::Category::Normal => {
|
||||
// Floating point precision, excluding the integer bit
|
||||
let prec = i32::try_from(S::PRECISION).unwrap() - 1;
|
||||
|
||||
// x = 2^(exp - prec) * mant
|
||||
// where mant is an integer with prec+1 bits
|
||||
// mant is a u128, which should be large enough for the largest prec (112 for f128)
|
||||
let mut exp = x.ilogb();
|
||||
let mut mant = x.scalbn(prec - exp).to_u128(128).value;
|
||||
|
||||
if exp % 2 != 0 {
|
||||
// Make exponent even, so it can be divided by 2
|
||||
exp -= 1;
|
||||
mant <<= 1;
|
||||
}
|
||||
|
||||
// Bit-by-bit (base-2 digit-by-digit) sqrt of mant.
|
||||
// mant is treated here as a fixed point number with prec fractional bits.
|
||||
// mant will be shifted left by one bit to have an extra fractional bit, which
|
||||
// will be used to determine the rounding direction.
|
||||
|
||||
// res is the truncated sqrt of mant, where one bit is added at each iteration.
|
||||
let mut res = 0u128;
|
||||
// rem is the remainder with the current res
|
||||
// rem_i = 2^i * ((mant<<1) - res_i^2)
|
||||
// starting with res = 0, rem = mant<<1
|
||||
let mut rem = mant << 1;
|
||||
// s_i = 2*res_i
|
||||
let mut s = 0u128;
|
||||
// d is used to iterate over bits, from high to low (d_i = 2^(-i))
|
||||
let mut d = 1u128 << (prec + 1);
|
||||
|
||||
// For iteration j=i+1, we need to find largest b_j = 0 or 1 such that
|
||||
// (res_i + b_j * 2^(-j))^2 <= mant<<1
|
||||
// Expanding (a + b)^2 = a^2 + b^2 + 2*a*b:
|
||||
// res_i^2 + (b_j * 2^(-j))^2 + 2 * res_i * b_j * 2^(-j) <= mant<<1
|
||||
// And rearranging the terms:
|
||||
// b_j^2 * 2^(-j) + 2 * res_i * b_j <= 2^j * (mant<<1 - res_i^2)
|
||||
// b_j^2 * 2^(-j) + 2 * res_i * b_j <= rem_i
|
||||
|
||||
while d != 0 {
|
||||
// Probe b_j^2 * 2^(-j) + 2 * res_i * b_j <= rem_i with b_j = 1:
|
||||
// t = 2*res_i + 2^(-j)
|
||||
let t = s + d;
|
||||
if rem >= t {
|
||||
// b_j should be 1, so make res_j = res_i + 2^(-j) and adjust rem
|
||||
res += d;
|
||||
s += d + d;
|
||||
rem -= t;
|
||||
}
|
||||
// Adjust rem for next iteration
|
||||
rem <<= 1;
|
||||
// Shift iterator
|
||||
d >>= 1;
|
||||
}
|
||||
|
||||
// Remove extra fractional bit from result, rounding to nearest.
|
||||
// If the last bit is 0, then the nearest neighbor is definitely the lower one.
|
||||
// If the last bit is 1, it sounds like this may either be a tie (if there's
|
||||
// infinitely many 0s after this 1), or the nearest neighbor is the upper one.
|
||||
// However, since square roots are either exact or irrational, and an exact root
|
||||
// would lead to the last "extra" bit being 0, we can exclude a tie in this case.
|
||||
// We therefore always round up if the last bit is 1. When the last bit is 0,
|
||||
// adding 1 will not do anything since the shift will discard it.
|
||||
res = (res + 1) >> 1;
|
||||
|
||||
// Build resulting value with res as mantissa and exp/2 as exponent
|
||||
IeeeFloat::from_u128(res).value.scalbn(exp / 2 - prec)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use rustc_apfloat::ieee::{DoubleS, HalfS, IeeeFloat, QuadS, SingleS};
|
||||
|
||||
use super::sqrt;
|
||||
|
||||
#[test]
|
||||
fn test_sqrt() {
|
||||
#[track_caller]
|
||||
fn test<S: rustc_apfloat::ieee::Semantics>(x: &str, expected: &str) {
|
||||
let x: IeeeFloat<S> = x.parse().unwrap();
|
||||
let expected: IeeeFloat<S> = expected.parse().unwrap();
|
||||
let result = sqrt(x);
|
||||
assert_eq!(result, expected);
|
||||
}
|
||||
|
||||
fn exact_tests<S: rustc_apfloat::ieee::Semantics>() {
|
||||
test::<S>("0", "0");
|
||||
test::<S>("1", "1");
|
||||
test::<S>("1.5625", "1.25");
|
||||
test::<S>("2.25", "1.5");
|
||||
test::<S>("4", "2");
|
||||
test::<S>("5.0625", "2.25");
|
||||
test::<S>("9", "3");
|
||||
test::<S>("16", "4");
|
||||
test::<S>("25", "5");
|
||||
test::<S>("36", "6");
|
||||
test::<S>("49", "7");
|
||||
test::<S>("64", "8");
|
||||
test::<S>("81", "9");
|
||||
test::<S>("100", "10");
|
||||
|
||||
test::<S>("0.5625", "0.75");
|
||||
test::<S>("0.25", "0.5");
|
||||
test::<S>("0.0625", "0.25");
|
||||
test::<S>("0.00390625", "0.0625");
|
||||
}
|
||||
|
||||
exact_tests::<HalfS>();
|
||||
exact_tests::<SingleS>();
|
||||
exact_tests::<DoubleS>();
|
||||
exact_tests::<QuadS>();
|
||||
|
||||
test::<SingleS>("2", "1.4142135");
|
||||
test::<DoubleS>("2", "1.4142135623730951");
|
||||
|
||||
test::<SingleS>("1.1", "1.0488088");
|
||||
test::<DoubleS>("1.1", "1.0488088481701516");
|
||||
|
||||
test::<SingleS>("2.2", "1.4832398");
|
||||
test::<DoubleS>("2.2", "1.4832396974191326");
|
||||
|
||||
test::<SingleS>("1.22101e-40", "1.10499205e-20");
|
||||
test::<DoubleS>("1.22101e-310", "1.1049932126488395e-155");
|
||||
|
||||
test::<SingleS>("3.4028235e38", "1.8446743e19");
|
||||
test::<DoubleS>("1.7976931348623157e308", "1.3407807929942596e154");
|
||||
}
|
||||
}
|
@ -1,4 +1,3 @@
|
||||
use rand::Rng as _;
|
||||
use rustc_abi::{ExternAbi, Size};
|
||||
use rustc_apfloat::Float;
|
||||
use rustc_apfloat::ieee::Single;
|
||||
@ -408,38 +407,20 @@ fn unary_op_f32<'tcx>(
|
||||
let div = (Single::from_u128(1).value / op).value;
|
||||
// Apply a relative error with a magnitude on the order of 2^-12 to simulate the
|
||||
// inaccuracy of RCP.
|
||||
let res = apply_random_float_error(ecx, div, -12);
|
||||
let res = math::apply_random_float_error(ecx, div, -12);
|
||||
interp_ok(Scalar::from_f32(res))
|
||||
}
|
||||
FloatUnaryOp::Rsqrt => {
|
||||
let op = op.to_scalar().to_u32()?;
|
||||
// FIXME using host floats
|
||||
let sqrt = Single::from_bits(f32::from_bits(op).sqrt().to_bits().into());
|
||||
let rsqrt = (Single::from_u128(1).value / sqrt).value;
|
||||
let op = op.to_scalar().to_f32()?;
|
||||
let rsqrt = (Single::from_u128(1).value / math::sqrt(op)).value;
|
||||
// Apply a relative error with a magnitude on the order of 2^-12 to simulate the
|
||||
// inaccuracy of RSQRT.
|
||||
let res = apply_random_float_error(ecx, rsqrt, -12);
|
||||
let res = math::apply_random_float_error(ecx, rsqrt, -12);
|
||||
interp_ok(Scalar::from_f32(res))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Disturbes a floating-point result by a relative error on the order of (-2^scale, 2^scale).
|
||||
#[expect(clippy::arithmetic_side_effects)] // floating point arithmetic cannot panic
|
||||
fn apply_random_float_error<F: rustc_apfloat::Float>(
|
||||
ecx: &mut crate::MiriInterpCx<'_>,
|
||||
val: F,
|
||||
err_scale: i32,
|
||||
) -> F {
|
||||
let rng = ecx.machine.rng.get_mut();
|
||||
// generates rand(0, 2^64) * 2^(scale - 64) = rand(0, 1) * 2^scale
|
||||
let err = F::from_u128(rng.gen::<u64>().into()).value.scalbn(err_scale.strict_sub(64));
|
||||
// give it a random sign
|
||||
let err = if rng.gen::<bool>() { -err } else { err };
|
||||
// multiple the value with (1+err)
|
||||
(val * (F::from_u128(1).value + err).value).value
|
||||
}
|
||||
|
||||
/// Performs `which` operation on the first component of `op` and copies
|
||||
/// the other components. The result is stored in `dest`.
|
||||
fn unary_op_ss<'tcx>(
|
||||
|
@ -959,10 +959,20 @@ pub fn libm() {
|
||||
unsafe { ldexp(a, b) }
|
||||
}
|
||||
|
||||
assert_approx_eq!(64f32.sqrt(), 8f32);
|
||||
assert_approx_eq!(64f64.sqrt(), 8f64);
|
||||
assert_eq!(64_f32.sqrt(), 8_f32);
|
||||
assert_eq!(64_f64.sqrt(), 8_f64);
|
||||
assert_eq!(f32::INFINITY.sqrt(), f32::INFINITY);
|
||||
assert_eq!(f64::INFINITY.sqrt(), f64::INFINITY);
|
||||
assert_eq!(0.0_f32.sqrt().total_cmp(&0.0), std::cmp::Ordering::Equal);
|
||||
assert_eq!(0.0_f64.sqrt().total_cmp(&0.0), std::cmp::Ordering::Equal);
|
||||
assert_eq!((-0.0_f32).sqrt().total_cmp(&-0.0), std::cmp::Ordering::Equal);
|
||||
assert_eq!((-0.0_f64).sqrt().total_cmp(&-0.0), std::cmp::Ordering::Equal);
|
||||
assert!((-5.0_f32).sqrt().is_nan());
|
||||
assert!((-5.0_f64).sqrt().is_nan());
|
||||
assert!(f32::NEG_INFINITY.sqrt().is_nan());
|
||||
assert!(f64::NEG_INFINITY.sqrt().is_nan());
|
||||
assert!(f32::NAN.sqrt().is_nan());
|
||||
assert!(f64::NAN.sqrt().is_nan());
|
||||
|
||||
assert_approx_eq!(25f32.powi(-2), 0.0016f32);
|
||||
assert_approx_eq!(23.2f64.powi(2), 538.24f64);
|
||||
|
Loading…
Reference in New Issue
Block a user