mirror of
https://github.com/rust-lang/rust.git
synced 2025-06-05 03:38:29 +00:00
Unify stable and unstable sort implementations in same core module
This moves the stable sort implementation to the core::slice::sort module. By virtue of being in core it can't access `Vec`. The two `Vec` used by merge sort, `buf` and `runs`, are modelled as custom types that implement the very limited required `Vec` interface with the help of provided allocation and free functions. This is done to allow future re-use of functions and logic between stable and unstable sort. Such as `insert_head`.
This commit is contained in:
parent
736c675d2a
commit
dbc0ed2a10
@ -19,10 +19,12 @@ use core::cmp::Ordering::{self, Less};
|
|||||||
use core::mem::{self, SizedTypeProperties};
|
use core::mem::{self, SizedTypeProperties};
|
||||||
#[cfg(not(no_global_oom_handling))]
|
#[cfg(not(no_global_oom_handling))]
|
||||||
use core::ptr;
|
use core::ptr;
|
||||||
|
#[cfg(not(no_global_oom_handling))]
|
||||||
|
use core::slice::sort;
|
||||||
|
|
||||||
use crate::alloc::Allocator;
|
use crate::alloc::Allocator;
|
||||||
#[cfg(not(no_global_oom_handling))]
|
#[cfg(not(no_global_oom_handling))]
|
||||||
use crate::alloc::Global;
|
use crate::alloc::{self, Global};
|
||||||
#[cfg(not(no_global_oom_handling))]
|
#[cfg(not(no_global_oom_handling))]
|
||||||
use crate::borrow::ToOwned;
|
use crate::borrow::ToOwned;
|
||||||
use crate::boxed::Box;
|
use crate::boxed::Box;
|
||||||
@ -203,7 +205,7 @@ impl<T> [T] {
|
|||||||
where
|
where
|
||||||
T: Ord,
|
T: Ord,
|
||||||
{
|
{
|
||||||
merge_sort(self, T::lt);
|
stable_sort(self, T::lt);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Sorts the slice with a comparator function.
|
/// Sorts the slice with a comparator function.
|
||||||
@ -259,7 +261,7 @@ impl<T> [T] {
|
|||||||
where
|
where
|
||||||
F: FnMut(&T, &T) -> Ordering,
|
F: FnMut(&T, &T) -> Ordering,
|
||||||
{
|
{
|
||||||
merge_sort(self, |a, b| compare(a, b) == Less);
|
stable_sort(self, |a, b| compare(a, b) == Less);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Sorts the slice with a key extraction function.
|
/// Sorts the slice with a key extraction function.
|
||||||
@ -302,7 +304,7 @@ impl<T> [T] {
|
|||||||
F: FnMut(&T) -> K,
|
F: FnMut(&T) -> K,
|
||||||
K: Ord,
|
K: Ord,
|
||||||
{
|
{
|
||||||
merge_sort(self, |a, b| f(a).lt(&f(b)));
|
stable_sort(self, |a, b| f(a).lt(&f(b)));
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Sorts the slice with a key extraction function.
|
/// Sorts the slice with a key extraction function.
|
||||||
@ -809,324 +811,52 @@ impl<T: Clone> ToOwned for [T] {
|
|||||||
// Sorting
|
// Sorting
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
/// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted.
|
#[inline]
|
||||||
///
|
|
||||||
/// This is the integral subroutine of insertion sort.
|
|
||||||
#[cfg(not(no_global_oom_handling))]
|
#[cfg(not(no_global_oom_handling))]
|
||||||
fn insert_head<T, F>(v: &mut [T], is_less: &mut F)
|
fn stable_sort<T, F>(v: &mut [T], mut is_less: F)
|
||||||
where
|
where
|
||||||
F: FnMut(&T, &T) -> bool,
|
F: FnMut(&T, &T) -> bool,
|
||||||
{
|
{
|
||||||
if v.len() >= 2 && is_less(&v[1], &v[0]) {
|
|
||||||
unsafe {
|
|
||||||
// There are three ways to implement insertion here:
|
|
||||||
//
|
|
||||||
// 1. Swap adjacent elements until the first one gets to its final destination.
|
|
||||||
// However, this way we copy data around more than is necessary. If elements are big
|
|
||||||
// structures (costly to copy), this method will be slow.
|
|
||||||
//
|
|
||||||
// 2. Iterate until the right place for the first element is found. Then shift the
|
|
||||||
// elements succeeding it to make room for it and finally place it into the
|
|
||||||
// remaining hole. This is a good method.
|
|
||||||
//
|
|
||||||
// 3. Copy the first element into a temporary variable. Iterate until the right place
|
|
||||||
// for it is found. As we go along, copy every traversed element into the slot
|
|
||||||
// preceding it. Finally, copy data from the temporary variable into the remaining
|
|
||||||
// hole. This method is very good. Benchmarks demonstrated slightly better
|
|
||||||
// performance than with the 2nd method.
|
|
||||||
//
|
|
||||||
// All methods were benchmarked, and the 3rd showed best results. So we chose that one.
|
|
||||||
let tmp = mem::ManuallyDrop::new(ptr::read(&v[0]));
|
|
||||||
|
|
||||||
// Intermediate state of the insertion process is always tracked by `hole`, which
|
|
||||||
// serves two purposes:
|
|
||||||
// 1. Protects integrity of `v` from panics in `is_less`.
|
|
||||||
// 2. Fills the remaining hole in `v` in the end.
|
|
||||||
//
|
|
||||||
// Panic safety:
|
|
||||||
//
|
|
||||||
// If `is_less` panics at any point during the process, `hole` will get dropped and
|
|
||||||
// fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it
|
|
||||||
// initially held exactly once.
|
|
||||||
let mut hole = InsertionHole { src: &*tmp, dest: &mut v[1] };
|
|
||||||
ptr::copy_nonoverlapping(&v[1], &mut v[0], 1);
|
|
||||||
|
|
||||||
for i in 2..v.len() {
|
|
||||||
if !is_less(&v[i], &*tmp) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1);
|
|
||||||
hole.dest = &mut v[i];
|
|
||||||
}
|
|
||||||
// `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// When dropped, copies from `src` into `dest`.
|
|
||||||
struct InsertionHole<T> {
|
|
||||||
src: *const T,
|
|
||||||
dest: *mut T,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<T> Drop for InsertionHole<T> {
|
|
||||||
fn drop(&mut self) {
|
|
||||||
unsafe {
|
|
||||||
ptr::copy_nonoverlapping(self.src, self.dest, 1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and
|
|
||||||
/// stores the result into `v[..]`.
|
|
||||||
///
|
|
||||||
/// # Safety
|
|
||||||
///
|
|
||||||
/// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough
|
|
||||||
/// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type.
|
|
||||||
#[cfg(not(no_global_oom_handling))]
|
|
||||||
unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F)
|
|
||||||
where
|
|
||||||
F: FnMut(&T, &T) -> bool,
|
|
||||||
{
|
|
||||||
let len = v.len();
|
|
||||||
let v = v.as_mut_ptr();
|
|
||||||
let (v_mid, v_end) = unsafe { (v.add(mid), v.add(len)) };
|
|
||||||
|
|
||||||
// The merge process first copies the shorter run into `buf`. Then it traces the newly copied
|
|
||||||
// run and the longer run forwards (or backwards), comparing their next unconsumed elements and
|
|
||||||
// copying the lesser (or greater) one into `v`.
|
|
||||||
//
|
|
||||||
// As soon as the shorter run is fully consumed, the process is done. If the longer run gets
|
|
||||||
// consumed first, then we must copy whatever is left of the shorter run into the remaining
|
|
||||||
// hole in `v`.
|
|
||||||
//
|
|
||||||
// Intermediate state of the process is always tracked by `hole`, which serves two purposes:
|
|
||||||
// 1. Protects integrity of `v` from panics in `is_less`.
|
|
||||||
// 2. Fills the remaining hole in `v` if the longer run gets consumed first.
|
|
||||||
//
|
|
||||||
// Panic safety:
|
|
||||||
//
|
|
||||||
// If `is_less` panics at any point during the process, `hole` will get dropped and fill the
|
|
||||||
// hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every
|
|
||||||
// object it initially held exactly once.
|
|
||||||
let mut hole;
|
|
||||||
|
|
||||||
if mid <= len - mid {
|
|
||||||
// The left run is shorter.
|
|
||||||
unsafe {
|
|
||||||
ptr::copy_nonoverlapping(v, buf, mid);
|
|
||||||
hole = MergeHole { start: buf, end: buf.add(mid), dest: v };
|
|
||||||
}
|
|
||||||
|
|
||||||
// Initially, these pointers point to the beginnings of their arrays.
|
|
||||||
let left = &mut hole.start;
|
|
||||||
let mut right = v_mid;
|
|
||||||
let out = &mut hole.dest;
|
|
||||||
|
|
||||||
while *left < hole.end && right < v_end {
|
|
||||||
// Consume the lesser side.
|
|
||||||
// If equal, prefer the left run to maintain stability.
|
|
||||||
unsafe {
|
|
||||||
let to_copy = if is_less(&*right, &**left) {
|
|
||||||
get_and_increment(&mut right)
|
|
||||||
} else {
|
|
||||||
get_and_increment(left)
|
|
||||||
};
|
|
||||||
ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
// The right run is shorter.
|
|
||||||
unsafe {
|
|
||||||
ptr::copy_nonoverlapping(v_mid, buf, len - mid);
|
|
||||||
hole = MergeHole { start: buf, end: buf.add(len - mid), dest: v_mid };
|
|
||||||
}
|
|
||||||
|
|
||||||
// Initially, these pointers point past the ends of their arrays.
|
|
||||||
let left = &mut hole.dest;
|
|
||||||
let right = &mut hole.end;
|
|
||||||
let mut out = v_end;
|
|
||||||
|
|
||||||
while v < *left && buf < *right {
|
|
||||||
// Consume the greater side.
|
|
||||||
// If equal, prefer the right run to maintain stability.
|
|
||||||
unsafe {
|
|
||||||
let to_copy = if is_less(&*right.sub(1), &*left.sub(1)) {
|
|
||||||
decrement_and_get(left)
|
|
||||||
} else {
|
|
||||||
decrement_and_get(right)
|
|
||||||
};
|
|
||||||
ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of
|
|
||||||
// it will now be copied into the hole in `v`.
|
|
||||||
|
|
||||||
unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T {
|
|
||||||
let old = *ptr;
|
|
||||||
*ptr = unsafe { ptr.add(1) };
|
|
||||||
old
|
|
||||||
}
|
|
||||||
|
|
||||||
unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T {
|
|
||||||
*ptr = unsafe { ptr.sub(1) };
|
|
||||||
*ptr
|
|
||||||
}
|
|
||||||
|
|
||||||
// When dropped, copies the range `start..end` into `dest..`.
|
|
||||||
struct MergeHole<T> {
|
|
||||||
start: *mut T,
|
|
||||||
end: *mut T,
|
|
||||||
dest: *mut T,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<T> Drop for MergeHole<T> {
|
|
||||||
fn drop(&mut self) {
|
|
||||||
// `T` is not a zero-sized type, and these are pointers into a slice's elements.
|
|
||||||
unsafe {
|
|
||||||
let len = self.end.sub_ptr(self.start);
|
|
||||||
ptr::copy_nonoverlapping(self.start, self.dest, len);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail
|
|
||||||
/// [here](https://github.com/python/cpython/blob/main/Objects/listsort.txt).
|
|
||||||
///
|
|
||||||
/// The algorithm identifies strictly descending and non-descending subsequences, which are called
|
|
||||||
/// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed
|
|
||||||
/// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are
|
|
||||||
/// satisfied:
|
|
||||||
///
|
|
||||||
/// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len`
|
|
||||||
/// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len`
|
|
||||||
///
|
|
||||||
/// The invariants ensure that the total running time is *O*(*n* \* log(*n*)) worst-case.
|
|
||||||
#[cfg(not(no_global_oom_handling))]
|
|
||||||
fn merge_sort<T, F>(v: &mut [T], mut is_less: F)
|
|
||||||
where
|
|
||||||
F: FnMut(&T, &T) -> bool,
|
|
||||||
{
|
|
||||||
// Slices of up to this length get sorted using insertion sort.
|
|
||||||
const MAX_INSERTION: usize = 20;
|
|
||||||
// Very short runs are extended using insertion sort to span at least this many elements.
|
|
||||||
const MIN_RUN: usize = 10;
|
|
||||||
|
|
||||||
// Sorting has no meaningful behavior on zero-sized types.
|
|
||||||
if T::IS_ZST {
|
if T::IS_ZST {
|
||||||
|
// Sorting has no meaningful behavior on zero-sized types. Do nothing.
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
let len = v.len();
|
let elem_alloc_fn = |len: usize| -> *mut T {
|
||||||
|
// SAFETY: Creating the layout is safe as long as merge_sort never calls this with len >
|
||||||
|
// v.len(). Alloc in general will only be used as 'shadow-region' to store temporary swap
|
||||||
|
// elements.
|
||||||
|
unsafe { alloc::alloc(alloc::Layout::array::<T>(len).unwrap_unchecked()) as *mut T }
|
||||||
|
};
|
||||||
|
|
||||||
// Short arrays get sorted in-place via insertion sort to avoid allocations.
|
let elem_dealloc_fn = |buf_ptr: *mut T, len: usize| {
|
||||||
if len <= MAX_INSERTION {
|
// SAFETY: Creating the layout is safe as long as merge_sort never calls this with len >
|
||||||
if len >= 2 {
|
// v.len(). The caller must ensure that buf_ptr was created by elem_alloc_fn with the same
|
||||||
for i in (0..len - 1).rev() {
|
// len.
|
||||||
insert_head(&mut v[i..], &mut is_less);
|
unsafe {
|
||||||
}
|
alloc::dealloc(buf_ptr as *mut u8, alloc::Layout::array::<T>(len).unwrap_unchecked());
|
||||||
}
|
}
|
||||||
return;
|
};
|
||||||
}
|
|
||||||
|
|
||||||
// Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it
|
let run_alloc_fn = |len: usize| -> *mut sort::TimSortRun {
|
||||||
// shallow copies of the contents of `v` without risking the dtors running on copies if
|
// SAFETY: Creating the layout is safe as long as merge_sort never calls this with an
|
||||||
// `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run,
|
// obscene length or 0.
|
||||||
// which will always have length at most `len / 2`.
|
unsafe {
|
||||||
let mut buf = Vec::with_capacity(len / 2);
|
alloc::alloc(alloc::Layout::array::<sort::TimSortRun>(len).unwrap_unchecked())
|
||||||
|
as *mut sort::TimSortRun
|
||||||
// In order to identify natural runs in `v`, we traverse it backwards. That might seem like a
|
|
||||||
// strange decision, but consider the fact that merges more often go in the opposite direction
|
|
||||||
// (forwards). According to benchmarks, merging forwards is slightly faster than merging
|
|
||||||
// backwards. To conclude, identifying runs by traversing backwards improves performance.
|
|
||||||
let mut runs = vec![];
|
|
||||||
let mut end = len;
|
|
||||||
while end > 0 {
|
|
||||||
// Find the next natural run, and reverse it if it's strictly descending.
|
|
||||||
let mut start = end - 1;
|
|
||||||
if start > 0 {
|
|
||||||
start -= 1;
|
|
||||||
unsafe {
|
|
||||||
if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) {
|
|
||||||
while start > 0 && is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) {
|
|
||||||
start -= 1;
|
|
||||||
}
|
|
||||||
v[start..end].reverse();
|
|
||||||
} else {
|
|
||||||
while start > 0 && !is_less(v.get_unchecked(start), v.get_unchecked(start - 1))
|
|
||||||
{
|
|
||||||
start -= 1;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
};
|
||||||
|
|
||||||
// Insert some more elements into the run if it's too short. Insertion sort is faster than
|
let run_dealloc_fn = |buf_ptr: *mut sort::TimSortRun, len: usize| {
|
||||||
// merge sort on short sequences, so this significantly improves performance.
|
// SAFETY: The caller must ensure that buf_ptr was created by elem_alloc_fn with the same
|
||||||
while start > 0 && end - start < MIN_RUN {
|
// len.
|
||||||
start -= 1;
|
unsafe {
|
||||||
insert_head(&mut v[start..end], &mut is_less);
|
alloc::dealloc(
|
||||||
|
buf_ptr as *mut u8,
|
||||||
|
alloc::Layout::array::<sort::TimSortRun>(len).unwrap_unchecked(),
|
||||||
|
);
|
||||||
}
|
}
|
||||||
|
};
|
||||||
|
|
||||||
// Push this run onto the stack.
|
sort::merge_sort(v, &mut is_less, elem_alloc_fn, elem_dealloc_fn, run_alloc_fn, run_dealloc_fn);
|
||||||
runs.push(Run { start, len: end - start });
|
|
||||||
end = start;
|
|
||||||
|
|
||||||
// Merge some pairs of adjacent runs to satisfy the invariants.
|
|
||||||
while let Some(r) = collapse(&runs) {
|
|
||||||
let left = runs[r + 1];
|
|
||||||
let right = runs[r];
|
|
||||||
unsafe {
|
|
||||||
merge(
|
|
||||||
&mut v[left.start..right.start + right.len],
|
|
||||||
left.len,
|
|
||||||
buf.as_mut_ptr(),
|
|
||||||
&mut is_less,
|
|
||||||
);
|
|
||||||
}
|
|
||||||
runs[r] = Run { start: left.start, len: left.len + right.len };
|
|
||||||
runs.remove(r + 1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Finally, exactly one run must remain in the stack.
|
|
||||||
debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len);
|
|
||||||
|
|
||||||
// Examines the stack of runs and identifies the next pair of runs to merge. More specifically,
|
|
||||||
// if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the
|
|
||||||
// algorithm should continue building a new run instead, `None` is returned.
|
|
||||||
//
|
|
||||||
// TimSort is infamous for its buggy implementations, as described here:
|
|
||||||
// http://envisage-project.eu/timsort-specification-and-verification/
|
|
||||||
//
|
|
||||||
// The gist of the story is: we must enforce the invariants on the top four runs on the stack.
|
|
||||||
// Enforcing them on just top three is not sufficient to ensure that the invariants will still
|
|
||||||
// hold for *all* runs in the stack.
|
|
||||||
//
|
|
||||||
// This function correctly checks invariants for the top four runs. Additionally, if the top
|
|
||||||
// run starts at index 0, it will always demand a merge operation until the stack is fully
|
|
||||||
// collapsed, in order to complete the sort.
|
|
||||||
#[inline]
|
|
||||||
fn collapse(runs: &[Run]) -> Option<usize> {
|
|
||||||
let n = runs.len();
|
|
||||||
if n >= 2
|
|
||||||
&& (runs[n - 1].start == 0
|
|
||||||
|| runs[n - 2].len <= runs[n - 1].len
|
|
||||||
|| (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len)
|
|
||||||
|| (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len))
|
|
||||||
{
|
|
||||||
if n >= 3 && runs[n - 3].len < runs[n - 1].len { Some(n - 3) } else { Some(n - 2) }
|
|
||||||
} else {
|
|
||||||
None
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Clone, Copy)]
|
|
||||||
struct Run {
|
|
||||||
start: usize,
|
|
||||||
len: usize,
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
@ -28,13 +28,19 @@ use crate::slice;
|
|||||||
/// Pure rust memchr implementation, taken from rust-memchr
|
/// Pure rust memchr implementation, taken from rust-memchr
|
||||||
pub mod memchr;
|
pub mod memchr;
|
||||||
|
|
||||||
|
#[unstable(
|
||||||
|
feature = "slice_internals",
|
||||||
|
issue = "none",
|
||||||
|
reason = "exposed from core to be reused in std;"
|
||||||
|
)]
|
||||||
|
pub mod sort;
|
||||||
|
|
||||||
mod ascii;
|
mod ascii;
|
||||||
mod cmp;
|
mod cmp;
|
||||||
mod index;
|
mod index;
|
||||||
mod iter;
|
mod iter;
|
||||||
mod raw;
|
mod raw;
|
||||||
mod rotate;
|
mod rotate;
|
||||||
mod sort;
|
|
||||||
mod specialize;
|
mod specialize;
|
||||||
|
|
||||||
#[stable(feature = "rust1", since = "1.0.0")]
|
#[stable(feature = "rust1", since = "1.0.0")]
|
||||||
|
@ -5,6 +5,11 @@
|
|||||||
//!
|
//!
|
||||||
//! Unstable sorting is compatible with libcore because it doesn't allocate memory, unlike our
|
//! Unstable sorting is compatible with libcore because it doesn't allocate memory, unlike our
|
||||||
//! stable sorting implementation.
|
//! stable sorting implementation.
|
||||||
|
//!
|
||||||
|
//! In addition it also contains the core logic of the stable sort used by `slice::sort` based on
|
||||||
|
//! TimSort.
|
||||||
|
|
||||||
|
#![allow(unused)] // FIXME debug
|
||||||
|
|
||||||
use crate::cmp;
|
use crate::cmp;
|
||||||
use crate::mem::{self, MaybeUninit, SizedTypeProperties};
|
use crate::mem::{self, MaybeUninit, SizedTypeProperties};
|
||||||
@ -883,6 +888,7 @@ fn partition_at_index_loop<'a, T, F>(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Reorder the slice such that the element at `index` is at its final sorted position.
|
||||||
pub fn partition_at_index<T, F>(
|
pub fn partition_at_index<T, F>(
|
||||||
v: &mut [T],
|
v: &mut [T],
|
||||||
index: usize,
|
index: usize,
|
||||||
@ -927,3 +933,491 @@ where
|
|||||||
let pivot = &mut pivot[0];
|
let pivot = &mut pivot[0];
|
||||||
(left, pivot, right)
|
(left, pivot, right)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted.
|
||||||
|
///
|
||||||
|
/// This is the integral subroutine of insertion sort.
|
||||||
|
fn insert_head<T, F>(v: &mut [T], is_less: &mut F)
|
||||||
|
where
|
||||||
|
F: FnMut(&T, &T) -> bool,
|
||||||
|
{
|
||||||
|
if v.len() >= 2 && is_less(&v[1], &v[0]) {
|
||||||
|
unsafe {
|
||||||
|
// There are three ways to implement insertion here:
|
||||||
|
//
|
||||||
|
// 1. Swap adjacent elements until the first one gets to its final destination.
|
||||||
|
// However, this way we copy data around more than is necessary. If elements are big
|
||||||
|
// structures (costly to copy), this method will be slow.
|
||||||
|
//
|
||||||
|
// 2. Iterate until the right place for the first element is found. Then shift the
|
||||||
|
// elements succeeding it to make room for it and finally place it into the
|
||||||
|
// remaining hole. This is a good method.
|
||||||
|
//
|
||||||
|
// 3. Copy the first element into a temporary variable. Iterate until the right place
|
||||||
|
// for it is found. As we go along, copy every traversed element into the slot
|
||||||
|
// preceding it. Finally, copy data from the temporary variable into the remaining
|
||||||
|
// hole. This method is very good. Benchmarks demonstrated slightly better
|
||||||
|
// performance than with the 2nd method.
|
||||||
|
//
|
||||||
|
// All methods were benchmarked, and the 3rd showed best results. So we chose that one.
|
||||||
|
let tmp = mem::ManuallyDrop::new(ptr::read(&v[0]));
|
||||||
|
|
||||||
|
// Intermediate state of the insertion process is always tracked by `hole`, which
|
||||||
|
// serves two purposes:
|
||||||
|
// 1. Protects integrity of `v` from panics in `is_less`.
|
||||||
|
// 2. Fills the remaining hole in `v` in the end.
|
||||||
|
//
|
||||||
|
// Panic safety:
|
||||||
|
//
|
||||||
|
// If `is_less` panics at any point during the process, `hole` will get dropped and
|
||||||
|
// fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it
|
||||||
|
// initially held exactly once.
|
||||||
|
let mut hole = InsertionHole { src: &*tmp, dest: &mut v[1] };
|
||||||
|
ptr::copy_nonoverlapping(&v[1], &mut v[0], 1);
|
||||||
|
|
||||||
|
for i in 2..v.len() {
|
||||||
|
if !is_less(&v[i], &*tmp) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1);
|
||||||
|
hole.dest = &mut v[i];
|
||||||
|
}
|
||||||
|
// `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// When dropped, copies from `src` into `dest`.
|
||||||
|
struct InsertionHole<T> {
|
||||||
|
src: *const T,
|
||||||
|
dest: *mut T,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> Drop for InsertionHole<T> {
|
||||||
|
fn drop(&mut self) {
|
||||||
|
unsafe {
|
||||||
|
ptr::copy_nonoverlapping(self.src, self.dest, 1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and
|
||||||
|
/// stores the result into `v[..]`.
|
||||||
|
///
|
||||||
|
/// # Safety
|
||||||
|
///
|
||||||
|
/// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough
|
||||||
|
/// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type.
|
||||||
|
unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F)
|
||||||
|
where
|
||||||
|
F: FnMut(&T, &T) -> bool,
|
||||||
|
{
|
||||||
|
let len = v.len();
|
||||||
|
let v = v.as_mut_ptr();
|
||||||
|
let (v_mid, v_end) = unsafe { (v.add(mid), v.add(len)) };
|
||||||
|
|
||||||
|
// The merge process first copies the shorter run into `buf`. Then it traces the newly copied
|
||||||
|
// run and the longer run forwards (or backwards), comparing their next unconsumed elements and
|
||||||
|
// copying the lesser (or greater) one into `v`.
|
||||||
|
//
|
||||||
|
// As soon as the shorter run is fully consumed, the process is done. If the longer run gets
|
||||||
|
// consumed first, then we must copy whatever is left of the shorter run into the remaining
|
||||||
|
// hole in `v`.
|
||||||
|
//
|
||||||
|
// Intermediate state of the process is always tracked by `hole`, which serves two purposes:
|
||||||
|
// 1. Protects integrity of `v` from panics in `is_less`.
|
||||||
|
// 2. Fills the remaining hole in `v` if the longer run gets consumed first.
|
||||||
|
//
|
||||||
|
// Panic safety:
|
||||||
|
//
|
||||||
|
// If `is_less` panics at any point during the process, `hole` will get dropped and fill the
|
||||||
|
// hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every
|
||||||
|
// object it initially held exactly once.
|
||||||
|
let mut hole;
|
||||||
|
|
||||||
|
if mid <= len - mid {
|
||||||
|
// The left run is shorter.
|
||||||
|
unsafe {
|
||||||
|
ptr::copy_nonoverlapping(v, buf, mid);
|
||||||
|
hole = MergeHole { start: buf, end: buf.add(mid), dest: v };
|
||||||
|
}
|
||||||
|
|
||||||
|
// Initially, these pointers point to the beginnings of their arrays.
|
||||||
|
let left = &mut hole.start;
|
||||||
|
let mut right = v_mid;
|
||||||
|
let out = &mut hole.dest;
|
||||||
|
|
||||||
|
while *left < hole.end && right < v_end {
|
||||||
|
// Consume the lesser side.
|
||||||
|
// If equal, prefer the left run to maintain stability.
|
||||||
|
unsafe {
|
||||||
|
let to_copy = if is_less(&*right, &**left) {
|
||||||
|
get_and_increment(&mut right)
|
||||||
|
} else {
|
||||||
|
get_and_increment(left)
|
||||||
|
};
|
||||||
|
ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// The right run is shorter.
|
||||||
|
unsafe {
|
||||||
|
ptr::copy_nonoverlapping(v_mid, buf, len - mid);
|
||||||
|
hole = MergeHole { start: buf, end: buf.add(len - mid), dest: v_mid };
|
||||||
|
}
|
||||||
|
|
||||||
|
// Initially, these pointers point past the ends of their arrays.
|
||||||
|
let left = &mut hole.dest;
|
||||||
|
let right = &mut hole.end;
|
||||||
|
let mut out = v_end;
|
||||||
|
|
||||||
|
while v < *left && buf < *right {
|
||||||
|
// Consume the greater side.
|
||||||
|
// If equal, prefer the right run to maintain stability.
|
||||||
|
unsafe {
|
||||||
|
let to_copy = if is_less(&*right.sub(1), &*left.sub(1)) {
|
||||||
|
decrement_and_get(left)
|
||||||
|
} else {
|
||||||
|
decrement_and_get(right)
|
||||||
|
};
|
||||||
|
ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of
|
||||||
|
// it will now be copied into the hole in `v`.
|
||||||
|
|
||||||
|
unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T {
|
||||||
|
let old = *ptr;
|
||||||
|
*ptr = unsafe { ptr.add(1) };
|
||||||
|
old
|
||||||
|
}
|
||||||
|
|
||||||
|
unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T {
|
||||||
|
*ptr = unsafe { ptr.sub(1) };
|
||||||
|
*ptr
|
||||||
|
}
|
||||||
|
|
||||||
|
// When dropped, copies the range `start..end` into `dest..`.
|
||||||
|
struct MergeHole<T> {
|
||||||
|
start: *mut T,
|
||||||
|
end: *mut T,
|
||||||
|
dest: *mut T,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> Drop for MergeHole<T> {
|
||||||
|
fn drop(&mut self) {
|
||||||
|
// `T` is not a zero-sized type, and these are pointers into a slice's elements.
|
||||||
|
unsafe {
|
||||||
|
let len = self.end.sub_ptr(self.start);
|
||||||
|
ptr::copy_nonoverlapping(self.start, self.dest, len);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// This merge sort borrows some (but not all) ideas from TimSort, which used to be described in
|
||||||
|
/// detail [here](https://github.com/python/cpython/blob/main/Objects/listsort.txt). However Python
|
||||||
|
/// has switched to a Powersort based implementation.
|
||||||
|
///
|
||||||
|
/// The algorithm identifies strictly descending and non-descending subsequences, which are called
|
||||||
|
/// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed
|
||||||
|
/// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are
|
||||||
|
/// satisfied:
|
||||||
|
///
|
||||||
|
/// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len`
|
||||||
|
/// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len`
|
||||||
|
///
|
||||||
|
/// The invariants ensure that the total running time is *O*(*n* \* log(*n*)) worst-case.
|
||||||
|
pub fn merge_sort<T, CmpF, ElemAllocF, ElemDeallocF, RunAllocF, RunDeallocF>(
|
||||||
|
v: &mut [T],
|
||||||
|
is_less: &mut CmpF,
|
||||||
|
elem_alloc_fn: ElemAllocF,
|
||||||
|
elem_dealloc_fn: ElemDeallocF,
|
||||||
|
run_alloc_fn: RunAllocF,
|
||||||
|
run_dealloc_fn: RunDeallocF,
|
||||||
|
) where
|
||||||
|
CmpF: FnMut(&T, &T) -> bool,
|
||||||
|
ElemAllocF: Fn(usize) -> *mut T,
|
||||||
|
ElemDeallocF: Fn(*mut T, usize),
|
||||||
|
RunAllocF: Fn(usize) -> *mut TimSortRun,
|
||||||
|
RunDeallocF: Fn(*mut TimSortRun, usize),
|
||||||
|
{
|
||||||
|
// Slices of up to this length get sorted using insertion sort.
|
||||||
|
const MAX_INSERTION: usize = 20;
|
||||||
|
// Very short runs are extended using insertion sort to span at least this many elements.
|
||||||
|
const MIN_RUN: usize = 10;
|
||||||
|
|
||||||
|
// The caller should have already checked that.
|
||||||
|
debug_assert!(!T::IS_ZST);
|
||||||
|
|
||||||
|
let len = v.len();
|
||||||
|
|
||||||
|
// Short arrays get sorted in-place via insertion sort to avoid allocations.
|
||||||
|
if len <= MAX_INSERTION {
|
||||||
|
if len >= 2 {
|
||||||
|
for i in (0..len - 1).rev() {
|
||||||
|
insert_head(&mut v[i..], is_less);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it
|
||||||
|
// shallow copies of the contents of `v` without risking the dtors running on copies if
|
||||||
|
// `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run,
|
||||||
|
// which will always have length at most `len / 2`.
|
||||||
|
let mut buf = BufGuard::new(len / 2, elem_alloc_fn, elem_dealloc_fn);
|
||||||
|
let buf_ptr = buf.buf_ptr;
|
||||||
|
|
||||||
|
let mut runs = RunVec::new(run_alloc_fn, run_dealloc_fn);
|
||||||
|
|
||||||
|
// In order to identify natural runs in `v`, we traverse it backwards. That might seem like a
|
||||||
|
// strange decision, but consider the fact that merges more often go in the opposite direction
|
||||||
|
// (forwards). According to benchmarks, merging forwards is slightly faster than merging
|
||||||
|
// backwards. To conclude, identifying runs by traversing backwards improves performance.
|
||||||
|
let mut end = len;
|
||||||
|
while end > 0 {
|
||||||
|
// Find the next natural run, and reverse it if it's strictly descending.
|
||||||
|
let mut start = end - 1;
|
||||||
|
if start > 0 {
|
||||||
|
start -= 1;
|
||||||
|
unsafe {
|
||||||
|
if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) {
|
||||||
|
while start > 0 && is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) {
|
||||||
|
start -= 1;
|
||||||
|
}
|
||||||
|
v[start..end].reverse();
|
||||||
|
} else {
|
||||||
|
while start > 0 && !is_less(v.get_unchecked(start), v.get_unchecked(start - 1))
|
||||||
|
{
|
||||||
|
start -= 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Insert some more elements into the run if it's too short. Insertion sort is faster than
|
||||||
|
// merge sort on short sequences, so this significantly improves performance.
|
||||||
|
while start > 0 && end - start < MIN_RUN {
|
||||||
|
start -= 1;
|
||||||
|
insert_head(&mut v[start..end], is_less);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Push this run onto the stack.
|
||||||
|
runs.push(TimSortRun { start, len: end - start });
|
||||||
|
end = start;
|
||||||
|
|
||||||
|
// Merge some pairs of adjacent runs to satisfy the invariants.
|
||||||
|
while let Some(r) = collapse(runs.as_slice()) {
|
||||||
|
let left = runs[r + 1];
|
||||||
|
let right = runs[r];
|
||||||
|
unsafe {
|
||||||
|
merge(&mut v[left.start..right.start + right.len], left.len, buf_ptr, is_less);
|
||||||
|
}
|
||||||
|
runs[r] = TimSortRun { start: left.start, len: left.len + right.len };
|
||||||
|
runs.remove(r + 1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Finally, exactly one run must remain in the stack.
|
||||||
|
debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len);
|
||||||
|
|
||||||
|
// Examines the stack of runs and identifies the next pair of runs to merge. More specifically,
|
||||||
|
// if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the
|
||||||
|
// algorithm should continue building a new run instead, `None` is returned.
|
||||||
|
//
|
||||||
|
// TimSort is infamous for its buggy implementations, as described here:
|
||||||
|
// http://envisage-project.eu/timsort-specification-and-verification/
|
||||||
|
//
|
||||||
|
// The gist of the story is: we must enforce the invariants on the top four runs on the stack.
|
||||||
|
// Enforcing them on just top three is not sufficient to ensure that the invariants will still
|
||||||
|
// hold for *all* runs in the stack.
|
||||||
|
//
|
||||||
|
// This function correctly checks invariants for the top four runs. Additionally, if the top
|
||||||
|
// run starts at index 0, it will always demand a merge operation until the stack is fully
|
||||||
|
// collapsed, in order to complete the sort.
|
||||||
|
#[inline]
|
||||||
|
fn collapse(runs: &[TimSortRun]) -> Option<usize> {
|
||||||
|
let n = runs.len();
|
||||||
|
if n >= 2
|
||||||
|
&& (runs[n - 1].start == 0
|
||||||
|
|| runs[n - 2].len <= runs[n - 1].len
|
||||||
|
|| (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len)
|
||||||
|
|| (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len))
|
||||||
|
{
|
||||||
|
if n >= 3 && runs[n - 3].len < runs[n - 1].len { Some(n - 3) } else { Some(n - 2) }
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Extremely basic versions of Vec.
|
||||||
|
// Their use is super limited and by having the code here, it allows reuse between the sort
|
||||||
|
// implementations.
|
||||||
|
struct BufGuard<T, ElemAllocF, ElemDeallocF>
|
||||||
|
where
|
||||||
|
ElemAllocF: Fn(usize) -> *mut T,
|
||||||
|
ElemDeallocF: Fn(*mut T, usize),
|
||||||
|
{
|
||||||
|
buf_ptr: *mut T,
|
||||||
|
capacity: usize,
|
||||||
|
elem_alloc_fn: ElemAllocF,
|
||||||
|
elem_dealloc_fn: ElemDeallocF,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, ElemAllocF, ElemDeallocF> BufGuard<T, ElemAllocF, ElemDeallocF>
|
||||||
|
where
|
||||||
|
ElemAllocF: Fn(usize) -> *mut T,
|
||||||
|
ElemDeallocF: Fn(*mut T, usize),
|
||||||
|
{
|
||||||
|
fn new(len: usize, elem_alloc_fn: ElemAllocF, elem_dealloc_fn: ElemDeallocF) -> Self {
|
||||||
|
Self { buf_ptr: elem_alloc_fn(len), capacity: len, elem_alloc_fn, elem_dealloc_fn }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, ElemAllocF, ElemDeallocF> Drop for BufGuard<T, ElemAllocF, ElemDeallocF>
|
||||||
|
where
|
||||||
|
ElemAllocF: Fn(usize) -> *mut T,
|
||||||
|
ElemDeallocF: Fn(*mut T, usize),
|
||||||
|
{
|
||||||
|
fn drop(&mut self) {
|
||||||
|
(self.elem_dealloc_fn)(self.buf_ptr, self.capacity);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
struct RunVec<RunAllocF, RunDeallocF>
|
||||||
|
where
|
||||||
|
RunAllocF: Fn(usize) -> *mut TimSortRun,
|
||||||
|
RunDeallocF: Fn(*mut TimSortRun, usize),
|
||||||
|
{
|
||||||
|
buf_ptr: *mut TimSortRun,
|
||||||
|
capacity: usize,
|
||||||
|
len: usize,
|
||||||
|
run_alloc_fn: RunAllocF,
|
||||||
|
run_dealloc_fn: RunDeallocF,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<RunAllocF, RunDeallocF> RunVec<RunAllocF, RunDeallocF>
|
||||||
|
where
|
||||||
|
RunAllocF: Fn(usize) -> *mut TimSortRun,
|
||||||
|
RunDeallocF: Fn(*mut TimSortRun, usize),
|
||||||
|
{
|
||||||
|
fn new(run_alloc_fn: RunAllocF, run_dealloc_fn: RunDeallocF) -> Self {
|
||||||
|
// Most slices can be sorted with at most 16 runs in-flight.
|
||||||
|
const START_RUN_CAPACITY: usize = 16;
|
||||||
|
|
||||||
|
Self {
|
||||||
|
buf_ptr: run_alloc_fn(START_RUN_CAPACITY),
|
||||||
|
capacity: START_RUN_CAPACITY,
|
||||||
|
len: 0,
|
||||||
|
run_alloc_fn,
|
||||||
|
run_dealloc_fn,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn push(&mut self, val: TimSortRun) {
|
||||||
|
if self.len == self.capacity {
|
||||||
|
let old_capacity = self.capacity;
|
||||||
|
let old_buf_ptr = self.buf_ptr;
|
||||||
|
|
||||||
|
self.capacity = self.capacity * 2;
|
||||||
|
self.buf_ptr = (self.run_alloc_fn)(self.capacity);
|
||||||
|
|
||||||
|
// SAFETY: buf_ptr new and old were correctly allocated and old_buf_ptr has
|
||||||
|
// old_capacity valid elements.
|
||||||
|
unsafe {
|
||||||
|
ptr::copy_nonoverlapping(old_buf_ptr, self.buf_ptr, old_capacity);
|
||||||
|
}
|
||||||
|
|
||||||
|
(self.run_dealloc_fn)(old_buf_ptr, old_capacity);
|
||||||
|
}
|
||||||
|
|
||||||
|
// SAFETY: The invariant was just checked.
|
||||||
|
unsafe {
|
||||||
|
self.buf_ptr.add(self.len).write(val);
|
||||||
|
}
|
||||||
|
self.len += 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
fn remove(&mut self, index: usize) {
|
||||||
|
if index >= self.len {
|
||||||
|
panic!("Index out of bounds");
|
||||||
|
}
|
||||||
|
|
||||||
|
// SAFETY: buf_ptr needs to be valid and len invariant upheld.
|
||||||
|
unsafe {
|
||||||
|
// the place we are taking from.
|
||||||
|
let ptr = self.buf_ptr.add(index);
|
||||||
|
|
||||||
|
// Shift everything down to fill in that spot.
|
||||||
|
ptr::copy(ptr.add(1), ptr, self.len - index - 1);
|
||||||
|
}
|
||||||
|
self.len -= 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
fn as_slice(&self) -> &[TimSortRun] {
|
||||||
|
// SAFETY: Safe as long as buf_ptr is valid and len invariant was upheld.
|
||||||
|
unsafe { &*ptr::slice_from_raw_parts(self.buf_ptr, self.len) }
|
||||||
|
}
|
||||||
|
|
||||||
|
fn len(&self) -> usize {
|
||||||
|
self.len
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<RunAllocF, RunDeallocF> core::ops::Index<usize> for RunVec<RunAllocF, RunDeallocF>
|
||||||
|
where
|
||||||
|
RunAllocF: Fn(usize) -> *mut TimSortRun,
|
||||||
|
RunDeallocF: Fn(*mut TimSortRun, usize),
|
||||||
|
{
|
||||||
|
type Output = TimSortRun;
|
||||||
|
|
||||||
|
fn index(&self, index: usize) -> &Self::Output {
|
||||||
|
if index < self.len {
|
||||||
|
// SAFETY: buf_ptr and len invariant must be upheld.
|
||||||
|
unsafe {
|
||||||
|
return &*(self.buf_ptr.add(index));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
panic!("Index out of bounds");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<RunAllocF, RunDeallocF> core::ops::IndexMut<usize> for RunVec<RunAllocF, RunDeallocF>
|
||||||
|
where
|
||||||
|
RunAllocF: Fn(usize) -> *mut TimSortRun,
|
||||||
|
RunDeallocF: Fn(*mut TimSortRun, usize),
|
||||||
|
{
|
||||||
|
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
|
||||||
|
if index < self.len {
|
||||||
|
// SAFETY: buf_ptr and len invariant must be upheld.
|
||||||
|
unsafe {
|
||||||
|
return &mut *(self.buf_ptr.add(index));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
panic!("Index out of bounds");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<RunAllocF, RunDeallocF> Drop for RunVec<RunAllocF, RunDeallocF>
|
||||||
|
where
|
||||||
|
RunAllocF: Fn(usize) -> *mut TimSortRun,
|
||||||
|
RunDeallocF: Fn(*mut TimSortRun, usize),
|
||||||
|
{
|
||||||
|
fn drop(&mut self) {
|
||||||
|
// As long as TimSortRun is Copy we don't need to drop them individually but just the
|
||||||
|
// whole allocation.
|
||||||
|
(self.run_dealloc_fn)(self.buf_ptr, self.capacity);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Internal type used by merge_sort.
|
||||||
|
#[derive(Clone, Copy, Debug)]
|
||||||
|
pub struct TimSortRun {
|
||||||
|
len: usize,
|
||||||
|
start: usize,
|
||||||
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user