Fixup tests to test both const-eval and runtime

This commit is contained in:
Mark Rousskov 2020-04-19 11:53:51 -04:00
parent 0dbce10bcd
commit d4f31b4687

View File

@ -1,9 +1,12 @@
// run-pass
// compile-flags:-Zmir-opt-level=0
// Tests saturating float->int casts. See u128-as-f32.rs for the opposite direction.
//
// Some of these tests come from a similar file in miri,
// tests/run-pass/float.rs. They're just duplicated currently but we may want
// to merge this in the future.
// tests/run-pass/float.rs. Individual test cases are potentially duplicated
// with the previously existing tests, but since this runs so quickly anyway,
// we're not spending the time to figure out exactly which ones should be
// merged.
#![feature(test, stmt_expr_attributes)]
#![feature(track_caller)]
@ -21,31 +24,18 @@ macro_rules! test {
// black_box disables constant evaluation to test run-time conversions:
assert_eq!(black_box::<$src_ty>($val) as $dest_ty, $expected,
"run-time {} -> {}", stringify!($src_ty), stringify!($dest_ty));
);
($fval:expr, f* -> $ity:ident, $ival:expr) => (
test!($fval, f32 -> $ity, $ival);
test!($fval, f64 -> $ity, $ival);
)
}
// This macro tests const eval in addition to run-time evaluation.
// If and when saturating casts are adopted, this macro should be merged with test!() to ensure
// that run-time and const eval agree on inputs that currently trigger a const eval error.
macro_rules! test_c {
($val:expr, $src_ty:ident -> $dest_ty:ident, $expected:expr) => ({
test!($val, $src_ty -> $dest_ty, $expected);
{
const X: $src_ty = $val;
const Y: $dest_ty = X as $dest_ty;
assert_eq!(Y, $expected,
"const eval {} -> {}", stringify!($src_ty), stringify!($dest_ty));
}
});
);
($fval:expr, f* -> $ity:ident, $ival:expr) => (
test_c!($fval, f32 -> $ity, $ival);
test_c!($fval, f64 -> $ity, $ival);
test!($fval, f32 -> $ity, $ival);
test!($fval, f64 -> $ity, $ival);
)
}
@ -59,11 +49,11 @@ macro_rules! common_fptoi_tests {
// as well, the test is just slightly misplaced.
test!($ity::MIN as $fty, $fty -> $ity, $ity::MIN);
test!($ity::MAX as $fty, $fty -> $ity, $ity::MAX);
test_c!(0., $fty -> $ity, 0);
test_c!($fty::MIN_POSITIVE, $fty -> $ity, 0);
test!(0., $fty -> $ity, 0);
test!($fty::MIN_POSITIVE, $fty -> $ity, 0);
test!(-0.9, $fty -> $ity, 0);
test_c!(1., $fty -> $ity, 1);
test_c!(42., $fty -> $ity, 42);
test!(1., $fty -> $ity, 1);
test!(42., $fty -> $ity, 42);
)+ });
(f* -> $($ity:ident)+) => ({
@ -217,39 +207,6 @@ where
assert_eq!(unsafe { x.cast_unchecked() }, y);
}
fn basic() {
// basic arithmetic
assert_eq(6.0_f32 * 6.0_f32, 36.0_f32);
assert_eq(6.0_f64 * 6.0_f64, 36.0_f64);
assert_eq(-{ 5.0_f32 }, -5.0_f32);
assert_eq(-{ 5.0_f64 }, -5.0_f64);
// infinities, NaN
assert!((5.0_f32 / 0.0).is_infinite());
assert_ne!({ 5.0_f32 / 0.0 }, { -5.0_f32 / 0.0 });
assert!((5.0_f64 / 0.0).is_infinite());
assert_ne!({ 5.0_f64 / 0.0 }, { 5.0_f64 / -0.0 });
assert!((-5.0_f32).sqrt().is_nan());
assert!((-5.0_f64).sqrt().is_nan());
assert_ne!(f32::NAN, f32::NAN);
assert_ne!(f64::NAN, f64::NAN);
// negative zero
let posz = 0.0f32;
let negz = -0.0f32;
assert_eq(posz, negz);
assert_ne!(posz.to_bits(), negz.to_bits());
let posz = 0.0f64;
let negz = -0.0f64;
assert_eq(posz, negz);
assert_ne!(posz.to_bits(), negz.to_bits());
// byte-level transmute
let x: u64 = unsafe { std::mem::transmute(42.0_f64) };
let y: f64 = unsafe { std::mem::transmute(x) };
assert_eq(y, 42.0_f64);
let x: u32 = unsafe { std::mem::transmute(42.0_f32) };
let y: f32 = unsafe { std::mem::transmute(x) };
assert_eq(y, 42.0_f32);
}
fn casts() {
// f32 -> i8
test_both_cast::<f32, i8>(127.99, 127);
@ -500,42 +457,8 @@ fn casts() {
assert_eq::<f32>(f64::NEG_INFINITY as f32, f32::NEG_INFINITY);
}
fn ops() {
// f32 min/max
assert_eq((1.0 as f32).max(-1.0), 1.0);
assert_eq((1.0 as f32).min(-1.0), -1.0);
assert_eq(f32::NAN.min(9.0), 9.0);
assert_eq(f32::NAN.max(-9.0), -9.0);
assert_eq((9.0 as f32).min(f32::NAN), 9.0);
assert_eq((-9.0 as f32).max(f32::NAN), -9.0);
// f64 min/max
assert_eq((1.0 as f64).max(-1.0), 1.0);
assert_eq((1.0 as f64).min(-1.0), -1.0);
assert_eq(f64::NAN.min(9.0), 9.0);
assert_eq(f64::NAN.max(-9.0), -9.0);
assert_eq((9.0 as f64).min(f64::NAN), 9.0);
assert_eq((-9.0 as f64).max(f64::NAN), -9.0);
// f32 copysign
assert_eq(3.5_f32.copysign(0.42), 3.5_f32);
assert_eq(3.5_f32.copysign(-0.42), -3.5_f32);
assert_eq((-3.5_f32).copysign(0.42), 3.5_f32);
assert_eq((-3.5_f32).copysign(-0.42), -3.5_f32);
assert!(f32::NAN.copysign(1.0).is_nan());
// f64 copysign
assert_eq(3.5_f64.copysign(0.42), 3.5_f64);
assert_eq(3.5_f64.copysign(-0.42), -3.5_f64);
assert_eq((-3.5_f64).copysign(0.42), 3.5_f64);
assert_eq((-3.5_f64).copysign(-0.42), -3.5_f64);
assert!(f64::NAN.copysign(1.0).is_nan());
}
pub fn main() {
basic();
casts();
ops();
casts(); // from miri's tests
common_fptoi_tests!(f* -> i8 i16 i32 i64 u8 u16 u32 u64);
fptoui_tests!(f* -> u8 u16 u32 u64);
@ -549,39 +472,39 @@ pub fn main() {
// The following tests cover edge cases for some integer types.
// # u8
test_c!(254., f* -> u8, 254);
test!(254., f* -> u8, 254);
test!(256., f* -> u8, 255);
// # i8
test_c!(-127., f* -> i8, -127);
test!(-127., f* -> i8, -127);
test!(-129., f* -> i8, -128);
test_c!(126., f* -> i8, 126);
test!(126., f* -> i8, 126);
test!(128., f* -> i8, 127);
// # i32
// -2147483648. is i32::MIN (exactly)
test_c!(-2147483648., f* -> i32, i32::MIN);
test!(-2147483648., f* -> i32, i32::MIN);
// 2147483648. is i32::MAX rounded up
test!(2147483648., f32 -> i32, 2147483647);
// With 24 significand bits, floats with magnitude in [2^30 + 1, 2^31] are rounded to
// multiples of 2^7. Therefore, nextDown(round(i32::MAX)) is 2^31 - 128:
test_c!(2147483520., f32 -> i32, 2147483520);
test!(2147483520., f32 -> i32, 2147483520);
// Similarly, nextUp(i32::MIN) is i32::MIN + 2^8 and nextDown(i32::MIN) is i32::MIN - 2^7
test!(-2147483904., f* -> i32, i32::MIN);
test_c!(-2147483520., f* -> i32, -2147483520);
test!(-2147483520., f* -> i32, -2147483520);
// # u32
// round(MAX) and nextUp(round(MAX))
test_c!(4294967040., f* -> u32, 4294967040);
test!(4294967040., f* -> u32, 4294967040);
test!(4294967296., f* -> u32, 4294967295);
// # u128
#[cfg(not(target_os = "emscripten"))]
{
// float->int:
test_c!(f32::MAX, f32 -> u128, 0xffffff00000000000000000000000000);
test!(f32::MAX, f32 -> u128, 0xffffff00000000000000000000000000);
// nextDown(f32::MAX) = 2^128 - 2 * 2^104
const SECOND_LARGEST_F32: f32 = 340282326356119256160033759537265639424.;
test_c!(SECOND_LARGEST_F32, f32 -> u128, 0xfffffe00000000000000000000000000);
test!(SECOND_LARGEST_F32, f32 -> u128, 0xfffffe00000000000000000000000000);
}
}