Auto merge of #117500 - RalfJung:aggregate-abi, r=davidtwco

Ensure sanity of all computed ABIs

This moves the ABI sanity assertions from the codegen backend to the ABI computation logic. Sadly, due to past mistakes, we [have to](https://github.com/rust-lang/rust/pull/117351#issuecomment-1788495503) be able to compute a sane ABI for nonsensical function types like `extern "C" fn(str) -> str`.  So to make the sanity check pass we first need to make all ABI adjustment deal with unsized types... and we have no shared infrastructure for those adjustments, so that's a bunch of copy-paste. At least we have assertions failing loudly when one accidentally sets a different mode for an unsized argument.

To achieve this, this re-lands the parts of https://github.com/rust-lang/rust/pull/80594 that got reverted in https://github.com/rust-lang/rust/pull/81388.  To avoid breaking wasm ABI again, that ABI now explicitly opts-in to the (wrong, broken) ABI that we currently keep for backwards compatibility. That's still better than having *every* ABI use the wrong broken default!

Cc `@bjorn3`
Fixes https://github.com/rust-lang/rust/issues/115845
This commit is contained in:
bors 2023-11-19 18:42:20 +00:00
commit d19980e1ce
21 changed files with 265 additions and 77 deletions

View File

@ -348,50 +348,18 @@ impl<'ll, 'tcx> FnAbiLlvmExt<'ll, 'tcx> for FnAbi<'tcx, Ty<'tcx>> {
PassMode::Direct(_) => {
// ABI-compatible Rust types have the same `layout.abi` (up to validity ranges),
// and for Scalar ABIs the LLVM type is fully determined by `layout.abi`,
// guarnateeing that we generate ABI-compatible LLVM IR. Things get tricky for
// aggregates...
if matches!(arg.layout.abi, abi::Abi::Aggregate { .. }) {
assert!(
arg.layout.is_sized(),
"`PassMode::Direct` for unsized type: {}",
arg.layout.ty
);
// This really shouldn't happen, since `immediate_llvm_type` will use
// `layout.fields` to turn this Rust type into an LLVM type. This means all
// sorts of Rust type details leak into the ABI. However wasm sadly *does*
// currently use this mode so we have to allow it -- but we absolutely
// shouldn't let any more targets do that.
// (Also see <https://github.com/rust-lang/rust/issues/115666>.)
//
// The unstable abi `PtxKernel` also uses Direct for now.
// It needs to switch to something else before stabilization can happen.
// (See issue: https://github.com/rust-lang/rust/issues/117271)
assert!(
matches!(&*cx.tcx.sess.target.arch, "wasm32" | "wasm64")
|| self.conv == Conv::PtxKernel,
"`PassMode::Direct` for aggregates only allowed on wasm and `extern \"ptx-kernel\"` fns\nProblematic type: {:#?}",
arg.layout,
);
}
// guaranteeing that we generate ABI-compatible LLVM IR.
arg.layout.immediate_llvm_type(cx)
}
PassMode::Pair(..) => {
// ABI-compatible Rust types have the same `layout.abi` (up to validity ranges),
// so for ScalarPair we can easily be sure that we are generating ABI-compatible
// LLVM IR.
assert!(
matches!(arg.layout.abi, abi::Abi::ScalarPair(..)),
"PassMode::Pair for type {}",
arg.layout.ty
);
llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(cx, 0, true));
llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(cx, 1, true));
continue;
}
PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack } => {
// `Indirect` with metadata is only for unsized types, and doesn't work with
// on-stack passing.
assert!(arg.layout.is_unsized() && !on_stack);
PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ } => {
// Construct the type of a (wide) pointer to `ty`, and pass its two fields.
// Any two ABI-compatible unsized types have the same metadata type and
// moreover the same metadata value leads to the same dynamic size and
@ -402,13 +370,8 @@ impl<'ll, 'tcx> FnAbiLlvmExt<'ll, 'tcx> for FnAbi<'tcx, Ty<'tcx>> {
llargument_tys.push(ptr_layout.scalar_pair_element_llvm_type(cx, 1, true));
continue;
}
PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ } => {
assert!(arg.layout.is_sized());
cx.type_ptr()
}
PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ } => cx.type_ptr(),
PassMode::Cast { cast, pad_i32 } => {
// `Cast` means "transmute to `CastType`"; that only makes sense for sized types.
assert!(arg.layout.is_sized());
// add padding
if *pad_i32 {
llargument_tys.push(Reg::i32().llvm_type(cx));

View File

@ -40,6 +40,10 @@ where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout,
{
if !ret.layout.is_sized() {
// Not touching this...
return;
}
if !ret.layout.is_aggregate() {
if kind == AbiKind::DarwinPCS {
// On Darwin, when returning an i8/i16, it must be sign-extended to 32 bits,
@ -67,6 +71,10 @@ where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout,
{
if !arg.layout.is_sized() {
// Not touching this...
return;
}
if !arg.layout.is_aggregate() {
if kind == AbiKind::DarwinPCS {
// On Darwin, when passing an i8/i16, it must be sign-extended to 32 bits,

View File

@ -30,6 +30,10 @@ where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout,
{
if !ret.layout.is_sized() {
// Not touching this...
return;
}
if !ret.layout.is_aggregate() {
ret.extend_integer_width_to(32);
return;
@ -56,6 +60,10 @@ where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout,
{
if !arg.layout.is_sized() {
// Not touching this...
return;
}
if !arg.layout.is_aggregate() {
arg.extend_integer_width_to(32);
return;

View File

@ -7,6 +7,10 @@
use crate::abi::call::{ArgAbi, FnAbi, Reg, Uniform};
fn classify_ret<Ty>(arg: &mut ArgAbi<'_, Ty>) {
if !arg.layout.is_sized() {
// Not touching this...
return;
}
// For return type, aggregate which <= 2*XLen will be returned in registers.
// Otherwise, aggregate will be returned indirectly.
if arg.layout.is_aggregate() {
@ -24,6 +28,10 @@ fn classify_ret<Ty>(arg: &mut ArgAbi<'_, Ty>) {
}
fn classify_arg<Ty>(arg: &mut ArgAbi<'_, Ty>) {
if !arg.layout.is_sized() {
// Not touching this...
return;
}
// For argument type, the first 4*XLen parts of aggregate will be passed
// in registers, and the rest will be passed in stack.
// So we can coerce to integers directly and let backend handle it correctly.

View File

@ -152,6 +152,10 @@ fn classify_ret<'a, Ty, C>(cx: &C, arg: &mut ArgAbi<'a, Ty>, xlen: u64, flen: u6
where
Ty: TyAbiInterface<'a, C> + Copy,
{
if !arg.layout.is_sized() {
// Not touching this...
return false; // I guess? return value of this function is not documented
}
if let Some(conv) = should_use_fp_conv(cx, &arg.layout, xlen, flen) {
match conv {
FloatConv::Float(f) => {
@ -214,6 +218,10 @@ fn classify_arg<'a, Ty, C>(
) where
Ty: TyAbiInterface<'a, C> + Copy,
{
if !arg.layout.is_sized() {
// Not touching this...
return;
}
if !is_vararg {
match should_use_fp_conv(cx, &arg.layout, xlen, flen) {
Some(FloatConv::Float(f)) if *avail_fprs >= 1 => {

View File

@ -9,6 +9,10 @@ fn classify_ret<Ty>(ret: &mut ArgAbi<'_, Ty>) {
}
fn classify_arg<Ty>(arg: &mut ArgAbi<'_, Ty>) {
if !arg.layout.is_sized() {
// Not touching this...
return;
}
if arg.layout.is_aggregate() {
arg.make_indirect_byval(None);
} else {

View File

@ -17,6 +17,10 @@ fn classify_arg<Ty, C>(cx: &C, arg: &mut ArgAbi<'_, Ty>, offset: &mut Size)
where
C: HasDataLayout,
{
if !arg.layout.is_sized() {
// Not touching this...
return;
}
let dl = cx.data_layout();
let size = arg.layout.size;
let align = arg.layout.align.max(dl.i32_align).min(dl.i64_align).abi;

View File

@ -422,7 +422,7 @@ impl<'a, Ty> TyAndLayout<'a, Ty> {
}))
}
Abi::ScalarPair(..) | Abi::Aggregate { .. } => {
Abi::ScalarPair(..) | Abi::Aggregate { sized: true } => {
// Helper for computing `homogeneous_aggregate`, allowing a custom
// starting offset (used below for handling variants).
let from_fields_at =
@ -520,6 +520,7 @@ impl<'a, Ty> TyAndLayout<'a, Ty> {
Ok(result)
}
}
Abi::Aggregate { sized: false } => Err(Heterogeneous),
}
}
}
@ -555,8 +556,7 @@ impl<'a, Ty> ArgAbi<'a, Ty> {
scalar_attrs(&layout, b, a.size(cx).align_to(b.align(cx).abi)),
),
Abi::Vector { .. } => PassMode::Direct(ArgAttributes::new()),
// The `Aggregate` ABI should always be adjusted later.
Abi::Aggregate { .. } => PassMode::Direct(ArgAttributes::new()),
Abi::Aggregate { .. } => Self::indirect_pass_mode(&layout),
};
ArgAbi { layout, mode }
}
@ -580,14 +580,30 @@ impl<'a, Ty> ArgAbi<'a, Ty> {
PassMode::Indirect { attrs, meta_attrs, on_stack: false }
}
/// Pass this argument directly instead. Should NOT be used!
/// Only exists because of past ABI mistakes that will take time to fix
/// (see <https://github.com/rust-lang/rust/issues/115666>).
pub fn make_direct_deprecated(&mut self) {
match self.mode {
PassMode::Indirect { .. } => {
self.mode = PassMode::Direct(ArgAttributes::new());
}
PassMode::Ignore | PassMode::Direct(_) | PassMode::Pair(_, _) => return, // already direct
_ => panic!("Tried to make {:?} direct", self.mode),
}
}
pub fn make_indirect(&mut self) {
match self.mode {
PassMode::Direct(_) | PassMode::Pair(_, _) => {}
PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: false } => return,
PassMode::Direct(_) | PassMode::Pair(_, _) => {
self.mode = Self::indirect_pass_mode(&self.layout);
}
PassMode::Indirect { attrs: _, meta_attrs: _, on_stack: false } => {
// already indirect
return;
}
_ => panic!("Tried to make {:?} indirect", self.mode),
}
self.mode = Self::indirect_pass_mode(&self.layout);
}
pub fn make_indirect_byval(&mut self, byval_align: Option<Align>) {

View File

@ -4,12 +4,18 @@ use crate::abi::{HasDataLayout, TyAbiInterface};
fn classify_ret<Ty>(ret: &mut ArgAbi<'_, Ty>) {
if ret.layout.is_aggregate() && ret.layout.size.bits() > 64 {
ret.make_indirect();
} else {
// FIXME: this is wrong! Need to decide which ABI we really want here.
ret.make_direct_deprecated();
}
}
fn classify_arg<Ty>(arg: &mut ArgAbi<'_, Ty>) {
if arg.layout.is_aggregate() && arg.layout.size.bits() > 64 {
arg.make_indirect();
} else {
// FIXME: this is wrong! Need to decide which ABI we really want here.
arg.make_direct_deprecated();
}
}
@ -30,6 +36,9 @@ where
_ => unreachable!("Align is given as power of 2 no larger than 16 bytes"),
};
arg.cast_to(Uniform { unit, total: Size::from_bytes(2 * align_bytes) });
} else {
// FIXME: find a better way to do this. See https://github.com/rust-lang/rust/issues/117271.
arg.make_direct_deprecated();
}
}

View File

@ -46,6 +46,10 @@ where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout,
{
if !ret.layout.is_sized() {
// Not touching this...
return;
}
if !ret.layout.is_aggregate() {
ret.extend_integer_width_to(64);
return;
@ -89,6 +93,10 @@ where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout,
{
if !arg.layout.is_sized() {
// Not touching this...
return;
}
if !arg.layout.is_aggregate() {
arg.extend_integer_width_to(64);
return;

View File

@ -158,6 +158,10 @@ fn classify_ret<'a, Ty, C>(cx: &C, arg: &mut ArgAbi<'a, Ty>, xlen: u64, flen: u6
where
Ty: TyAbiInterface<'a, C> + Copy,
{
if !arg.layout.is_sized() {
// Not touching this...
return false; // I guess? return value of this function is not documented
}
if let Some(conv) = should_use_fp_conv(cx, &arg.layout, xlen, flen) {
match conv {
FloatConv::Float(f) => {
@ -220,6 +224,10 @@ fn classify_arg<'a, Ty, C>(
) where
Ty: TyAbiInterface<'a, C> + Copy,
{
if !arg.layout.is_sized() {
// Not touching this...
return;
}
if !is_vararg {
match should_use_fp_conv(cx, &arg.layout, xlen, flen) {
Some(FloatConv::Float(f)) if *avail_fprs >= 1 => {

View File

@ -17,6 +17,10 @@ where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout,
{
if !arg.layout.is_sized() {
// Not touching this...
return;
}
if !arg.layout.is_aggregate() && arg.layout.size.bits() <= 64 {
arg.extend_integer_width_to(64);
return;

View File

@ -17,6 +17,10 @@ fn classify_arg<Ty, C>(cx: &C, arg: &mut ArgAbi<'_, Ty>, offset: &mut Size)
where
C: HasDataLayout,
{
if !arg.layout.is_sized() {
// Not touching this...
return;
}
let dl = cx.data_layout();
let size = arg.layout.size;
let align = arg.layout.align.max(dl.i32_align).min(dl.i64_align).abi;

View File

@ -34,6 +34,10 @@ where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout,
{
if !arg.layout.is_sized() {
// Not touching this...
return;
}
arg.extend_integer_width_to(32);
if arg.layout.is_aggregate() && !unwrap_trivial_aggregate(cx, arg) {
arg.make_indirect_byval(None);
@ -67,21 +71,33 @@ where
/// Also see <https://github.com/rust-lang/rust/issues/115666>.
pub fn compute_wasm_abi_info<Ty>(fn_abi: &mut FnAbi<'_, Ty>) {
if !fn_abi.ret.is_ignore() {
classify_ret(&mut fn_abi.ret);
classify_ret_wasm_abi(&mut fn_abi.ret);
}
for arg in fn_abi.args.iter_mut() {
if arg.is_ignore() {
continue;
}
classify_arg(arg);
classify_arg_wasm_abi(arg);
}
fn classify_ret<Ty>(ret: &mut ArgAbi<'_, Ty>) {
fn classify_ret_wasm_abi<Ty>(ret: &mut ArgAbi<'_, Ty>) {
if !ret.layout.is_sized() {
// Not touching this...
return;
}
// FIXME: this is bad! https://github.com/rust-lang/rust/issues/115666
ret.make_direct_deprecated();
ret.extend_integer_width_to(32);
}
fn classify_arg<Ty>(arg: &mut ArgAbi<'_, Ty>) {
fn classify_arg_wasm_abi<Ty>(arg: &mut ArgAbi<'_, Ty>) {
if !arg.layout.is_sized() {
// Not touching this...
return;
}
// FIXME: this is bad! https://github.com/rust-lang/rust/issues/115666
arg.make_direct_deprecated();
arg.extend_integer_width_to(32);
}
}

View File

@ -14,7 +14,7 @@ where
C: HasDataLayout + HasTargetSpec,
{
if !fn_abi.ret.is_ignore() {
if fn_abi.ret.layout.is_aggregate() {
if fn_abi.ret.layout.is_aggregate() && fn_abi.ret.layout.is_sized() {
// Returning a structure. Most often, this will use
// a hidden first argument. On some platforms, though,
// small structs are returned as integers.
@ -50,7 +50,7 @@ where
}
for arg in fn_abi.args.iter_mut() {
if arg.is_ignore() {
if arg.is_ignore() || !arg.layout.is_sized() {
continue;
}

View File

@ -153,9 +153,9 @@ fn reg_component(cls: &[Option<Class>], i: &mut usize, size: Size) -> Option<Reg
}
}
fn cast_target(cls: &[Option<Class>], size: Size) -> Option<CastTarget> {
fn cast_target(cls: &[Option<Class>], size: Size) -> CastTarget {
let mut i = 0;
let lo = reg_component(cls, &mut i, size)?;
let lo = reg_component(cls, &mut i, size).unwrap();
let offset = Size::from_bytes(8) * (i as u64);
let mut target = CastTarget::from(lo);
if size > offset {
@ -164,7 +164,7 @@ fn cast_target(cls: &[Option<Class>], size: Size) -> Option<CastTarget> {
}
}
assert_eq!(reg_component(cls, &mut i, Size::ZERO), None);
Some(target)
target
}
const MAX_INT_REGS: usize = 6; // RDI, RSI, RDX, RCX, R8, R9
@ -179,6 +179,10 @@ where
let mut sse_regs = MAX_SSE_REGS;
let mut x86_64_arg_or_ret = |arg: &mut ArgAbi<'a, Ty>, is_arg: bool| {
if !arg.layout.is_sized() {
// Not touching this...
return;
}
let mut cls_or_mem = classify_arg(cx, arg);
if is_arg {
@ -227,9 +231,7 @@ where
// split into sized chunks passed individually
if arg.layout.is_aggregate() {
let size = arg.layout.size;
if let Some(cast_target) = cast_target(cls, size) {
arg.cast_to(cast_target);
}
arg.cast_to(cast_target(cls, size));
} else {
arg.extend_integer_width_to(32);
}

View File

@ -6,8 +6,8 @@ use crate::abi::Abi;
pub fn compute_abi_info<Ty>(fn_abi: &mut FnAbi<'_, Ty>) {
let fixup = |a: &mut ArgAbi<'_, Ty>| {
match a.layout.abi {
Abi::Uninhabited => {}
Abi::ScalarPair(..) | Abi::Aggregate { .. } => match a.layout.size.bits() {
Abi::Uninhabited | Abi::Aggregate { sized: false } => {}
Abi::ScalarPair(..) | Abi::Aggregate { sized: true } => match a.layout.size.bits() {
8 => a.cast_to(Reg::i8()),
16 => a.cast_to(Reg::i16()),
32 => a.cast_to(Reg::i32()),

View File

@ -326,6 +326,76 @@ fn adjust_for_rust_scalar<'tcx>(
}
}
/// Ensure that the ABI makes basic sense.
fn fn_abi_sanity_check<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, fn_abi: &FnAbi<'tcx, Ty<'tcx>>) {
fn fn_arg_sanity_check<'tcx>(
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
arg: &ArgAbi<'tcx, Ty<'tcx>>,
) {
match &arg.mode {
PassMode::Ignore => {}
PassMode::Direct(_) => {
// Here the Rust type is used to determine the actual ABI, so we have to be very
// careful. Scalar/ScalarPair is fine, since backends will generally use
// `layout.abi` and ignore everything else. We should just reject `Aggregate`
// entirely here, but some targets need to be fixed first.
if matches!(arg.layout.abi, Abi::Aggregate { .. }) {
// For an unsized type we'd only pass the sized prefix, so there is no universe
// in which we ever want to allow this.
assert!(
arg.layout.is_sized(),
"`PassMode::Direct` for unsized type in ABI: {:#?}",
fn_abi
);
// This really shouldn't happen even for sized aggregates, since
// `immediate_llvm_type` will use `layout.fields` to turn this Rust type into an
// LLVM type. This means all sorts of Rust type details leak into the ABI.
// However wasm sadly *does* currently use this mode so we have to allow it --
// but we absolutely shouldn't let any more targets do that.
// (Also see <https://github.com/rust-lang/rust/issues/115666>.)
//
// The unstable abi `PtxKernel` also uses Direct for now.
// It needs to switch to something else before stabilization can happen.
// (See issue: https://github.com/rust-lang/rust/issues/117271)
assert!(
matches!(&*cx.tcx.sess.target.arch, "wasm32" | "wasm64")
|| fn_abi.conv == Conv::PtxKernel,
"`PassMode::Direct` for aggregates only allowed on wasm and `extern \"ptx-kernel\"` fns\nProblematic type: {:#?}",
arg.layout,
);
}
}
PassMode::Pair(_, _) => {
// Similar to `Direct`, we need to make sure that backends use `layout.abi` and
// ignore the rest of the layout.
assert!(
matches!(arg.layout.abi, Abi::ScalarPair(..)),
"PassMode::Pair for type {}",
arg.layout.ty
);
}
PassMode::Cast { .. } => {
// `Cast` means "transmute to `CastType`"; that only makes sense for sized types.
assert!(arg.layout.is_sized());
}
PassMode::Indirect { meta_attrs: None, .. } => {
// No metadata, must be sized.
assert!(arg.layout.is_sized());
}
PassMode::Indirect { meta_attrs: Some(_), on_stack, .. } => {
// With metadata. Must be unsized and not on the stack.
assert!(arg.layout.is_unsized() && !on_stack);
}
}
}
for arg in fn_abi.args.iter() {
fn_arg_sanity_check(cx, fn_abi, arg);
}
fn_arg_sanity_check(cx, fn_abi, &fn_abi.ret);
}
// FIXME(eddyb) perhaps group the signature/type-containing (or all of them?)
// arguments of this method, into a separate `struct`.
#[tracing::instrument(level = "debug", skip(cx, caller_location, fn_def_id, force_thin_self_ptr))]
@ -452,6 +522,7 @@ fn fn_abi_new_uncached<'tcx>(
};
fn_abi_adjust_for_abi(cx, &mut fn_abi, sig.abi, fn_def_id)?;
debug!("fn_abi_new_uncached = {:?}", fn_abi);
fn_abi_sanity_check(cx, &fn_abi);
Ok(cx.tcx.arena.alloc(fn_abi))
}
@ -519,13 +590,14 @@ fn fn_abi_adjust_for_abi<'tcx>(
_ => return,
}
// `Aggregate` ABI must be adjusted to ensure that ABI-compatible Rust types are passed
// the same way.
// Compute `Aggregate` ABI.
let is_indirect_not_on_stack =
matches!(arg.mode, PassMode::Indirect { on_stack: false, .. });
assert!(is_indirect_not_on_stack, "{:?}", arg);
let size = arg.layout.size;
if arg.layout.is_unsized() || size > Pointer(AddressSpace::DATA).size(cx) {
arg.make_indirect();
} else {
if !arg.layout.is_unsized() && size <= Pointer(AddressSpace::DATA).size(cx) {
// We want to pass small aggregates as immediates, but using
// an LLVM aggregate type for this leads to bad optimizations,
// so we pick an appropriately sized integer type instead.

View File

@ -1,5 +1,14 @@
// check-pass
// revisions: host
// revisions: i686
//[i686] compile-flags: --target i686-unknown-linux-gnu
//[i686] needs-llvm-components: x86
// revisions: x86-64
//[x86-64] compile-flags: --target x86_64-unknown-linux-gnu
//[x86-64] needs-llvm-components: x86
// revisions: x86-64-win
//[x86-64-win] compile-flags: --target x86_64-pc-windows-msvc
//[x86-64-win] needs-llvm-components: x86
// revisions: arm
//[arm] compile-flags: --target arm-unknown-linux-gnueabi
//[arm] needs-llvm-components: arm
@ -37,9 +46,23 @@
// revisions: wasi
//[wasi] compile-flags: --target wasm32-wasi
//[wasi] needs-llvm-components: webassembly
// revisions: nvptx64
//[nvptx64] compile-flags: --target nvptx64-nvidia-cuda
//[nvptx64] needs-llvm-components: nvptx
// revisions: bpf
//[bpf] compile-flags: --target bpfeb-unknown-none
//[bpf] needs-llvm-components: bpf
// revisions: m68k
//[m68k] compile-flags: --target m68k-unknown-linux-gnu
//[m68k] needs-llvm-components: m68k
// FIXME: disabled on nvptx64 since the target ABI fails the sanity check
// see https://github.com/rust-lang/rust/issues/117480
/* revisions: nvptx64
[nvptx64] compile-flags: --target nvptx64-nvidia-cuda
[nvptx64] needs-llvm-components: nvptx
*/
// FIXME: disabled since it fails on CI saying the csky component is missing
/* revisions: csky
[csky] compile-flags: --target csky-unknown-linux-gnuabiv2
[csky] needs-llvm-components: csky
*/
#![feature(rustc_attrs, unsized_fn_params, transparent_unions)]
#![cfg_attr(not(host), feature(no_core, lang_items), no_std, no_core)]
#![allow(unused, improper_ctypes_definitions, internal_features)]
@ -324,6 +347,7 @@ mod unsized_ {
use super::*;
test_transparent_unsized!(str_, str);
test_transparent_unsized!(slice, [u8]);
test_transparent_unsized!(slice_with_prefix, (usize, [u8]));
test_transparent_unsized!(dyn_trait, dyn Any);
}

View File

@ -1,8 +0,0 @@
// check-pass
#![allow(improper_ctypes_definitions)]
#![crate_type = "lib"]
// Check that computing the fn abi for `bad`, with a external ABI fn ptr that is not FFI-safe, does
// not ICE.
pub fn bad(f: extern "C" fn([u8])) {}

View File

@ -0,0 +1,30 @@
// check-pass
#![allow(improper_ctypes_definitions)]
#![feature(unsized_tuple_coercion)]
#![feature(unsized_fn_params)]
#![crate_type = "lib"]
// Check that computing the fn abi for `bad`, with a external ABI fn ptr that is not FFI-safe, does
// not ICE.
pub fn bad(f: extern "C" fn([u8])) {}
// While these get accepted, they should also not ICE.
// (If we ever reject them, remove them from this test to ensure the `bad` above
// is still tested. Do *not* make this a check/build-fail test.)
pub extern "C" fn declare_bad(_x: str) {}
#[no_mangle]
pub extern "system" fn declare_more_bad(f: dyn FnOnce()) {
}
fn make_bad() -> extern "C" fn(([u8],)) {
todo!()
}
pub fn call_bad() {
let f = make_bad();
let slice: Box<([u8],)> = Box::new(([1; 8],));
f(*slice);
}