Rollup merge of #76497 - camelid:intra-doc-links-for-core-ptr, r=jyn514

Use intra-doc links in `core::ptr`

Part of #75080.

The only link that I did not change is a link to a function on the
`pointer` primitive because intra-doc links for the `pointer` primitive
don't work yet (see #63351).

---

@rustbot modify labels: A-intra-doc-links T-doc
This commit is contained in:
Tyler Mandry 2020-09-09 21:02:33 -07:00 committed by GitHub
commit d013e60ad4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -54,16 +54,9 @@
//! [aliasing]: ../../nomicon/aliasing.html
//! [book]: ../../book/ch19-01-unsafe-rust.html#dereferencing-a-raw-pointer
//! [ub]: ../../reference/behavior-considered-undefined.html
//! [null]: ./fn.null.html
//! [zst]: ../../nomicon/exotic-sizes.html#zero-sized-types-zsts
//! [atomic operations]: ../../std/sync/atomic/index.html
//! [`copy`]: ../../std/ptr/fn.copy.html
//! [atomic operations]: crate::sync::atomic
//! [`offset`]: ../../std/primitive.pointer.html#method.offset
//! [`read_unaligned`]: ./fn.read_unaligned.html
//! [`write_unaligned`]: ./fn.write_unaligned.html
//! [`read_volatile`]: ./fn.read_volatile.html
//! [`write_volatile`]: ./fn.write_volatile.html
//! [`NonNull::dangling`]: ./struct.NonNull.html#method.dangling
#![stable(feature = "rust1", since = "1.0.0")]
@ -118,9 +111,9 @@ mod mut_ptr;
/// done automatically by the compiler. This means the fields of packed structs
/// are not dropped in-place.
///
/// [`ptr::read`]: ../ptr/fn.read.html
/// [`ptr::read_unaligned`]: ../ptr/fn.read_unaligned.html
/// [pinned]: ../pin/index.html
/// [`ptr::read`]: self::read
/// [`ptr::read_unaligned`]: self::read_unaligned
/// [pinned]: crate::pin
///
/// # Safety
///
@ -136,14 +129,12 @@ mod mut_ptr;
/// Additionally, if `T` is not [`Copy`], using the pointed-to value after
/// calling `drop_in_place` can cause undefined behavior. Note that `*to_drop =
/// foo` counts as a use because it will cause the value to be dropped
/// again. [`write`] can be used to overwrite data without causing it to be
/// again. [`write()`] can be used to overwrite data without causing it to be
/// dropped.
///
/// Note that even if `T` has size `0`, the pointer must be non-NULL and properly aligned.
///
/// [valid]: ../ptr/index.html#safety
/// [`Copy`]: ../marker/trait.Copy.html
/// [`write`]: ../ptr/fn.write.html
/// [valid]: self#safety
///
/// # Examples
///
@ -243,9 +234,9 @@ pub(crate) struct FatPtr<T> {
/// The `len` argument is the number of **elements**, not the number of bytes.
///
/// This function is safe, but actually using the return value is unsafe.
/// See the documentation of [`from_raw_parts`] for slice safety requirements.
/// See the documentation of [`slice::from_raw_parts`] for slice safety requirements.
///
/// [`from_raw_parts`]: ../../std/slice/fn.from_raw_parts.html
/// [`slice::from_raw_parts`]: crate::slice::from_raw_parts
///
/// # Examples
///
@ -274,10 +265,9 @@ pub const fn slice_from_raw_parts<T>(data: *const T, len: usize) -> *const [T] {
/// See the documentation of [`slice_from_raw_parts`] for more details.
///
/// This function is safe, but actually using the return value is unsafe.
/// See the documentation of [`from_raw_parts_mut`] for slice safety requirements.
/// See the documentation of [`slice::from_raw_parts_mut`] for slice safety requirements.
///
/// [`slice_from_raw_parts`]: fn.slice_from_raw_parts.html
/// [`from_raw_parts_mut`]: ../../std/slice/fn.from_raw_parts_mut.html
/// [`slice::from_raw_parts_mut`]: crate::slice::from_raw_parts_mut
///
/// # Examples
///
@ -316,8 +306,6 @@ pub const fn slice_from_raw_parts_mut<T>(data: *mut T, len: usize) -> *mut [T] {
/// overlapping region of memory from `x` will be used. This is demonstrated
/// in the second example below.
///
/// [`mem::swap`]: ../mem/fn.swap.html
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
@ -328,7 +316,7 @@ pub const fn slice_from_raw_parts_mut<T>(data: *mut T, len: usize) -> *mut [T] {
///
/// Note that even if `T` has size `0`, the pointers must be non-NULL and properly aligned.
///
/// [valid]: ../ptr/index.html#safety
/// [valid]: self#safety
///
/// # Examples
///
@ -406,7 +394,7 @@ pub unsafe fn swap<T>(x: *mut T, y: *mut T) {
/// Note that even if the effectively copied size (`count * size_of::<T>()`) is `0`,
/// the pointers must be non-NULL and properly aligned.
///
/// [valid]: ../ptr/index.html#safety
/// [valid]: self#safety
///
/// # Examples
///
@ -533,8 +521,6 @@ unsafe fn swap_nonoverlapping_bytes(x: *mut u8, y: *mut u8, len: usize) {
/// operates on raw pointers instead of references. When references are
/// available, [`mem::replace`] should be preferred.
///
/// [`mem::replace`]: ../mem/fn.replace.html
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
@ -547,7 +533,7 @@ unsafe fn swap_nonoverlapping_bytes(x: *mut u8, y: *mut u8, len: usize) {
///
/// Note that even if `T` has size `0`, the pointer must be non-NULL and properly aligned.
///
/// [valid]: ../ptr/index.html#safety
/// [valid]: self#safety
///
/// # Examples
///
@ -653,7 +639,7 @@ pub unsafe fn replace<T>(dst: *mut T, mut src: T) -> T {
/// `*src` can violate memory safety. Note that assigning to `*src` counts as a
/// use because it will attempt to drop the value at `*src`.
///
/// [`write`] can be used to overwrite data without causing it to be dropped.
/// [`write()`] can be used to overwrite data without causing it to be dropped.
///
/// ```
/// use std::ptr;
@ -682,11 +668,7 @@ pub unsafe fn replace<T>(dst: *mut T, mut src: T) -> T {
/// assert_eq!(s, "bar");
/// ```
///
/// [`mem::swap`]: ../mem/fn.swap.html
/// [valid]: ../ptr/index.html#safety
/// [`Copy`]: ../marker/trait.Copy.html
/// [`read_unaligned`]: ./fn.read_unaligned.html
/// [`write`]: ./fn.write.html
/// [valid]: self#safety
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn read<T>(src: *const T) -> T {
@ -723,11 +705,8 @@ pub unsafe fn read<T>(src: *const T) -> T {
///
/// Note that even if `T` has size `0`, the pointer must be non-NULL.
///
/// [`Copy`]: ../marker/trait.Copy.html
/// [`read`]: ./fn.read.html
/// [`write_unaligned`]: ./fn.write_unaligned.html
/// [read-ownership]: ./fn.read.html#ownership-of-the-returned-value
/// [valid]: ../ptr/index.html#safety
/// [read-ownership]: read#ownership-of-the-returned-value
/// [valid]: self#safety
///
/// ## On `packed` structs
///
@ -819,8 +798,6 @@ pub unsafe fn read_unaligned<T>(src: *const T) -> T {
/// This is appropriate for initializing uninitialized memory, or overwriting
/// memory that has previously been [`read`] from.
///
/// [`read`]: ./fn.read.html
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
@ -832,8 +809,7 @@ pub unsafe fn read_unaligned<T>(src: *const T) -> T {
///
/// Note that even if `T` has size `0`, the pointer must be non-NULL and properly aligned.
///
/// [valid]: ../ptr/index.html#safety
/// [`write_unaligned`]: ./fn.write_unaligned.html
/// [valid]: self#safety
///
/// # Examples
///
@ -888,8 +864,6 @@ pub unsafe fn read_unaligned<T>(src: *const T) -> T {
/// assert_eq!(foo, "bar");
/// assert_eq!(bar, "foo");
/// ```
///
/// [`mem::swap`]: ../mem/fn.swap.html
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn write<T>(dst: *mut T, src: T) {
@ -904,7 +878,7 @@ pub unsafe fn write<T>(dst: *mut T, src: T) {
/// Overwrites a memory location with the given value without reading or
/// dropping the old value.
///
/// Unlike [`write`], the pointer may be unaligned.
/// Unlike [`write()`], the pointer may be unaligned.
///
/// `write_unaligned` does not drop the contents of `dst`. This is safe, but it
/// could leak allocations or resources, so care should be taken not to overwrite
@ -916,9 +890,6 @@ pub unsafe fn write<T>(dst: *mut T, src: T) {
/// This is appropriate for initializing uninitialized memory, or overwriting
/// memory that has previously been read with [`read_unaligned`].
///
/// [`write`]: ./fn.write.html
/// [`read_unaligned`]: ./fn.read_unaligned.html
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
@ -927,7 +898,7 @@ pub unsafe fn write<T>(dst: *mut T, src: T) {
///
/// Note that even if `T` has size `0`, the pointer must be non-NULL.
///
/// [valid]: ../ptr/index.html#safety
/// [valid]: self#safety
///
/// ## On `packed` structs
///
@ -1007,8 +978,6 @@ pub unsafe fn write_unaligned<T>(dst: *mut T, src: T) {
/// to not be elided or reordered by the compiler across other volatile
/// operations.
///
/// [`write_volatile`]: ./fn.write_volatile.html
///
/// # Notes
///
/// Rust does not currently have a rigorously and formally defined memory model,
@ -1041,10 +1010,8 @@ pub unsafe fn write_unaligned<T>(dst: *mut T, src: T) {
///
/// Note that even if `T` has size `0`, the pointer must be non-NULL and properly aligned.
///
/// [valid]: ../ptr/index.html#safety
/// [`Copy`]: ../marker/trait.Copy.html
/// [`read`]: ./fn.read.html
/// [read-ownership]: ./fn.read.html#ownership-of-the-returned-value
/// [valid]: self#safety
/// [read-ownership]: read#ownership-of-the-returned-value
///
/// Just like in C, whether an operation is volatile has no bearing whatsoever
/// on questions involving concurrent access from multiple threads. Volatile
@ -1089,8 +1056,6 @@ pub unsafe fn read_volatile<T>(src: *const T) -> T {
/// Additionally, it does not drop `src`. Semantically, `src` is moved into the
/// location pointed to by `dst`.
///
/// [`read_volatile`]: ./fn.read_volatile.html
///
/// # Notes
///
/// Rust does not currently have a rigorously and formally defined memory model,
@ -1115,7 +1080,7 @@ pub unsafe fn read_volatile<T>(src: *const T) -> T {
///
/// Note that even if `T` has size `0`, the pointer must be non-NULL and properly aligned.
///
/// [valid]: ../ptr/index.html#safety
/// [valid]: self#safety
///
/// Just like in C, whether an operation is volatile has no bearing whatsoever
/// on questions involving concurrent access from multiple threads. Volatile