Add Iterator::array_chunks()

This commit is contained in:
Ross MacArthur 2022-01-02 18:31:56 +02:00 committed by Maybe Waffle
parent 1f5d8d49eb
commit ca3d1010bb
7 changed files with 696 additions and 1 deletions

View File

@ -0,0 +1,427 @@
use crate::iter::{Fuse, FusedIterator, Iterator, TrustedLen};
use crate::mem;
use crate::mem::MaybeUninit;
use crate::ops::{ControlFlow, Try};
use crate::ptr;
#[derive(Debug)]
struct Remainder<T, const N: usize> {
array: [MaybeUninit<T>; N],
init: usize,
}
impl<T, const N: usize> Remainder<T, N> {
fn new() -> Self {
Self { array: MaybeUninit::uninit_array(), init: 0 }
}
unsafe fn with_init(array: [MaybeUninit<T>; N], init: usize) -> Self {
Self { array, init }
}
fn as_slice(&self) -> &[T] {
debug_assert!(self.init <= N);
// SAFETY: This raw slice will only contain the initialized objects
// within the buffer.
unsafe {
let slice = self.array.get_unchecked(..self.init);
MaybeUninit::slice_assume_init_ref(slice)
}
}
fn as_mut_slice(&mut self) -> &mut [T] {
debug_assert!(self.init <= N);
// SAFETY: This raw slice will only contain the initialized objects
// within the buffer.
unsafe {
let slice = self.array.get_unchecked_mut(..self.init);
MaybeUninit::slice_assume_init_mut(slice)
}
}
}
impl<T, const N: usize> Clone for Remainder<T, N>
where
T: Clone,
{
fn clone(&self) -> Self {
let mut new = Self::new();
// SAFETY: The new array is the same size and `init` is always less than
// or equal to `N`.
let this = unsafe { new.array.get_unchecked_mut(..self.init) };
MaybeUninit::write_slice_cloned(this, self.as_slice());
new.init = self.init;
new
}
}
impl<T, const N: usize> Drop for Remainder<T, N> {
fn drop(&mut self) {
// SAFETY: This raw slice will only contain the initialized objects
// within the buffer.
unsafe { ptr::drop_in_place(self.as_mut_slice()) }
}
}
/// An iterator over `N` elements of the iterator at a time.
///
/// The chunks do not overlap. If `N` does not divide the length of the
/// iterator, then the last up to `N-1` elements will be omitted.
///
/// This `struct` is created by the [`array_chunks`][Iterator::array_chunks]
/// method on [`Iterator`]. See its documentation for more.
#[derive(Debug, Clone)]
#[must_use = "iterators are lazy and do nothing unless consumed"]
#[unstable(feature = "iter_array_chunks", reason = "recently added", issue = "none")]
pub struct ArrayChunks<I: Iterator, const N: usize> {
iter: Fuse<I>,
remainder: Remainder<I::Item, N>,
}
impl<I, const N: usize> ArrayChunks<I, N>
where
I: Iterator,
{
pub(in crate::iter) fn new(iter: I) -> Self {
assert!(N != 0, "chunk size must be non-zero");
Self { iter: iter.fuse(), remainder: Remainder::new() }
}
/// Returns a reference to the remaining elements of the original iterator
/// that are not going to be returned by this iterator. The returned slice
/// has at most `N-1` elements.
#[unstable(feature = "iter_array_chunks", reason = "recently added", issue = "none")]
#[inline]
pub fn remainder(&self) -> &[I::Item] {
self.remainder.as_slice()
}
/// Returns a mutable reference to the remaining elements of the original
/// iterator that are not going to be returned by this iterator. The
/// returned slice has at most `N-1` elements.
#[unstable(feature = "iter_array_chunks", reason = "recently added", issue = "none")]
#[inline]
pub fn remainder_mut(&mut self) -> &mut [I::Item] {
self.remainder.as_mut_slice()
}
}
#[unstable(feature = "iter_array_chunks", reason = "recently added", issue = "none")]
impl<I, const N: usize> Iterator for ArrayChunks<I, N>
where
I: Iterator,
{
type Item = [I::Item; N];
#[inline]
fn next(&mut self) -> Option<Self::Item> {
let mut array = MaybeUninit::uninit_array();
// SAFETY: `array` will still be valid if `guard` is dropped.
let mut guard = unsafe { FrontGuard::new(&mut array) };
for slot in array.iter_mut() {
match self.iter.next() {
Some(item) => {
slot.write(item);
guard.init += 1;
}
None => {
if guard.init > 0 {
let init = guard.init;
mem::forget(guard);
// SAFETY: `array` was initialized with `init` elements.
self.remainder = unsafe { Remainder::with_init(array, init) };
}
return None;
}
}
}
mem::forget(guard);
// SAFETY: All elements of the array were populated in the loop above.
Some(unsafe { MaybeUninit::array_assume_init(array) })
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (lower, upper) = self.iter.size_hint();
// Keep infinite iterator size hint lower bound as `usize::MAX`. This
// is required to implement `TrustedLen`.
if lower == usize::MAX {
return (lower, upper);
}
(lower / N, upper.map(|n| n / N))
}
#[inline]
fn count(self) -> usize {
self.iter.count() / N
}
fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
where
Self: Sized,
F: FnMut(B, Self::Item) -> R,
R: Try<Output = B>,
{
let mut array = MaybeUninit::uninit_array();
// SAFETY: `array` will still be valid if `guard` is dropped.
let mut guard = unsafe { FrontGuard::new(&mut array) };
let result = self.iter.try_fold(init, |mut acc, item| {
// SAFETY: `init` starts at 0, increases by one each iteration and
// is reset to 0 once it reaches N.
unsafe { array.get_unchecked_mut(guard.init) }.write(item);
guard.init += 1;
if guard.init == N {
guard.init = 0;
let array = mem::replace(&mut array, MaybeUninit::uninit_array());
// SAFETY: the condition above asserts that all elements are
// initialized.
let item = unsafe { MaybeUninit::array_assume_init(array) };
acc = f(acc, item)?;
}
R::from_output(acc)
});
match result.branch() {
ControlFlow::Continue(o) => {
if guard.init > 0 {
let init = guard.init;
mem::forget(guard);
// SAFETY: `array` was initialized with `init` elements.
self.remainder = unsafe { Remainder::with_init(array, init) };
}
R::from_output(o)
}
ControlFlow::Break(r) => R::from_residual(r),
}
}
fn fold<B, F>(self, init: B, mut f: F) -> B
where
Self: Sized,
F: FnMut(B, Self::Item) -> B,
{
let mut array = MaybeUninit::uninit_array();
// SAFETY: `array` will still be valid if `guard` is dropped.
let mut guard = unsafe { FrontGuard::new(&mut array) };
self.iter.fold(init, |mut acc, item| {
// SAFETY: `init` starts at 0, increases by one each iteration and
// is reset to 0 once it reaches N.
unsafe { array.get_unchecked_mut(guard.init) }.write(item);
guard.init += 1;
if guard.init == N {
guard.init = 0;
let array = mem::replace(&mut array, MaybeUninit::uninit_array());
// SAFETY: the condition above asserts that all elements are
// initialized.
let item = unsafe { MaybeUninit::array_assume_init(array) };
acc = f(acc, item);
}
acc
})
}
}
/// A guard for an array where elements are filled from the left.
struct FrontGuard<T, const N: usize> {
/// A pointer to the array that is being filled. We need to use a raw
/// pointer here because of the lifetime issues in the fold implementations.
ptr: *mut T,
/// The number of *initialized* elements.
init: usize,
}
impl<T, const N: usize> FrontGuard<T, N> {
unsafe fn new(array: &mut [MaybeUninit<T>; N]) -> Self {
Self { ptr: MaybeUninit::slice_as_mut_ptr(array), init: 0 }
}
}
impl<T, const N: usize> Drop for FrontGuard<T, N> {
fn drop(&mut self) {
debug_assert!(self.init <= N);
// SAFETY: This raw slice will only contain the initialized objects
// within the buffer.
unsafe {
let slice = ptr::slice_from_raw_parts_mut(self.ptr, self.init);
ptr::drop_in_place(slice);
}
}
}
#[unstable(feature = "iter_array_chunks", reason = "recently added", issue = "none")]
impl<I, const N: usize> DoubleEndedIterator for ArrayChunks<I, N>
where
I: DoubleEndedIterator + ExactSizeIterator,
{
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
// We are iterating from the back we need to first handle the remainder.
self.next_back_remainder()?;
let mut array = MaybeUninit::uninit_array();
// SAFETY: `array` will still be valid if `guard` is dropped.
let mut guard = unsafe { BackGuard::new(&mut array) };
for slot in array.iter_mut().rev() {
slot.write(self.iter.next_back()?);
guard.uninit -= 1;
}
mem::forget(guard);
// SAFETY: All elements of the array were populated in the loop above.
Some(unsafe { MaybeUninit::array_assume_init(array) })
}
fn try_rfold<B, F, R>(&mut self, init: B, mut f: F) -> R
where
Self: Sized,
F: FnMut(B, Self::Item) -> R,
R: Try<Output = B>,
{
// We are iterating from the back we need to first handle the remainder.
if self.next_back_remainder().is_none() {
return R::from_output(init);
}
let mut array = MaybeUninit::uninit_array();
// SAFETY: `array` will still be valid if `guard` is dropped.
let mut guard = unsafe { BackGuard::new(&mut array) };
self.iter.try_rfold(init, |mut acc, item| {
guard.uninit -= 1;
// SAFETY: `uninit` starts at N, decreases by one each iteration and
// is reset to N once it reaches 0.
unsafe { array.get_unchecked_mut(guard.uninit) }.write(item);
if guard.uninit == 0 {
guard.uninit = N;
let array = mem::replace(&mut array, MaybeUninit::uninit_array());
// SAFETY: the condition above asserts that all elements are
// initialized.
let item = unsafe { MaybeUninit::array_assume_init(array) };
acc = f(acc, item)?;
}
R::from_output(acc)
})
}
fn rfold<B, F>(mut self, init: B, mut f: F) -> B
where
Self: Sized,
F: FnMut(B, Self::Item) -> B,
{
// We are iterating from the back we need to first handle the remainder.
if self.next_back_remainder().is_none() {
return init;
}
let mut array = MaybeUninit::uninit_array();
// SAFETY: `array` will still be valid if `guard` is dropped.
let mut guard = unsafe { BackGuard::new(&mut array) };
self.iter.rfold(init, |mut acc, item| {
guard.uninit -= 1;
// SAFETY: `uninit` starts at N, decreases by one each iteration and
// is reset to N once it reaches 0.
unsafe { array.get_unchecked_mut(guard.uninit) }.write(item);
if guard.uninit == 0 {
guard.uninit = N;
let array = mem::replace(&mut array, MaybeUninit::uninit_array());
// SAFETY: the condition above asserts that all elements are
// initialized.
let item = unsafe { MaybeUninit::array_assume_init(array) };
acc = f(acc, item);
}
acc
})
}
}
impl<I, const N: usize> ArrayChunks<I, N>
where
I: DoubleEndedIterator + ExactSizeIterator,
{
#[inline]
fn next_back_remainder(&mut self) -> Option<()> {
// We use the `ExactSizeIterator` implementation of the underlying
// iterator to know how many remaining elements there are.
let rem = self.iter.len() % N;
if rem == 0 {
return Some(());
}
let mut array = MaybeUninit::uninit_array();
// SAFETY: The array will still be valid if `guard` is dropped and
// it is forgotten otherwise.
let mut guard = unsafe { FrontGuard::new(&mut array) };
// SAFETY: `rem` is in the range 1..N based on how it is calculated.
for slot in unsafe { array.get_unchecked_mut(..rem) }.iter_mut() {
slot.write(self.iter.next_back()?);
guard.init += 1;
}
let init = guard.init;
mem::forget(guard);
// SAFETY: `array` was initialized with exactly `init` elements.
self.remainder = unsafe {
array.get_unchecked_mut(..init).reverse();
Remainder::with_init(array, init)
};
Some(())
}
}
/// A guard for an array where elements are filled from the right.
struct BackGuard<T, const N: usize> {
/// A pointer to the array that is being filled. We need to use a raw
/// pointer here because of the lifetime issues in the rfold implementations.
ptr: *mut T,
/// The number of *uninitialized* elements.
uninit: usize,
}
impl<T, const N: usize> BackGuard<T, N> {
unsafe fn new(array: &mut [MaybeUninit<T>; N]) -> Self {
Self { ptr: MaybeUninit::slice_as_mut_ptr(array), uninit: N }
}
}
impl<T, const N: usize> Drop for BackGuard<T, N> {
fn drop(&mut self) {
debug_assert!(self.uninit <= N);
// SAFETY: This raw slice will only contain the initialized objects
// within the buffer.
unsafe {
let ptr = self.ptr.offset(self.uninit as isize);
let slice = ptr::slice_from_raw_parts_mut(ptr, N - self.uninit);
ptr::drop_in_place(slice);
}
}
}
#[unstable(feature = "iter_array_chunks", reason = "recently added", issue = "none")]
impl<I, const N: usize> FusedIterator for ArrayChunks<I, N> where I: FusedIterator {}
#[unstable(feature = "iter_array_chunks", reason = "recently added", issue = "none")]
impl<I, const N: usize> ExactSizeIterator for ArrayChunks<I, N>
where
I: ExactSizeIterator,
{
#[inline]
fn len(&self) -> usize {
self.iter.len() / N
}
#[inline]
fn is_empty(&self) -> bool {
self.iter.len() / N == 0
}
}
#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<I, const N: usize> TrustedLen for ArrayChunks<I, N> where I: TrustedLen {}

View File

@ -1,6 +1,7 @@
use crate::iter::{InPlaceIterable, Iterator};
use crate::ops::{ChangeOutputType, ControlFlow, FromResidual, NeverShortCircuit, Residual, Try};
mod array_chunks;
mod by_ref_sized;
mod chain;
mod cloned;
@ -32,6 +33,9 @@ pub use self::{
scan::Scan, skip::Skip, skip_while::SkipWhile, take::Take, take_while::TakeWhile, zip::Zip,
};
#[unstable(feature = "iter_array_chunks", reason = "recently added", issue = "none")]
pub use self::array_chunks::ArrayChunks;
#[unstable(feature = "std_internals", issue = "none")]
pub use self::by_ref_sized::ByRefSized;

View File

@ -398,6 +398,8 @@ pub use self::traits::{
#[stable(feature = "iter_zip", since = "1.59.0")]
pub use self::adapters::zip;
#[unstable(feature = "iter_array_chunks", reason = "recently added", issue = "none")]
pub use self::adapters::ArrayChunks;
#[unstable(feature = "std_internals", issue = "none")]
pub use self::adapters::ByRefSized;
#[stable(feature = "iter_cloned", since = "1.1.0")]

View File

@ -5,7 +5,7 @@ use crate::ops::{ChangeOutputType, ControlFlow, FromResidual, Residual, Try};
use super::super::try_process;
use super::super::ByRefSized;
use super::super::TrustedRandomAccessNoCoerce;
use super::super::{Chain, Cloned, Copied, Cycle, Enumerate, Filter, FilterMap, Fuse};
use super::super::{ArrayChunks, Chain, Cloned, Copied, Cycle, Enumerate, Filter, FilterMap, Fuse};
use super::super::{FlatMap, Flatten};
use super::super::{FromIterator, Intersperse, IntersperseWith, Product, Sum, Zip};
use super::super::{
@ -3316,6 +3316,46 @@ pub trait Iterator {
Cycle::new(self)
}
/// Returns an iterator over `N` elements of the iterator at a time.
///
/// The chunks do not overlap. If `N` does not divide the length of the
/// iterator, then the last up to `N-1` elements will be omitted.
///
/// # Panics
///
/// Panics if `N` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(iter_array_chunks)]
///
/// let mut iter = "lorem".chars().array_chunks();
/// assert_eq!(iter.next(), Some(['l', 'o']));
/// assert_eq!(iter.next(), Some(['r', 'e']));
/// assert_eq!(iter.next(), None);
/// assert_eq!(iter.remainder(), &['m']);
/// ```
///
/// ```
/// #![feature(iter_array_chunks)]
///
/// let data = [1, 1, 2, -2, 6, 0, 3, 1];
/// // ^-----^ ^------^
/// for [x, y, z] in data.iter().array_chunks() {
/// assert_eq!(x + y + z, 4);
/// }
/// ```
#[unstable(feature = "iter_array_chunks", reason = "recently added", issue = "none")]
fn array_chunks<const N: usize>(self) -> ArrayChunks<Self, N>
where
Self: Sized,
{
ArrayChunks::new(self)
}
/// Sums the elements of an iterator.
///
/// Takes each element, adds them together, and returns the result.

View File

@ -0,0 +1,198 @@
use core::cell::Cell;
use core::iter::{self, Iterator};
use super::*;
#[test]
fn test_iterator_array_chunks_infer() {
let xs = [1, 1, 2, -2, 6, 0, 3, 1];
for [a, b, c] in xs.iter().copied().array_chunks() {
assert_eq!(a + b + c, 4);
}
}
#[test]
fn test_iterator_array_chunks_clone_and_drop() {
let count = Cell::new(0);
let mut it = (0..5).map(|_| CountDrop::new(&count)).array_chunks::<3>();
assert_eq!(it.by_ref().count(), 1);
assert_eq!(count.get(), 3);
assert_eq!(it.remainder().len(), 2);
let mut it2 = it.clone();
assert_eq!(count.get(), 3);
assert_eq!(it2.remainder().len(), 2);
drop(it);
assert_eq!(count.get(), 5);
assert_eq!(it2.remainder().len(), 2);
assert!(it2.next().is_none());
drop(it2);
assert_eq!(count.get(), 7);
}
#[test]
fn test_iterator_array_chunks_remainder() {
let mut it = (0..11).array_chunks::<4>();
assert_eq!(it.remainder(), &[]);
assert_eq!(it.remainder_mut(), &[]);
assert_eq!(it.next(), Some([0, 1, 2, 3]));
assert_eq!(it.remainder(), &[]);
assert_eq!(it.remainder_mut(), &[]);
assert_eq!(it.next(), Some([4, 5, 6, 7]));
assert_eq!(it.remainder(), &[]);
assert_eq!(it.remainder_mut(), &[]);
assert_eq!(it.next(), None);
assert_eq!(it.next(), None);
assert_eq!(it.remainder(), &[8, 9, 10]);
assert_eq!(it.remainder_mut(), &[8, 9, 10]);
}
#[test]
fn test_iterator_array_chunks_size_hint() {
let it = (0..6).array_chunks::<1>();
assert_eq!(it.size_hint(), (6, Some(6)));
let it = (0..6).array_chunks::<3>();
assert_eq!(it.size_hint(), (2, Some(2)));
let it = (0..6).array_chunks::<5>();
assert_eq!(it.size_hint(), (1, Some(1)));
let it = (0..6).array_chunks::<7>();
assert_eq!(it.size_hint(), (0, Some(0)));
let it = (1..).array_chunks::<2>();
assert_eq!(it.size_hint(), (usize::MAX, None));
let it = (1..).filter(|x| x % 2 != 0).array_chunks::<2>();
assert_eq!(it.size_hint(), (0, None));
}
#[test]
fn test_iterator_array_chunks_count() {
let it = (0..6).array_chunks::<1>();
assert_eq!(it.count(), 6);
let it = (0..6).array_chunks::<3>();
assert_eq!(it.count(), 2);
let it = (0..6).array_chunks::<5>();
assert_eq!(it.count(), 1);
let it = (0..6).array_chunks::<7>();
assert_eq!(it.count(), 0);
let it = (0..6).filter(|x| x % 2 == 0).array_chunks::<2>();
assert_eq!(it.count(), 1);
let it = iter::empty::<i32>().array_chunks::<2>();
assert_eq!(it.count(), 0);
let it = [(); usize::MAX].iter().array_chunks::<2>();
assert_eq!(it.count(), usize::MAX / 2);
}
#[test]
fn test_iterator_array_chunks_next_and_next_back() {
let mut it = (0..11).array_chunks::<3>();
assert_eq!(it.next(), Some([0, 1, 2]));
assert_eq!(it.next_back(), Some([6, 7, 8]));
assert_eq!(it.next(), Some([3, 4, 5]));
assert_eq!(it.next_back(), None);
assert_eq!(it.next(), None);
assert_eq!(it.next_back(), None);
assert_eq!(it.next(), None);
assert_eq!(it.remainder(), &[9, 10]);
assert_eq!(it.remainder_mut(), &[9, 10]);
}
#[test]
fn test_iterator_array_chunks_rev_remainder() {
let mut it = (0..11).array_chunks::<4>();
{
let mut it = it.by_ref().rev();
assert_eq!(it.next(), Some([4, 5, 6, 7]));
assert_eq!(it.next(), Some([0, 1, 2, 3]));
assert_eq!(it.next(), None);
assert_eq!(it.next(), None);
}
assert_eq!(it.remainder(), &[8, 9, 10]);
}
#[test]
fn test_iterator_array_chunks_try_fold() {
let count = Cell::new(0);
let mut it = (0..10).map(|_| CountDrop::new(&count)).array_chunks::<3>();
let result: Result<_, ()> = it.by_ref().try_fold(0, |acc, _item| Ok(acc + 1));
assert_eq!(result, Ok(3));
assert_eq!(it.remainder().len(), 1);
assert_eq!(count.get(), 9);
drop(it);
assert_eq!(count.get(), 10);
let count = Cell::new(0);
let mut it = (0..10).map(|_| CountDrop::new(&count)).array_chunks::<3>();
let result = it.by_ref().try_fold(0, |acc, _item| if acc < 2 { Ok(acc + 1) } else { Err(acc) });
assert_eq!(result, Err(2));
assert_eq!(it.remainder().len(), 0);
assert_eq!(count.get(), 9);
drop(it);
assert_eq!(count.get(), 9);
}
#[test]
fn test_iterator_array_chunks_fold() {
let result = (1..11).array_chunks::<3>().fold(0, |acc, [a, b, c]| {
assert_eq!(acc + 1, a);
assert_eq!(acc + 2, b);
assert_eq!(acc + 3, c);
acc + 3
});
assert_eq!(result, 9);
let count = Cell::new(0);
let result =
(0..10).map(|_| CountDrop::new(&count)).array_chunks::<3>().fold(0, |acc, _item| acc + 1);
assert_eq!(result, 3);
assert_eq!(count.get(), 10);
}
#[test]
fn test_iterator_array_chunks_try_rfold() {
let count = Cell::new(0);
let mut it = (0..10).map(|_| CountDrop::new(&count)).array_chunks::<3>();
let result: Result<_, ()> = it.try_rfold(0, |acc, _item| Ok(acc + 1));
assert_eq!(result, Ok(3));
assert_eq!(it.remainder().len(), 1);
assert_eq!(count.get(), 9);
drop(it);
assert_eq!(count.get(), 10);
let count = Cell::new(0);
let mut it = (0..10).map(|_| CountDrop::new(&count)).array_chunks::<3>();
let result = it.try_rfold(0, |acc, _item| if acc < 2 { Ok(acc + 1) } else { Err(acc) });
assert_eq!(result, Err(2));
assert_eq!(count.get(), 9);
drop(it);
assert_eq!(count.get(), 10);
}
#[test]
fn test_iterator_array_chunks_rfold() {
let result = (1..11).array_chunks::<3>().rfold(0, |acc, [a, b, c]| {
assert_eq!(10 - (acc + 1), c);
assert_eq!(10 - (acc + 2), b);
assert_eq!(10 - (acc + 3), a);
acc + 3
});
assert_eq!(result, 9);
let count = Cell::new(0);
let result =
(0..10).map(|_| CountDrop::new(&count)).array_chunks::<3>().rfold(0, |acc, _item| acc + 1);
assert_eq!(result, 3);
assert_eq!(count.get(), 10);
}

View File

@ -1,3 +1,4 @@
mod array_chunks;
mod chain;
mod cloned;
mod copied;
@ -183,3 +184,25 @@ impl Clone for CountClone {
ret
}
}
#[derive(Debug, Clone)]
struct CountDrop<'a> {
dropped: bool,
count: &'a Cell<usize>,
}
impl<'a> CountDrop<'a> {
pub fn new(count: &'a Cell<usize>) -> Self {
Self { dropped: false, count }
}
}
impl Drop for CountDrop<'_> {
fn drop(&mut self) {
if self.dropped {
panic!("double drop");
}
self.dropped = true;
self.count.set(self.count.get() + 1);
}
}

View File

@ -61,6 +61,7 @@
#![feature(slice_partition_dedup)]
#![feature(int_log)]
#![feature(iter_advance_by)]
#![feature(iter_array_chunks)]
#![feature(iter_collect_into)]
#![feature(iter_partition_in_place)]
#![feature(iter_intersperse)]