Remove libworkcache

This was only ever used by rustpkg and is very unmaintained.

[breaking-change]
This commit is contained in:
Steven Fackler 2014-05-30 22:04:32 -07:00
parent 60a43f9bc5
commit c56c286b10
2 changed files with 1 additions and 537 deletions

View File

@ -51,7 +51,7 @@
TARGET_CRATES := libc std green rustuv native flate arena glob term semver \
uuid serialize sync getopts collections num test time rand \
workcache url log regex graphviz core rlibc alloc debug
url log regex graphviz core rlibc alloc debug
HOST_CRATES := syntax rustc rustdoc fourcc hexfloat regex_macros fmt_macros
CRATES := $(TARGET_CRATES) $(HOST_CRATES)
TOOLS := compiletest rustdoc rustc
@ -88,7 +88,6 @@ DEPS_test := std collections getopts serialize term time regex
DEPS_time := std serialize sync
DEPS_rand := core
DEPS_url := std collections
DEPS_workcache := std serialize collections log
DEPS_log := std sync
DEPS_regex := std collections
DEPS_regex_macros = syntax std regex

View File

@ -1,535 +0,0 @@
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A simple function caching system.
//!
//! This is a loose clone of the [fbuild build system](https://github.com/felix-lang/fbuild),
//! made a touch more generic (not wired to special cases on files) and much
//! less metaprogram-y due to rust's comparative weakness there, relative to
//! python.
//!
//! It's based around _imperative builds_ that happen to have some function
//! calls cached. That is, it's _just_ a mechanism for describing cached
//! functions. This makes it much simpler and smaller than a "build system"
//! that produces an IR and evaluates it. The evaluation order is normal
//! function calls. Some of them just return really quickly.
//!
//! A cached function consumes and produces a set of _works_. A work has a
//! name, a kind (that determines how the value is to be checked for
//! freshness) and a value. Works must also be (de)serializable. Some
//! examples of works:
//!
//! kind name value
//! ------------------------
//! cfg os linux
//! file foo.c <sha1>
//! url foo.com <etag>
//!
//! Works are conceptually single units, but we store them most of the time
//! in maps of the form (type,name) => value. These are WorkMaps.
//!
//! A cached function divides the works it's interested in into inputs and
//! outputs, and subdivides those into declared (input) works and
//! discovered (input and output) works.
//!
//! A _declared_ input or is one that is given to the workcache before
//! any work actually happens, in the "prep" phase. Even when a function's
//! work-doing part (the "exec" phase) never gets called, it has declared
//! inputs, which can be checked for freshness (and potentially
//! used to determine that the function can be skipped).
//!
//! The workcache checks _all_ works for freshness, but uses the set of
//! discovered outputs from the _previous_ exec (which it will re-discover
//! and re-record each time the exec phase runs).
//!
//! Therefore the discovered works cached in the db might be a
//! mis-approximation of the current discoverable works, but this is ok for
//! the following reason: we assume that if an artifact A changed from
//! depending on B,C,D to depending on B,C,D,E, then A itself changed (as
//! part of the change-in-dependencies), so we will be ok.
//!
//! Each function has a single discriminated output work called its _result_.
//! This is only different from other works in that it is returned, by value,
//! from a call to the cacheable function; the other output works are used in
//! passing to invalidate dependencies elsewhere in the cache, but do not
//! otherwise escape from a function invocation. Most functions only have one
//! output work anyways.
//!
//! A database (the central store of a workcache) stores a mappings:
//!
//! (fn_name,{declared_input}) => ({discovered_input},
//! {discovered_output},result)
//!
//! (Note: fbuild, which workcache is based on, has the concept of a declared
//! output as separate from a discovered output. This distinction exists only
//! as an artifact of how fbuild works: via annotations on function types
//! and metaprogramming, with explicit dependency declaration as a fallback.
//! Workcache is more explicit about dependencies, and as such treats all
//! outputs the same, as discovered-during-the-last-run.)
#![crate_id = "workcache#0.11.0-pre"]
#![crate_type = "rlib"]
#![crate_type = "dylib"]
#![license = "MIT/ASL2"]
#![doc(html_logo_url = "http://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
html_favicon_url = "http://www.rust-lang.org/favicon.ico",
html_root_url = "http://doc.rust-lang.org/")]
#![feature(phase)]
#![allow(visible_private_types)]
#![deny(deprecated_owned_vector)]
#[phase(syntax, link)] extern crate log;
extern crate serialize;
extern crate collections;
extern crate sync;
use serialize::json;
use serialize::json::ToJson;
use serialize::{Encoder, Encodable, Decoder, Decodable};
use sync::{Arc, RWLock};
use collections::TreeMap;
use std::str;
use std::io;
use std::io::{File, MemWriter};
#[deriving(Clone, PartialEq, Encodable, Decodable, PartialOrd, TotalOrd, TotalEq)]
struct WorkKey {
kind: String,
name: String
}
impl WorkKey {
pub fn new(kind: &str, name: &str) -> WorkKey {
WorkKey {
kind: kind.to_string(),
name: name.to_string(),
}
}
}
// FIXME #8883: The key should be a WorkKey and not a String.
// This is working around some JSON weirdness.
#[deriving(Clone, PartialEq, Encodable, Decodable)]
struct WorkMap(TreeMap<String, KindMap>);
#[deriving(Clone, PartialEq, Encodable, Decodable)]
struct KindMap(TreeMap<String, String>);
impl WorkMap {
fn new() -> WorkMap { WorkMap(TreeMap::new()) }
fn insert_work_key(&mut self, k: WorkKey, val: String) {
let WorkKey { kind, name } = k;
let WorkMap(ref mut map) = *self;
match map.find_mut(&name) {
Some(&KindMap(ref mut m)) => { m.insert(kind, val); return; }
None => ()
}
let mut new_map = TreeMap::new();
new_map.insert(kind, val);
map.insert(name, KindMap(new_map));
}
}
pub struct Database {
db_filename: Path,
db_cache: TreeMap<String, String>,
pub db_dirty: bool,
}
impl Database {
pub fn new(p: Path) -> Database {
let mut rslt = Database {
db_filename: p,
db_cache: TreeMap::new(),
db_dirty: false
};
if rslt.db_filename.exists() {
rslt.load();
}
rslt
}
pub fn prepare(&self,
fn_name: &str,
declared_inputs: &WorkMap)
-> Option<(WorkMap, WorkMap, String)> {
let k = json_encode(&(fn_name, declared_inputs));
match self.db_cache.find(&k) {
None => None,
Some(v) => Some(json_decode(v.as_slice()))
}
}
pub fn cache(&mut self,
fn_name: &str,
declared_inputs: &WorkMap,
discovered_inputs: &WorkMap,
discovered_outputs: &WorkMap,
result: &str) {
let k = json_encode(&(fn_name, declared_inputs));
let v = json_encode(&(discovered_inputs,
discovered_outputs,
result));
self.db_cache.insert(k,v);
self.db_dirty = true
}
// FIXME #4330: This should have &mut self and should set self.db_dirty to false.
fn save(&self) -> io::IoResult<()> {
let mut f = File::create(&self.db_filename);
// FIXME(pcwalton): Yuck.
let mut new_db_cache = TreeMap::new();
for (ref k, ref v) in self.db_cache.iter() {
new_db_cache.insert((*k).to_string(), (*v).to_string());
}
new_db_cache.to_json().to_pretty_writer(&mut f)
}
fn load(&mut self) {
assert!(!self.db_dirty);
assert!(self.db_filename.exists());
match File::open(&self.db_filename) {
Err(e) => fail!("Couldn't load workcache database {}: {}",
self.db_filename.display(),
e),
Ok(mut stream) => {
match json::from_reader(&mut stream) {
Err(e) => fail!("Couldn't parse workcache database (from file {}): {}",
self.db_filename.display(), e.to_str()),
Ok(r) => {
let mut decoder = json::Decoder::new(r);
self.db_cache = Decodable::decode(&mut decoder).unwrap();
}
}
}
}
}
}
#[unsafe_destructor]
impl Drop for Database {
fn drop(&mut self) {
if self.db_dirty {
// FIXME: is failing the right thing to do here
self.save().unwrap();
}
}
}
pub type FreshnessMap = TreeMap<String,extern fn(&str,&str)->bool>;
#[deriving(Clone)]
pub struct Context {
pub db: Arc<RWLock<Database>>,
cfg: Arc<json::Object>,
/// Map from kinds (source, exe, url, etc.) to a freshness function.
/// The freshness function takes a name (e.g. file path) and value
/// (e.g. hash of file contents) and determines whether it's up-to-date.
/// For example, in the file case, this would read the file off disk,
/// hash it, and return the result of comparing the given hash and the
/// read hash for equality.
freshness: Arc<FreshnessMap>
}
pub struct Prep<'a> {
ctxt: &'a Context,
fn_name: &'a str,
declared_inputs: WorkMap,
}
pub struct Exec {
discovered_inputs: WorkMap,
discovered_outputs: WorkMap
}
enum Work<'a, T> {
WorkValue(T),
WorkFromTask(&'a Prep<'a>, Receiver<(Exec, T)>),
}
fn json_encode<'a, T:Encodable<json::Encoder<'a>, io::IoError>>(t: &T) -> String {
let mut writer = MemWriter::new();
let mut encoder = json::Encoder::new(&mut writer as &mut io::Writer);
let _ = t.encode(&mut encoder);
str::from_utf8(writer.unwrap().as_slice()).unwrap().to_string()
}
// FIXME(#5121)
fn json_decode<T:Decodable<json::Decoder, json::DecoderError>>(s: &str) -> T {
debug!("json decoding: {}", s);
let j = json::from_str(s).unwrap();
let mut decoder = json::Decoder::new(j);
Decodable::decode(&mut decoder).unwrap()
}
impl Context {
pub fn new(db: Arc<RWLock<Database>>,
cfg: Arc<json::Object>) -> Context {
Context::new_with_freshness(db, cfg, Arc::new(TreeMap::new()))
}
pub fn new_with_freshness(db: Arc<RWLock<Database>>,
cfg: Arc<json::Object>,
freshness: Arc<FreshnessMap>) -> Context {
Context {
db: db,
cfg: cfg,
freshness: freshness
}
}
pub fn prep<'a>(&'a self, fn_name: &'a str) -> Prep<'a> {
Prep::new(self, fn_name)
}
pub fn with_prep<'a,
T>(
&'a self,
fn_name: &'a str,
blk: |p: &mut Prep| -> T)
-> T {
let mut p = self.prep(fn_name);
blk(&mut p)
}
}
impl Exec {
pub fn discover_input(&mut self,
dependency_kind: &str,
dependency_name: &str,
dependency_val: &str) {
debug!("Discovering input {} {} {}", dependency_kind, dependency_name, dependency_val);
self.discovered_inputs.insert_work_key(WorkKey::new(dependency_kind, dependency_name),
dependency_val.to_string());
}
pub fn discover_output(&mut self,
dependency_kind: &str,
dependency_name: &str,
dependency_val: &str) {
debug!("Discovering output {} {} {}", dependency_kind, dependency_name, dependency_val);
self.discovered_outputs.insert_work_key(WorkKey::new(dependency_kind, dependency_name),
dependency_val.to_string());
}
// returns pairs of (kind, name)
pub fn lookup_discovered_inputs(&self) -> Vec<(String, String)> {
let mut rs = vec![];
let WorkMap(ref discovered_inputs) = self.discovered_inputs;
for (k, v) in discovered_inputs.iter() {
let KindMap(ref vmap) = *v;
for (k1, _) in vmap.iter() {
rs.push((k1.clone(), k.clone()));
}
}
rs
}
}
impl<'a> Prep<'a> {
fn new(ctxt: &'a Context, fn_name: &'a str) -> Prep<'a> {
Prep {
ctxt: ctxt,
fn_name: fn_name,
declared_inputs: WorkMap::new()
}
}
pub fn lookup_declared_inputs(&self) -> Vec<String> {
let mut rs = vec![];
let WorkMap(ref declared_inputs) = self.declared_inputs;
for (_, v) in declared_inputs.iter() {
let KindMap(ref vmap) = *v;
for (inp, _) in vmap.iter() {
rs.push(inp.clone());
}
}
rs
}
}
impl<'a> Prep<'a> {
pub fn declare_input(&mut self, kind: &str, name: &str, val: &str) {
debug!("Declaring input {} {} {}", kind, name, val);
self.declared_inputs.insert_work_key(WorkKey::new(kind, name),
val.to_string());
}
fn is_fresh(&self, cat: &str, kind: &str, name: &str, val: &str) -> bool {
let k = kind.to_string();
let f = self.ctxt.freshness.deref().find(&k);
debug!("freshness for: {}/{}/{}/{}", cat, kind, name, val)
let fresh = match f {
None => fail!("missing freshness-function for '{}'", kind),
Some(f) => (*f)(name, val)
};
if fresh {
info!("{} {}:{} is fresh", cat, kind, name);
} else {
info!("{} {}:{} is not fresh", cat, kind, name);
}
fresh
}
fn all_fresh(&self, cat: &str, map: &WorkMap) -> bool {
let WorkMap(ref map) = *map;
for (k_name, kindmap) in map.iter() {
let KindMap(ref kindmap_) = *kindmap;
for (k_kind, v) in kindmap_.iter() {
if !self.is_fresh(cat,
k_kind.as_slice(),
k_name.as_slice(),
v.as_slice()) {
return false;
}
}
}
return true;
}
pub fn exec<'a, T:Send +
Encodable<json::Encoder<'a>, io::IoError> +
Decodable<json::Decoder, json::DecoderError>>(
&'a self, blk: proc(&mut Exec):Send -> T) -> T {
self.exec_work(blk).unwrap()
}
fn exec_work<'a, T:Send +
Encodable<json::Encoder<'a>, io::IoError> +
Decodable<json::Decoder, json::DecoderError>>( // FIXME(#5121)
&'a self, blk: proc(&mut Exec):Send -> T) -> Work<'a, T> {
let mut bo = Some(blk);
debug!("exec_work: looking up {}", self.fn_name);
let cached = {
let db = self.ctxt.db.deref().read();
db.deref().prepare(self.fn_name, &self.declared_inputs)
};
match cached {
Some((ref disc_in, ref disc_out, ref res))
if self.all_fresh("declared input",&self.declared_inputs) &&
self.all_fresh("discovered input", disc_in) &&
self.all_fresh("discovered output", disc_out) => {
debug!("Cache hit!");
debug!("Trying to decode: {}", *res);
Work::from_value(json_decode(res.as_slice()))
}
_ => {
debug!("Cache miss!");
let (tx, rx) = channel();
let blk = bo.take_unwrap();
// FIXME: What happens if the task fails?
spawn(proc() {
let mut exe = Exec {
discovered_inputs: WorkMap::new(),
discovered_outputs: WorkMap::new(),
};
let v = blk(&mut exe);
tx.send((exe, v));
});
Work::from_task(self, rx)
}
}
}
}
impl<'a, T:Send +
Encodable<json::Encoder<'a>, io::IoError> +
Decodable<json::Decoder, json::DecoderError>>
Work<'a, T> { // FIXME(#5121)
pub fn from_value(elt: T) -> Work<'a, T> {
WorkValue(elt)
}
pub fn from_task(prep: &'a Prep<'a>, port: Receiver<(Exec, T)>)
-> Work<'a, T> {
WorkFromTask(prep, port)
}
pub fn unwrap(self) -> T {
match self {
WorkValue(v) => v,
WorkFromTask(prep, port) => {
let (exe, v) = port.recv();
let s = json_encode(&v);
let mut db = prep.ctxt.db.deref().write();
db.deref_mut().cache(prep.fn_name,
&prep.declared_inputs,
&exe.discovered_inputs,
&exe.discovered_outputs,
s.as_slice());
v
}
}
}
}
#[test]
#[cfg(not(target_os="android"))] // FIXME(#10455)
fn test() {
use std::os;
use std::io::{fs, Command};
use std::str::from_utf8;
// Create a path to a new file 'filename' in the directory in which
// this test is running.
fn make_path(filename: String) -> Path {
let pth = os::self_exe_path().expect("workcache::test failed").with_filename(filename);
if pth.exists() {
fs::unlink(&pth).unwrap();
}
return pth;
}
let pth = make_path("foo.c".to_string());
File::create(&pth).write(bytes!("int main() { return 0; }")).unwrap();
let db_path = make_path("db.json".to_string());
let cx = Context::new(Arc::new(RWLock::new(Database::new(db_path))),
Arc::new(TreeMap::new()));
let s = cx.with_prep("test1", |prep| {
let subcx = cx.clone();
let pth = pth.clone();
let contents = File::open(&pth).read_to_end().unwrap();
let file_content = from_utf8(contents.as_slice()).unwrap()
.to_string();
// FIXME (#9639): This needs to handle non-utf8 paths
prep.declare_input("file",
pth.as_str().unwrap(),
file_content.as_slice());
prep.exec(proc(_exe) {
let out = make_path("foo.o".to_string());
let compiler = if cfg!(windows) {"gcc"} else {"cc"};
Command::new(compiler).arg(pth).arg("-o").arg(out.clone()).status().unwrap();
let _proof_of_concept = subcx.prep("subfn");
// Could run sub-rules inside here.
// FIXME (#9639): This needs to handle non-utf8 paths
out.as_str().unwrap().to_string()
})
});
println!("{}", s);
}