Rollup merge of #138158 - moulins:move-layout-to-rustc_abi, r=workingjubilee

Move more layouting logic to `rustc_abi`

Move all `LayoutData`-constructing code to `rustc_abi`:
- Infaillible operations get a new `LayoutData` constructor method;
- Faillible ones get a new method on `LayoutCalculator`.
This commit is contained in:
Matthias Krüger 2025-03-09 10:34:51 +01:00 committed by GitHub
commit bfa1a62fd4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 758 additions and 754 deletions

View File

@ -4,6 +4,7 @@ use std::{cmp, iter};
use rustc_hashes::Hash64;
use rustc_index::Idx;
use rustc_index::bit_set::BitMatrix;
use tracing::debug;
use crate::{
@ -12,6 +13,9 @@ use crate::{
Variants, WrappingRange,
};
mod coroutine;
mod simple;
#[cfg(feature = "nightly")]
mod ty;
@ -60,17 +64,28 @@ pub enum LayoutCalculatorError<F> {
/// The fields or variants have irreconcilable reprs
ReprConflict,
/// The length of an SIMD type is zero
ZeroLengthSimdType,
/// The length of an SIMD type exceeds the maximum number of lanes
OversizedSimdType { max_lanes: u64 },
/// An element type of an SIMD type isn't a primitive
NonPrimitiveSimdType(F),
}
impl<F> LayoutCalculatorError<F> {
pub fn without_payload(&self) -> LayoutCalculatorError<()> {
match self {
LayoutCalculatorError::UnexpectedUnsized(_) => {
LayoutCalculatorError::UnexpectedUnsized(())
}
LayoutCalculatorError::SizeOverflow => LayoutCalculatorError::SizeOverflow,
LayoutCalculatorError::EmptyUnion => LayoutCalculatorError::EmptyUnion,
LayoutCalculatorError::ReprConflict => LayoutCalculatorError::ReprConflict,
use LayoutCalculatorError::*;
match *self {
UnexpectedUnsized(_) => UnexpectedUnsized(()),
SizeOverflow => SizeOverflow,
EmptyUnion => EmptyUnion,
ReprConflict => ReprConflict,
ZeroLengthSimdType => ZeroLengthSimdType,
OversizedSimdType { max_lanes } => OversizedSimdType { max_lanes },
NonPrimitiveSimdType(_) => NonPrimitiveSimdType(()),
}
}
@ -78,13 +93,15 @@ impl<F> LayoutCalculatorError<F> {
///
/// Intended for use by rust-analyzer, as neither it nor `rustc_abi` depend on fluent infra.
pub fn fallback_fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use LayoutCalculatorError::*;
f.write_str(match self {
LayoutCalculatorError::UnexpectedUnsized(_) => {
"an unsized type was found where a sized type was expected"
UnexpectedUnsized(_) => "an unsized type was found where a sized type was expected",
SizeOverflow => "size overflow",
EmptyUnion => "type is a union with no fields",
ReprConflict => "type has an invalid repr",
ZeroLengthSimdType | OversizedSimdType { .. } | NonPrimitiveSimdType(_) => {
"invalid simd type definition"
}
LayoutCalculatorError::SizeOverflow => "size overflow",
LayoutCalculatorError::EmptyUnion => "type is a union with no fields",
LayoutCalculatorError::ReprConflict => "type has an invalid repr",
})
}
}
@ -102,41 +119,115 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
Self { cx }
}
pub fn scalar_pair<FieldIdx: Idx, VariantIdx: Idx>(
pub fn array_like<FieldIdx: Idx, VariantIdx: Idx, F>(
&self,
a: Scalar,
b: Scalar,
) -> LayoutData<FieldIdx, VariantIdx> {
let dl = self.cx.data_layout();
let b_align = b.align(dl);
let align = a.align(dl).max(b_align).max(dl.aggregate_align);
let b_offset = a.size(dl).align_to(b_align.abi);
let size = (b_offset + b.size(dl)).align_to(align.abi);
element: &LayoutData<FieldIdx, VariantIdx>,
count_if_sized: Option<u64>, // None for slices
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
let count = count_if_sized.unwrap_or(0);
let size =
element.size.checked_mul(count, &self.cx).ok_or(LayoutCalculatorError::SizeOverflow)?;
// HACK(nox): We iter on `b` and then `a` because `max_by_key`
// returns the last maximum.
let largest_niche = Niche::from_scalar(dl, b_offset, b)
.into_iter()
.chain(Niche::from_scalar(dl, Size::ZERO, a))
.max_by_key(|niche| niche.available(dl));
let combined_seed = a.size(&self.cx).bytes().wrapping_add(b.size(&self.cx).bytes());
LayoutData {
Ok(LayoutData {
variants: Variants::Single { index: VariantIdx::new(0) },
fields: FieldsShape::Arbitrary {
offsets: [Size::ZERO, b_offset].into(),
memory_index: [0, 1].into(),
},
backend_repr: BackendRepr::ScalarPair(a, b),
largest_niche,
uninhabited: false,
align,
fields: FieldsShape::Array { stride: element.size, count },
backend_repr: BackendRepr::Memory { sized: count_if_sized.is_some() },
largest_niche: element.largest_niche.filter(|_| count != 0),
uninhabited: element.uninhabited && count != 0,
align: element.align,
size,
max_repr_align: None,
unadjusted_abi_align: align.abi,
randomization_seed: Hash64::new(combined_seed),
unadjusted_abi_align: element.align.abi,
randomization_seed: element.randomization_seed.wrapping_add(Hash64::new(count)),
})
}
pub fn simd_type<
FieldIdx: Idx,
VariantIdx: Idx,
F: AsRef<LayoutData<FieldIdx, VariantIdx>> + fmt::Debug,
>(
&self,
element: F,
count: u64,
repr_packed: bool,
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
let elt = element.as_ref();
if count == 0 {
return Err(LayoutCalculatorError::ZeroLengthSimdType);
} else if count > crate::MAX_SIMD_LANES {
return Err(LayoutCalculatorError::OversizedSimdType {
max_lanes: crate::MAX_SIMD_LANES,
});
}
let BackendRepr::Scalar(e_repr) = elt.backend_repr else {
return Err(LayoutCalculatorError::NonPrimitiveSimdType(element));
};
// Compute the size and alignment of the vector
let dl = self.cx.data_layout();
let size =
elt.size.checked_mul(count, dl).ok_or_else(|| LayoutCalculatorError::SizeOverflow)?;
let (repr, align) = if repr_packed && !count.is_power_of_two() {
// Non-power-of-two vectors have padding up to the next power-of-two.
// If we're a packed repr, remove the padding while keeping the alignment as close
// to a vector as possible.
(
BackendRepr::Memory { sized: true },
AbiAndPrefAlign {
abi: Align::max_aligned_factor(size),
pref: dl.llvmlike_vector_align(size).pref,
},
)
} else {
(BackendRepr::SimdVector { element: e_repr, count }, dl.llvmlike_vector_align(size))
};
let size = size.align_to(align.abi);
Ok(LayoutData {
variants: Variants::Single { index: VariantIdx::new(0) },
fields: FieldsShape::Arbitrary {
offsets: [Size::ZERO].into(),
memory_index: [0].into(),
},
backend_repr: repr,
largest_niche: elt.largest_niche,
uninhabited: false,
size,
align,
max_repr_align: None,
unadjusted_abi_align: elt.align.abi,
randomization_seed: elt.randomization_seed.wrapping_add(Hash64::new(count)),
})
}
/// Compute the layout for a coroutine.
///
/// This uses dedicated code instead of [`Self::layout_of_struct_or_enum`], as coroutine
/// fields may be shared between multiple variants (see the [`coroutine`] module for details).
pub fn coroutine<
'a,
F: Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + fmt::Debug + Copy,
VariantIdx: Idx,
FieldIdx: Idx,
LocalIdx: Idx,
>(
&self,
local_layouts: &IndexSlice<LocalIdx, F>,
prefix_layouts: IndexVec<FieldIdx, F>,
variant_fields: &IndexSlice<VariantIdx, IndexVec<FieldIdx, LocalIdx>>,
storage_conflicts: &BitMatrix<LocalIdx, LocalIdx>,
tag_to_layout: impl Fn(Scalar) -> F,
) -> LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
coroutine::layout(
self,
local_layouts,
prefix_layouts,
variant_fields,
storage_conflicts,
tag_to_layout,
)
}
pub fn univariant<
@ -214,25 +305,6 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
layout
}
pub fn layout_of_never_type<FieldIdx: Idx, VariantIdx: Idx>(
&self,
) -> LayoutData<FieldIdx, VariantIdx> {
let dl = self.cx.data_layout();
// This is also used for uninhabited enums, so we use `Variants::Empty`.
LayoutData {
variants: Variants::Empty,
fields: FieldsShape::Primitive,
backend_repr: BackendRepr::Memory { sized: true },
largest_niche: None,
uninhabited: true,
align: dl.i8_align,
size: Size::ZERO,
max_repr_align: None,
unadjusted_abi_align: dl.i8_align.abi,
randomization_seed: Hash64::ZERO,
}
}
pub fn layout_of_struct_or_enum<
'a,
FieldIdx: Idx,
@ -260,7 +332,7 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
Some(present_first) => present_first,
// Uninhabited because it has no variants, or only absent ones.
None if is_enum => {
return Ok(self.layout_of_never_type());
return Ok(LayoutData::never_type(&self.cx));
}
// If it's a struct, still compute a layout so that we can still compute the
// field offsets.
@ -949,7 +1021,8 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
// Common prim might be uninit.
Scalar::Union { value: prim }
};
let pair = self.scalar_pair::<FieldIdx, VariantIdx>(tag, prim_scalar);
let pair =
LayoutData::<FieldIdx, VariantIdx>::scalar_pair(&self.cx, tag, prim_scalar);
let pair_offsets = match pair.fields {
FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
assert_eq!(memory_index.raw, [0, 1]);
@ -1341,7 +1414,8 @@ impl<Cx: HasDataLayout> LayoutCalculator<Cx> {
} else {
((j, b), (i, a))
};
let pair = self.scalar_pair::<FieldIdx, VariantIdx>(a, b);
let pair =
LayoutData::<FieldIdx, VariantIdx>::scalar_pair(&self.cx, a, b);
let pair_offsets = match pair.fields {
FieldsShape::Arbitrary { ref offsets, ref memory_index } => {
assert_eq!(memory_index.raw, [0, 1]);

View File

@ -0,0 +1,320 @@
//! Coroutine layout logic.
//!
//! When laying out coroutines, we divide our saved local fields into two
//! categories: overlap-eligible and overlap-ineligible.
//!
//! Those fields which are ineligible for overlap go in a "prefix" at the
//! beginning of the layout, and always have space reserved for them.
//!
//! Overlap-eligible fields are only assigned to one variant, so we lay
//! those fields out for each variant and put them right after the
//! prefix.
//!
//! Finally, in the layout details, we point to the fields from the
//! variants they are assigned to. It is possible for some fields to be
//! included in multiple variants. No field ever "moves around" in the
//! layout; its offset is always the same.
//!
//! Also included in the layout are the upvars and the discriminant.
//! These are included as fields on the "outer" layout; they are not part
//! of any variant.
use std::iter;
use rustc_index::bit_set::{BitMatrix, DenseBitSet};
use rustc_index::{Idx, IndexSlice, IndexVec};
use tracing::{debug, trace};
use crate::{
BackendRepr, FieldsShape, HasDataLayout, Integer, LayoutData, Primitive, ReprOptions, Scalar,
StructKind, TagEncoding, Variants, WrappingRange,
};
/// Overlap eligibility and variant assignment for each CoroutineSavedLocal.
#[derive(Clone, Debug, PartialEq)]
enum SavedLocalEligibility<VariantIdx, FieldIdx> {
Unassigned,
Assigned(VariantIdx),
Ineligible(Option<FieldIdx>),
}
/// Compute the eligibility and assignment of each local.
fn coroutine_saved_local_eligibility<VariantIdx: Idx, FieldIdx: Idx, LocalIdx: Idx>(
nb_locals: usize,
variant_fields: &IndexSlice<VariantIdx, IndexVec<FieldIdx, LocalIdx>>,
storage_conflicts: &BitMatrix<LocalIdx, LocalIdx>,
) -> (DenseBitSet<LocalIdx>, IndexVec<LocalIdx, SavedLocalEligibility<VariantIdx, FieldIdx>>) {
use SavedLocalEligibility::*;
let mut assignments: IndexVec<LocalIdx, _> = IndexVec::from_elem_n(Unassigned, nb_locals);
// The saved locals not eligible for overlap. These will get
// "promoted" to the prefix of our coroutine.
let mut ineligible_locals = DenseBitSet::new_empty(nb_locals);
// Figure out which of our saved locals are fields in only
// one variant. The rest are deemed ineligible for overlap.
for (variant_index, fields) in variant_fields.iter_enumerated() {
for local in fields {
match assignments[*local] {
Unassigned => {
assignments[*local] = Assigned(variant_index);
}
Assigned(idx) => {
// We've already seen this local at another suspension
// point, so it is no longer a candidate.
trace!(
"removing local {:?} in >1 variant ({:?}, {:?})",
local, variant_index, idx
);
ineligible_locals.insert(*local);
assignments[*local] = Ineligible(None);
}
Ineligible(_) => {}
}
}
}
// Next, check every pair of eligible locals to see if they
// conflict.
for local_a in storage_conflicts.rows() {
let conflicts_a = storage_conflicts.count(local_a);
if ineligible_locals.contains(local_a) {
continue;
}
for local_b in storage_conflicts.iter(local_a) {
// local_a and local_b are storage live at the same time, therefore they
// cannot overlap in the coroutine layout. The only way to guarantee
// this is if they are in the same variant, or one is ineligible
// (which means it is stored in every variant).
if ineligible_locals.contains(local_b) || assignments[local_a] == assignments[local_b] {
continue;
}
// If they conflict, we will choose one to make ineligible.
// This is not always optimal; it's just a greedy heuristic that
// seems to produce good results most of the time.
let conflicts_b = storage_conflicts.count(local_b);
let (remove, other) =
if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) };
ineligible_locals.insert(remove);
assignments[remove] = Ineligible(None);
trace!("removing local {:?} due to conflict with {:?}", remove, other);
}
}
// Count the number of variants in use. If only one of them, then it is
// impossible to overlap any locals in our layout. In this case it's
// always better to make the remaining locals ineligible, so we can
// lay them out with the other locals in the prefix and eliminate
// unnecessary padding bytes.
{
let mut used_variants = DenseBitSet::new_empty(variant_fields.len());
for assignment in &assignments {
if let Assigned(idx) = assignment {
used_variants.insert(*idx);
}
}
if used_variants.count() < 2 {
for assignment in assignments.iter_mut() {
*assignment = Ineligible(None);
}
ineligible_locals.insert_all();
}
}
// Write down the order of our locals that will be promoted to the prefix.
{
for (idx, local) in ineligible_locals.iter().enumerate() {
assignments[local] = Ineligible(Some(FieldIdx::new(idx)));
}
}
debug!("coroutine saved local assignments: {:?}", assignments);
(ineligible_locals, assignments)
}
/// Compute the full coroutine layout.
pub(super) fn layout<
'a,
F: core::ops::Deref<Target = &'a LayoutData<FieldIdx, VariantIdx>> + core::fmt::Debug + Copy,
VariantIdx: Idx,
FieldIdx: Idx,
LocalIdx: Idx,
>(
calc: &super::LayoutCalculator<impl HasDataLayout>,
local_layouts: &IndexSlice<LocalIdx, F>,
mut prefix_layouts: IndexVec<FieldIdx, F>,
variant_fields: &IndexSlice<VariantIdx, IndexVec<FieldIdx, LocalIdx>>,
storage_conflicts: &BitMatrix<LocalIdx, LocalIdx>,
tag_to_layout: impl Fn(Scalar) -> F,
) -> super::LayoutCalculatorResult<FieldIdx, VariantIdx, F> {
use SavedLocalEligibility::*;
let (ineligible_locals, assignments) =
coroutine_saved_local_eligibility(local_layouts.len(), variant_fields, storage_conflicts);
// Build a prefix layout, including "promoting" all ineligible
// locals as part of the prefix. We compute the layout of all of
// these fields at once to get optimal packing.
let tag_index = prefix_layouts.len();
// `variant_fields` already accounts for the reserved variants, so no need to add them.
let max_discr = (variant_fields.len() - 1) as u128;
let discr_int = Integer::fit_unsigned(max_discr);
let tag = Scalar::Initialized {
value: Primitive::Int(discr_int, /* signed = */ false),
valid_range: WrappingRange { start: 0, end: max_discr },
};
let promoted_layouts = ineligible_locals.iter().map(|local| local_layouts[local]);
prefix_layouts.push(tag_to_layout(tag));
prefix_layouts.extend(promoted_layouts);
let prefix =
calc.univariant(&prefix_layouts, &ReprOptions::default(), StructKind::AlwaysSized)?;
let (prefix_size, prefix_align) = (prefix.size, prefix.align);
// Split the prefix layout into the "outer" fields (upvars and
// discriminant) and the "promoted" fields. Promoted fields will
// get included in each variant that requested them in
// CoroutineLayout.
debug!("prefix = {:#?}", prefix);
let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields {
FieldsShape::Arbitrary { mut offsets, memory_index } => {
let mut inverse_memory_index = memory_index.invert_bijective_mapping();
// "a" (`0..b_start`) and "b" (`b_start..`) correspond to
// "outer" and "promoted" fields respectively.
let b_start = FieldIdx::new(tag_index + 1);
let offsets_b = IndexVec::from_raw(offsets.raw.split_off(b_start.index()));
let offsets_a = offsets;
// Disentangle the "a" and "b" components of `inverse_memory_index`
// by preserving the order but keeping only one disjoint "half" each.
// FIXME(eddyb) build a better abstraction for permutations, if possible.
let inverse_memory_index_b: IndexVec<u32, FieldIdx> = inverse_memory_index
.iter()
.filter_map(|&i| i.index().checked_sub(b_start.index()).map(FieldIdx::new))
.collect();
inverse_memory_index.raw.retain(|&i| i.index() < b_start.index());
let inverse_memory_index_a = inverse_memory_index;
// Since `inverse_memory_index_{a,b}` each only refer to their
// respective fields, they can be safely inverted
let memory_index_a = inverse_memory_index_a.invert_bijective_mapping();
let memory_index_b = inverse_memory_index_b.invert_bijective_mapping();
let outer_fields =
FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a };
(outer_fields, offsets_b, memory_index_b)
}
_ => unreachable!(),
};
let mut size = prefix.size;
let mut align = prefix.align;
let variants = variant_fields
.iter_enumerated()
.map(|(index, variant_fields)| {
// Only include overlap-eligible fields when we compute our variant layout.
let variant_only_tys = variant_fields
.iter()
.filter(|local| match assignments[**local] {
Unassigned => unreachable!(),
Assigned(v) if v == index => true,
Assigned(_) => unreachable!("assignment does not match variant"),
Ineligible(_) => false,
})
.map(|local| local_layouts[*local]);
let mut variant = calc.univariant(
&variant_only_tys.collect::<IndexVec<_, _>>(),
&ReprOptions::default(),
StructKind::Prefixed(prefix_size, prefix_align.abi),
)?;
variant.variants = Variants::Single { index };
let FieldsShape::Arbitrary { offsets, memory_index } = variant.fields else {
unreachable!();
};
// Now, stitch the promoted and variant-only fields back together in
// the order they are mentioned by our CoroutineLayout.
// Because we only use some subset (that can differ between variants)
// of the promoted fields, we can't just pick those elements of the
// `promoted_memory_index` (as we'd end up with gaps).
// So instead, we build an "inverse memory_index", as if all of the
// promoted fields were being used, but leave the elements not in the
// subset as `invalid_field_idx`, which we can filter out later to
// obtain a valid (bijective) mapping.
let invalid_field_idx = promoted_memory_index.len() + memory_index.len();
let mut combined_inverse_memory_index =
IndexVec::from_elem_n(FieldIdx::new(invalid_field_idx), invalid_field_idx);
let mut offsets_and_memory_index = iter::zip(offsets, memory_index);
let combined_offsets = variant_fields
.iter_enumerated()
.map(|(i, local)| {
let (offset, memory_index) = match assignments[*local] {
Unassigned => unreachable!(),
Assigned(_) => {
let (offset, memory_index) = offsets_and_memory_index.next().unwrap();
(offset, promoted_memory_index.len() as u32 + memory_index)
}
Ineligible(field_idx) => {
let field_idx = field_idx.unwrap();
(promoted_offsets[field_idx], promoted_memory_index[field_idx])
}
};
combined_inverse_memory_index[memory_index] = i;
offset
})
.collect();
// Remove the unused slots and invert the mapping to obtain the
// combined `memory_index` (also see previous comment).
combined_inverse_memory_index.raw.retain(|&i| i.index() != invalid_field_idx);
let combined_memory_index = combined_inverse_memory_index.invert_bijective_mapping();
variant.fields = FieldsShape::Arbitrary {
offsets: combined_offsets,
memory_index: combined_memory_index,
};
size = size.max(variant.size);
align = align.max(variant.align);
Ok(variant)
})
.collect::<Result<IndexVec<VariantIdx, _>, _>>()?;
size = size.align_to(align.abi);
let uninhabited = prefix.uninhabited || variants.iter().all(|v| v.is_uninhabited());
let abi = BackendRepr::Memory { sized: true };
Ok(LayoutData {
variants: Variants::Multiple {
tag,
tag_encoding: TagEncoding::Direct,
tag_field: tag_index,
variants,
},
fields: outer_fields,
backend_repr: abi,
// Suppress niches inside coroutines. If the niche is inside a field that is aliased (due to
// self-referentiality), getting the discriminant can cause aliasing violations.
// `UnsafeCell` blocks niches for the same reason, but we don't yet have `UnsafePinned` that
// would do the same for us here.
// See <https://github.com/rust-lang/rust/issues/63818>, <https://github.com/rust-lang/miri/issues/3780>.
// FIXME: Remove when <https://github.com/rust-lang/rust/issues/125735> is implemented and aliased coroutine fields are wrapped in `UnsafePinned`.
largest_niche: None,
uninhabited,
size,
align,
max_repr_align: None,
unadjusted_abi_align: align.abi,
randomization_seed: Default::default(),
})
}

View File

@ -0,0 +1,148 @@
use std::num::NonZero;
use rustc_hashes::Hash64;
use rustc_index::{Idx, IndexVec};
use crate::{
BackendRepr, FieldsShape, HasDataLayout, LayoutData, Niche, Primitive, Scalar, Size, Variants,
};
/// "Simple" layout constructors that cannot fail.
impl<FieldIdx: Idx, VariantIdx: Idx> LayoutData<FieldIdx, VariantIdx> {
pub fn unit<C: HasDataLayout>(cx: &C, sized: bool) -> Self {
let dl = cx.data_layout();
LayoutData {
variants: Variants::Single { index: VariantIdx::new(0) },
fields: FieldsShape::Arbitrary {
offsets: IndexVec::new(),
memory_index: IndexVec::new(),
},
backend_repr: BackendRepr::Memory { sized },
largest_niche: None,
uninhabited: false,
align: dl.i8_align,
size: Size::ZERO,
max_repr_align: None,
unadjusted_abi_align: dl.i8_align.abi,
randomization_seed: Hash64::new(0),
}
}
pub fn never_type<C: HasDataLayout>(cx: &C) -> Self {
let dl = cx.data_layout();
// This is also used for uninhabited enums, so we use `Variants::Empty`.
LayoutData {
variants: Variants::Empty,
fields: FieldsShape::Primitive,
backend_repr: BackendRepr::Memory { sized: true },
largest_niche: None,
uninhabited: true,
align: dl.i8_align,
size: Size::ZERO,
max_repr_align: None,
unadjusted_abi_align: dl.i8_align.abi,
randomization_seed: Hash64::ZERO,
}
}
pub fn scalar<C: HasDataLayout>(cx: &C, scalar: Scalar) -> Self {
let largest_niche = Niche::from_scalar(cx, Size::ZERO, scalar);
let size = scalar.size(cx);
let align = scalar.align(cx);
let range = scalar.valid_range(cx);
// All primitive types for which we don't have subtype coercions should get a distinct seed,
// so that types wrapping them can use randomization to arrive at distinct layouts.
//
// Some type information is already lost at this point, so as an approximation we derive
// the seed from what remains. For example on 64-bit targets usize and u64 can no longer
// be distinguished.
let randomization_seed = size
.bytes()
.wrapping_add(
match scalar.primitive() {
Primitive::Int(_, true) => 1,
Primitive::Int(_, false) => 2,
Primitive::Float(_) => 3,
Primitive::Pointer(_) => 4,
} << 32,
)
// distinguishes references from pointers
.wrapping_add((range.start as u64).rotate_right(16))
// distinguishes char from u32 and bool from u8
.wrapping_add((range.end as u64).rotate_right(16));
LayoutData {
variants: Variants::Single { index: VariantIdx::new(0) },
fields: FieldsShape::Primitive,
backend_repr: BackendRepr::Scalar(scalar),
largest_niche,
uninhabited: false,
size,
align,
max_repr_align: None,
unadjusted_abi_align: align.abi,
randomization_seed: Hash64::new(randomization_seed),
}
}
pub fn scalar_pair<C: HasDataLayout>(cx: &C, a: Scalar, b: Scalar) -> Self {
let dl = cx.data_layout();
let b_align = b.align(dl);
let align = a.align(dl).max(b_align).max(dl.aggregate_align);
let b_offset = a.size(dl).align_to(b_align.abi);
let size = (b_offset + b.size(dl)).align_to(align.abi);
// HACK(nox): We iter on `b` and then `a` because `max_by_key`
// returns the last maximum.
let largest_niche = Niche::from_scalar(dl, b_offset, b)
.into_iter()
.chain(Niche::from_scalar(dl, Size::ZERO, a))
.max_by_key(|niche| niche.available(dl));
let combined_seed = a.size(dl).bytes().wrapping_add(b.size(dl).bytes());
LayoutData {
variants: Variants::Single { index: VariantIdx::new(0) },
fields: FieldsShape::Arbitrary {
offsets: [Size::ZERO, b_offset].into(),
memory_index: [0, 1].into(),
},
backend_repr: BackendRepr::ScalarPair(a, b),
largest_niche,
uninhabited: false,
align,
size,
max_repr_align: None,
unadjusted_abi_align: align.abi,
randomization_seed: Hash64::new(combined_seed),
}
}
/// Returns a dummy layout for an uninhabited variant.
///
/// Uninhabited variants get pruned as part of the layout calculation,
/// so this can be used after the fact to reconstitute a layout.
pub fn uninhabited_variant<C: HasDataLayout>(cx: &C, index: VariantIdx, fields: usize) -> Self {
let dl = cx.data_layout();
LayoutData {
variants: Variants::Single { index },
fields: match NonZero::new(fields) {
Some(fields) => FieldsShape::Union(fields),
None => FieldsShape::Arbitrary {
offsets: IndexVec::new(),
memory_index: IndexVec::new(),
},
},
backend_repr: BackendRepr::Memory { sized: true },
largest_niche: None,
uninhabited: true,
align: dl.i8_align,
size: Size::ZERO,
max_repr_align: None,
unadjusted_abi_align: dl.i8_align.abi,
randomization_seed: Hash64::ZERO,
}
}
}

View File

@ -150,6 +150,12 @@ impl<'a, Ty> Deref for TyAndLayout<'a, Ty> {
}
}
impl<'a, Ty> AsRef<LayoutData<FieldIdx, VariantIdx>> for TyAndLayout<'a, Ty> {
fn as_ref(&self) -> &LayoutData<FieldIdx, VariantIdx> {
&*self.layout.0.0
}
}
/// Trait that needs to be implemented by the higher-level type representation
/// (e.g. `rustc_middle::ty::Ty`), to provide `rustc_target::abi` functionality.
pub trait TyAbiInterface<'a, C>: Sized + std::fmt::Debug {

View File

@ -204,6 +204,13 @@ impl ReprOptions {
}
}
/// The maximum supported number of lanes in a SIMD vector.
///
/// This value is selected based on backend support:
/// * LLVM does not appear to have a vector width limit.
/// * Cranelift stores the base-2 log of the lane count in a 4 bit integer.
pub const MAX_SIMD_LANES: u64 = 1 << 0xF;
/// Parsed [Data layout](https://llvm.org/docs/LangRef.html#data-layout)
/// for a target, which contains everything needed to compute layouts.
#[derive(Debug, PartialEq, Eq)]
@ -1743,48 +1750,6 @@ impl<FieldIdx: Idx, VariantIdx: Idx> LayoutData<FieldIdx, VariantIdx> {
pub fn is_uninhabited(&self) -> bool {
self.uninhabited
}
pub fn scalar<C: HasDataLayout>(cx: &C, scalar: Scalar) -> Self {
let largest_niche = Niche::from_scalar(cx, Size::ZERO, scalar);
let size = scalar.size(cx);
let align = scalar.align(cx);
let range = scalar.valid_range(cx);
// All primitive types for which we don't have subtype coercions should get a distinct seed,
// so that types wrapping them can use randomization to arrive at distinct layouts.
//
// Some type information is already lost at this point, so as an approximation we derive
// the seed from what remains. For example on 64-bit targets usize and u64 can no longer
// be distinguished.
let randomization_seed = size
.bytes()
.wrapping_add(
match scalar.primitive() {
Primitive::Int(_, true) => 1,
Primitive::Int(_, false) => 2,
Primitive::Float(_) => 3,
Primitive::Pointer(_) => 4,
} << 32,
)
// distinguishes references from pointers
.wrapping_add((range.start as u64).rotate_right(16))
// distinguishes char from u32 and bool from u8
.wrapping_add((range.end as u64).rotate_right(16));
LayoutData {
variants: Variants::Single { index: VariantIdx::new(0) },
fields: FieldsShape::Primitive,
backend_repr: BackendRepr::Scalar(scalar),
largest_niche,
uninhabited: false,
size,
align,
max_repr_align: None,
unadjusted_abi_align: align.abi,
randomization_seed: Hash64::new(randomization_seed),
}
}
}
impl<FieldIdx: Idx, VariantIdx: Idx> fmt::Debug for LayoutData<FieldIdx, VariantIdx>

View File

@ -1,20 +1,17 @@
use std::num::NonZero;
use std::ops::Bound;
use std::{cmp, fmt};
use rustc_abi::{
AddressSpace, Align, BackendRepr, ExternAbi, FieldIdx, FieldsShape, HasDataLayout, LayoutData,
PointeeInfo, PointerKind, Primitive, ReprOptions, Scalar, Size, TagEncoding, TargetDataLayout,
AddressSpace, Align, ExternAbi, FieldIdx, FieldsShape, HasDataLayout, LayoutData, PointeeInfo,
PointerKind, Primitive, ReprOptions, Scalar, Size, TagEncoding, TargetDataLayout,
TyAbiInterface, VariantIdx, Variants,
};
use rustc_error_messages::DiagMessage;
use rustc_errors::{
Diag, DiagArgValue, DiagCtxtHandle, Diagnostic, EmissionGuarantee, IntoDiagArg, Level,
};
use rustc_hashes::Hash64;
use rustc_hir::LangItem;
use rustc_hir::def_id::DefId;
use rustc_index::IndexVec;
use rustc_macros::{HashStable, TyDecodable, TyEncodable, extension};
use rustc_session::config::OptLevel;
use rustc_span::{DUMMY_SP, ErrorGuaranteed, Span, Symbol, sym};
@ -185,12 +182,7 @@ pub const WIDE_PTR_ADDR: usize = 0;
/// - For a slice, this is the length.
pub const WIDE_PTR_EXTRA: usize = 1;
/// The maximum supported number of lanes in a SIMD vector.
///
/// This value is selected based on backend support:
/// * LLVM does not appear to have a vector width limit.
/// * Cranelift stores the base-2 log of the lane count in a 4 bit integer.
pub const MAX_SIMD_LANES: u64 = 1 << 0xF;
pub const MAX_SIMD_LANES: u64 = rustc_abi::MAX_SIMD_LANES;
/// Used in `check_validity_requirement` to indicate the kind of initialization
/// that is checked to be valid
@ -762,11 +754,9 @@ where
variant_index: VariantIdx,
) -> TyAndLayout<'tcx> {
let layout = match this.variants {
Variants::Single { index }
// If all variants but one are uninhabited, the variant layout is the enum layout.
if index == variant_index =>
{
this.layout
// If all variants but one are uninhabited, the variant layout is the enum layout.
Variants::Single { index } if index == variant_index => {
return this;
}
Variants::Single { .. } | Variants::Empty => {
@ -783,29 +773,18 @@ where
}
let fields = match this.ty.kind() {
ty::Adt(def, _) if def.variants().is_empty() =>
bug!("for_variant called on zero-variant enum {}", this.ty),
ty::Adt(def, _) if def.variants().is_empty() => {
bug!("for_variant called on zero-variant enum {}", this.ty)
}
ty::Adt(def, _) => def.variant(variant_index).fields.len(),
_ => bug!("`ty_and_layout_for_variant` on unexpected type {}", this.ty),
};
tcx.mk_layout(LayoutData {
variants: Variants::Single { index: variant_index },
fields: match NonZero::new(fields) {
Some(fields) => FieldsShape::Union(fields),
None => FieldsShape::Arbitrary { offsets: IndexVec::new(), memory_index: IndexVec::new() },
},
backend_repr: BackendRepr::Memory { sized: true },
largest_niche: None,
uninhabited: true,
align: tcx.data_layout.i8_align,
size: Size::ZERO,
max_repr_align: None,
unadjusted_abi_align: tcx.data_layout.i8_align.abi,
randomization_seed: Hash64::ZERO,
})
tcx.mk_layout(LayoutData::uninhabited_variant(cx, variant_index, fields))
}
Variants::Multiple { ref variants, .. } => cx.tcx().mk_layout(variants[variant_index].clone()),
Variants::Multiple { ref variants, .. } => {
cx.tcx().mk_layout(variants[variant_index].clone())
}
};
assert_eq!(*layout.variants(), Variants::Single { index: variant_index });

View File

@ -1,31 +1,25 @@
use std::fmt::Debug;
use std::iter;
use hir::def_id::DefId;
use rustc_abi::Integer::{I8, I32};
use rustc_abi::Primitive::{self, Float, Int, Pointer};
use rustc_abi::{
AbiAndPrefAlign, AddressSpace, Align, BackendRepr, FIRST_VARIANT, FieldIdx, FieldsShape,
HasDataLayout, Layout, LayoutCalculatorError, LayoutData, Niche, ReprOptions, Scalar, Size,
StructKind, TagEncoding, VariantIdx, Variants, WrappingRange,
AddressSpace, BackendRepr, FIRST_VARIANT, FieldIdx, FieldsShape, HasDataLayout, Layout,
LayoutCalculatorError, LayoutData, Niche, ReprOptions, Scalar, Size, StructKind, TagEncoding,
VariantIdx, Variants, WrappingRange,
};
use rustc_hashes::Hash64;
use rustc_index::bit_set::DenseBitSet;
use rustc_index::{IndexSlice, IndexVec};
use rustc_index::IndexVec;
use rustc_middle::bug;
use rustc_middle::mir::{CoroutineLayout, CoroutineSavedLocal};
use rustc_middle::query::Providers;
use rustc_middle::ty::layout::{
FloatExt, HasTyCtxt, IntegerExt, LayoutCx, LayoutError, LayoutOf, MAX_SIMD_LANES, TyAndLayout,
FloatExt, HasTyCtxt, IntegerExt, LayoutCx, LayoutError, LayoutOf, TyAndLayout,
};
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::{
self, AdtDef, CoroutineArgsExt, EarlyBinder, GenericArgsRef, PseudoCanonicalInput, Ty, TyCtxt,
TypeVisitableExt,
self, AdtDef, CoroutineArgsExt, EarlyBinder, PseudoCanonicalInput, Ty, TyCtxt, TypeVisitableExt,
};
use rustc_session::{DataTypeKind, FieldInfo, FieldKind, SizeKind, VariantInfo};
use rustc_span::{Symbol, sym};
use tracing::{debug, instrument, trace};
use tracing::{debug, instrument};
use {rustc_abi as abi, rustc_hir as hir};
use crate::errors::{NonPrimitiveSimdType, OversizedSimdType, ZeroLengthSimdType};
@ -124,20 +118,23 @@ fn map_error<'tcx>(
.delayed_bug(format!("computed impossible repr (packed enum?): {ty:?}"));
LayoutError::ReferencesError(guar)
}
LayoutCalculatorError::ZeroLengthSimdType => {
// Can't be caught in typeck if the array length is generic.
cx.tcx().dcx().emit_fatal(ZeroLengthSimdType { ty })
}
LayoutCalculatorError::OversizedSimdType { max_lanes } => {
// Can't be caught in typeck if the array length is generic.
cx.tcx().dcx().emit_fatal(OversizedSimdType { ty, max_lanes })
}
LayoutCalculatorError::NonPrimitiveSimdType(field) => {
// This error isn't caught in typeck, e.g., if
// the element type of the vector is generic.
cx.tcx().dcx().emit_fatal(NonPrimitiveSimdType { ty, e_ty: field.ty })
}
};
error(cx, err)
}
fn univariant_uninterned<'tcx>(
cx: &LayoutCx<'tcx>,
ty: Ty<'tcx>,
fields: &IndexSlice<FieldIdx, TyAndLayout<'tcx>>,
kind: StructKind,
) -> Result<LayoutData<FieldIdx, VariantIdx>, &'tcx LayoutError<'tcx>> {
let repr = ReprOptions::default();
cx.calc.univariant(fields, &repr, kind).map_err(|err| map_error(cx, ty, err))
}
fn extract_const_value<'tcx>(
cx: &LayoutCx<'tcx>,
ty: Ty<'tcx>,
@ -188,6 +185,10 @@ fn layout_of_uncached<'tcx>(
let tcx = cx.tcx();
let dl = cx.data_layout();
let map_layout = |result: Result<_, _>| match result {
Ok(layout) => Ok(tcx.mk_layout(layout)),
Err(err) => Err(map_error(cx, ty, err)),
};
let scalar_unit = |value: Primitive| {
let size = value.size(dl);
assert!(size.bits() <= 128);
@ -195,8 +196,10 @@ fn layout_of_uncached<'tcx>(
};
let scalar = |value: Primitive| tcx.mk_layout(LayoutData::scalar(cx, scalar_unit(value)));
let univariant = |fields: &IndexSlice<FieldIdx, TyAndLayout<'tcx>>, kind| {
Ok(tcx.mk_layout(univariant_uninterned(cx, ty, fields, kind)?))
let univariant = |tys: &[Ty<'tcx>], kind| {
let fields = tys.iter().map(|ty| cx.layout_of(*ty)).try_collect::<IndexVec<_, _>>()?;
let repr = ReprOptions::default();
map_layout(cx.calc.univariant(&fields, &repr, kind))
};
debug_assert!(!ty.has_non_region_infer());
@ -258,7 +261,7 @@ fn layout_of_uncached<'tcx>(
}
// The never type.
ty::Never => tcx.mk_layout(cx.calc.layout_of_never_type()),
ty::Never => tcx.mk_layout(LayoutData::never_type(cx)),
// Potentially-wide pointers.
ty::Ref(_, pointee, _) | ty::RawPtr(pointee, _) => {
@ -329,7 +332,7 @@ fn layout_of_uncached<'tcx>(
};
// Effectively a (ptr, meta) tuple.
tcx.mk_layout(cx.calc.scalar_pair(data_ptr, metadata))
tcx.mk_layout(LayoutData::scalar_pair(cx, data_ptr, metadata))
}
ty::Dynamic(_, _, ty::DynStar) => {
@ -337,7 +340,7 @@ fn layout_of_uncached<'tcx>(
data.valid_range_mut().start = 0;
let mut vtable = scalar_unit(Pointer(AddressSpace::DATA));
vtable.valid_range_mut().start = 1;
tcx.mk_layout(cx.calc.scalar_pair(data, vtable))
tcx.mk_layout(LayoutData::scalar_pair(cx, data, vtable))
}
// Arrays and slices.
@ -347,96 +350,87 @@ fn layout_of_uncached<'tcx>(
.ok_or_else(|| error(cx, LayoutError::Unknown(ty)))?;
let element = cx.layout_of(element)?;
let size = element
.size
.checked_mul(count, dl)
.ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?;
let abi = BackendRepr::Memory { sized: true };
let largest_niche = if count != 0 { element.largest_niche } else { None };
let uninhabited = if count != 0 { element.uninhabited } else { false };
tcx.mk_layout(LayoutData {
variants: Variants::Single { index: FIRST_VARIANT },
fields: FieldsShape::Array { stride: element.size, count },
backend_repr: abi,
largest_niche,
uninhabited,
align: element.align,
size,
max_repr_align: None,
unadjusted_abi_align: element.align.abi,
randomization_seed: element.randomization_seed.wrapping_add(Hash64::new(count)),
})
map_layout(cx.calc.array_like(&element, Some(count)))?
}
ty::Slice(element) => {
let element = cx.layout_of(element)?;
tcx.mk_layout(LayoutData {
variants: Variants::Single { index: FIRST_VARIANT },
fields: FieldsShape::Array { stride: element.size, count: 0 },
backend_repr: BackendRepr::Memory { sized: false },
largest_niche: None,
uninhabited: false,
align: element.align,
size: Size::ZERO,
max_repr_align: None,
unadjusted_abi_align: element.align.abi,
// adding a randomly chosen value to distinguish slices
randomization_seed: element
.randomization_seed
.wrapping_add(Hash64::new(0x2dcba99c39784102)),
})
map_layout(cx.calc.array_like(&element, None).map(|mut layout| {
// a randomly chosen value to distinguish slices
layout.randomization_seed = Hash64::new(0x2dcba99c39784102);
layout
}))?
}
ty::Str => {
let element = scalar(Int(I8, false));
map_layout(cx.calc.array_like(&element, None).map(|mut layout| {
// another random value
layout.randomization_seed = Hash64::new(0xc1325f37d127be22);
layout
}))?
}
ty::Str => tcx.mk_layout(LayoutData {
variants: Variants::Single { index: FIRST_VARIANT },
fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 },
backend_repr: BackendRepr::Memory { sized: false },
largest_niche: None,
uninhabited: false,
align: dl.i8_align,
size: Size::ZERO,
max_repr_align: None,
unadjusted_abi_align: dl.i8_align.abi,
// another random value
randomization_seed: Hash64::new(0xc1325f37d127be22),
}),
// Odd unit types.
ty::FnDef(..) => univariant(IndexSlice::empty(), StructKind::AlwaysSized)?,
ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => {
let mut unit =
univariant_uninterned(cx, ty, IndexSlice::empty(), StructKind::AlwaysSized)?;
match unit.backend_repr {
BackendRepr::Memory { ref mut sized } => *sized = false,
_ => bug!(),
}
tcx.mk_layout(unit)
ty::FnDef(..) | ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => {
let sized = matches!(ty.kind(), ty::FnDef(..));
tcx.mk_layout(LayoutData::unit(cx, sized))
}
ty::Coroutine(def_id, args) => coroutine_layout(cx, ty, def_id, args)?,
ty::Coroutine(def_id, args) => {
use rustc_middle::ty::layout::PrimitiveExt as _;
ty::Closure(_, args) => {
let tys = args.as_closure().upvar_tys();
univariant(
&tys.iter().map(|ty| cx.layout_of(ty)).try_collect::<IndexVec<_, _>>()?,
StructKind::AlwaysSized,
)?
let Some(info) = tcx.coroutine_layout(def_id, args.as_coroutine().kind_ty()) else {
return Err(error(cx, LayoutError::Unknown(ty)));
};
let local_layouts = info
.field_tys
.iter()
.map(|local| {
let field_ty = EarlyBinder::bind(local.ty);
let uninit_ty = Ty::new_maybe_uninit(tcx, field_ty.instantiate(tcx, args));
cx.spanned_layout_of(uninit_ty, local.source_info.span)
})
.try_collect::<IndexVec<_, _>>()?;
let prefix_layouts = args
.as_coroutine()
.prefix_tys()
.iter()
.map(|ty| cx.layout_of(ty))
.try_collect::<IndexVec<_, _>>()?;
let layout = cx
.calc
.coroutine(
&local_layouts,
prefix_layouts,
&info.variant_fields,
&info.storage_conflicts,
|tag| TyAndLayout {
ty: tag.primitive().to_ty(tcx),
layout: tcx.mk_layout(LayoutData::scalar(cx, tag)),
},
)
.map(|mut layout| {
// this is similar to how ReprOptions populates its field_shuffle_seed
layout.randomization_seed = tcx.def_path_hash(def_id).0.to_smaller_hash();
debug!("coroutine layout ({:?}): {:#?}", ty, layout);
layout
});
map_layout(layout)?
}
ty::Closure(_, args) => univariant(args.as_closure().upvar_tys(), StructKind::AlwaysSized)?,
ty::CoroutineClosure(_, args) => {
let tys = args.as_coroutine_closure().upvar_tys();
univariant(
&tys.iter().map(|ty| cx.layout_of(ty)).try_collect::<IndexVec<_, _>>()?,
StructKind::AlwaysSized,
)?
univariant(args.as_coroutine_closure().upvar_tys(), StructKind::AlwaysSized)?
}
ty::Tuple(tys) => {
let kind =
if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized };
univariant(&tys.iter().map(|k| cx.layout_of(k)).try_collect::<IndexVec<_, _>>()?, kind)?
univariant(tys, kind)?
}
// SIMD vector types.
@ -461,65 +455,9 @@ fn layout_of_uncached<'tcx>(
.try_to_target_usize(tcx)
.ok_or_else(|| error(cx, LayoutError::Unknown(ty)))?;
// SIMD vectors of zero length are not supported.
// Additionally, lengths are capped at 2^16 as a fixed maximum backends must
// support.
//
// Can't be caught in typeck if the array length is generic.
if e_len == 0 {
tcx.dcx().emit_fatal(ZeroLengthSimdType { ty });
} else if e_len > MAX_SIMD_LANES {
tcx.dcx().emit_fatal(OversizedSimdType { ty, max_lanes: MAX_SIMD_LANES });
}
// Compute the ABI of the element type:
let e_ly = cx.layout_of(e_ty)?;
let BackendRepr::Scalar(e_abi) = e_ly.backend_repr else {
// This error isn't caught in typeck, e.g., if
// the element type of the vector is generic.
tcx.dcx().emit_fatal(NonPrimitiveSimdType { ty, e_ty });
};
// Compute the size and alignment of the vector:
let size = e_ly
.size
.checked_mul(e_len, dl)
.ok_or_else(|| error(cx, LayoutError::SizeOverflow(ty)))?;
let (abi, align) = if def.repr().packed() && !e_len.is_power_of_two() {
// Non-power-of-two vectors have padding up to the next power-of-two.
// If we're a packed repr, remove the padding while keeping the alignment as close
// to a vector as possible.
(
BackendRepr::Memory { sized: true },
AbiAndPrefAlign {
abi: Align::max_aligned_factor(size),
pref: dl.llvmlike_vector_align(size).pref,
},
)
} else {
(
BackendRepr::SimdVector { element: e_abi, count: e_len },
dl.llvmlike_vector_align(size),
)
};
let size = size.align_to(align.abi);
tcx.mk_layout(LayoutData {
variants: Variants::Single { index: FIRST_VARIANT },
fields: FieldsShape::Arbitrary {
offsets: [Size::ZERO].into(),
memory_index: [0].into(),
},
backend_repr: abi,
largest_niche: e_ly.largest_niche,
uninhabited: false,
size,
align,
max_repr_align: None,
unadjusted_abi_align: align.abi,
randomization_seed: e_ly.randomization_seed.wrapping_add(Hash64::new(e_len)),
})
map_layout(cx.calc.simd_type(e_ly, e_len, def.repr().packed()))?
}
// ADTs.
@ -545,11 +483,7 @@ fn layout_of_uncached<'tcx>(
return Err(error(cx, LayoutError::ReferencesError(guar)));
}
return Ok(tcx.mk_layout(
cx.calc
.layout_of_union(&def.repr(), &variants)
.map_err(|err| map_error(cx, ty, err))?,
));
return map_layout(cx.calc.layout_of_union(&def.repr(), &variants));
}
let get_discriminant_type =
@ -677,335 +611,6 @@ fn layout_of_uncached<'tcx>(
})
}
/// Overlap eligibility and variant assignment for each CoroutineSavedLocal.
#[derive(Clone, Debug, PartialEq)]
enum SavedLocalEligibility {
Unassigned,
Assigned(VariantIdx),
Ineligible(Option<FieldIdx>),
}
// When laying out coroutines, we divide our saved local fields into two
// categories: overlap-eligible and overlap-ineligible.
//
// Those fields which are ineligible for overlap go in a "prefix" at the
// beginning of the layout, and always have space reserved for them.
//
// Overlap-eligible fields are only assigned to one variant, so we lay
// those fields out for each variant and put them right after the
// prefix.
//
// Finally, in the layout details, we point to the fields from the
// variants they are assigned to. It is possible for some fields to be
// included in multiple variants. No field ever "moves around" in the
// layout; its offset is always the same.
//
// Also included in the layout are the upvars and the discriminant.
// These are included as fields on the "outer" layout; they are not part
// of any variant.
/// Compute the eligibility and assignment of each local.
fn coroutine_saved_local_eligibility(
info: &CoroutineLayout<'_>,
) -> (DenseBitSet<CoroutineSavedLocal>, IndexVec<CoroutineSavedLocal, SavedLocalEligibility>) {
use SavedLocalEligibility::*;
let mut assignments: IndexVec<CoroutineSavedLocal, SavedLocalEligibility> =
IndexVec::from_elem(Unassigned, &info.field_tys);
// The saved locals not eligible for overlap. These will get
// "promoted" to the prefix of our coroutine.
let mut ineligible_locals = DenseBitSet::new_empty(info.field_tys.len());
// Figure out which of our saved locals are fields in only
// one variant. The rest are deemed ineligible for overlap.
for (variant_index, fields) in info.variant_fields.iter_enumerated() {
for local in fields {
match assignments[*local] {
Unassigned => {
assignments[*local] = Assigned(variant_index);
}
Assigned(idx) => {
// We've already seen this local at another suspension
// point, so it is no longer a candidate.
trace!(
"removing local {:?} in >1 variant ({:?}, {:?})",
local, variant_index, idx
);
ineligible_locals.insert(*local);
assignments[*local] = Ineligible(None);
}
Ineligible(_) => {}
}
}
}
// Next, check every pair of eligible locals to see if they
// conflict.
for local_a in info.storage_conflicts.rows() {
let conflicts_a = info.storage_conflicts.count(local_a);
if ineligible_locals.contains(local_a) {
continue;
}
for local_b in info.storage_conflicts.iter(local_a) {
// local_a and local_b are storage live at the same time, therefore they
// cannot overlap in the coroutine layout. The only way to guarantee
// this is if they are in the same variant, or one is ineligible
// (which means it is stored in every variant).
if ineligible_locals.contains(local_b) || assignments[local_a] == assignments[local_b] {
continue;
}
// If they conflict, we will choose one to make ineligible.
// This is not always optimal; it's just a greedy heuristic that
// seems to produce good results most of the time.
let conflicts_b = info.storage_conflicts.count(local_b);
let (remove, other) =
if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) };
ineligible_locals.insert(remove);
assignments[remove] = Ineligible(None);
trace!("removing local {:?} due to conflict with {:?}", remove, other);
}
}
// Count the number of variants in use. If only one of them, then it is
// impossible to overlap any locals in our layout. In this case it's
// always better to make the remaining locals ineligible, so we can
// lay them out with the other locals in the prefix and eliminate
// unnecessary padding bytes.
{
let mut used_variants = DenseBitSet::new_empty(info.variant_fields.len());
for assignment in &assignments {
if let Assigned(idx) = assignment {
used_variants.insert(*idx);
}
}
if used_variants.count() < 2 {
for assignment in assignments.iter_mut() {
*assignment = Ineligible(None);
}
ineligible_locals.insert_all();
}
}
// Write down the order of our locals that will be promoted to the prefix.
{
for (idx, local) in ineligible_locals.iter().enumerate() {
assignments[local] = Ineligible(Some(FieldIdx::from_usize(idx)));
}
}
debug!("coroutine saved local assignments: {:?}", assignments);
(ineligible_locals, assignments)
}
/// Compute the full coroutine layout.
fn coroutine_layout<'tcx>(
cx: &LayoutCx<'tcx>,
ty: Ty<'tcx>,
def_id: hir::def_id::DefId,
args: GenericArgsRef<'tcx>,
) -> Result<Layout<'tcx>, &'tcx LayoutError<'tcx>> {
use SavedLocalEligibility::*;
let tcx = cx.tcx();
let instantiate_field = |ty: Ty<'tcx>| EarlyBinder::bind(ty).instantiate(tcx, args);
let Some(info) = tcx.coroutine_layout(def_id, args.as_coroutine().kind_ty()) else {
return Err(error(cx, LayoutError::Unknown(ty)));
};
let (ineligible_locals, assignments) = coroutine_saved_local_eligibility(info);
// Build a prefix layout, including "promoting" all ineligible
// locals as part of the prefix. We compute the layout of all of
// these fields at once to get optimal packing.
let tag_index = args.as_coroutine().prefix_tys().len();
// `info.variant_fields` already accounts for the reserved variants, so no need to add them.
let max_discr = (info.variant_fields.len() - 1) as u128;
let discr_int = abi::Integer::fit_unsigned(max_discr);
let tag = Scalar::Initialized {
value: Primitive::Int(discr_int, /* signed = */ false),
valid_range: WrappingRange { start: 0, end: max_discr },
};
let tag_layout = TyAndLayout {
ty: discr_int.to_ty(tcx, /* signed = */ false),
layout: tcx.mk_layout(LayoutData::scalar(cx, tag)),
};
let promoted_layouts = ineligible_locals.iter().map(|local| {
let field_ty = instantiate_field(info.field_tys[local].ty);
let uninit_ty = Ty::new_maybe_uninit(tcx, field_ty);
cx.spanned_layout_of(uninit_ty, info.field_tys[local].source_info.span)
});
let prefix_layouts = args
.as_coroutine()
.prefix_tys()
.iter()
.map(|ty| cx.layout_of(ty))
.chain(iter::once(Ok(tag_layout)))
.chain(promoted_layouts)
.try_collect::<IndexVec<_, _>>()?;
let prefix = univariant_uninterned(cx, ty, &prefix_layouts, StructKind::AlwaysSized)?;
let (prefix_size, prefix_align) = (prefix.size, prefix.align);
// Split the prefix layout into the "outer" fields (upvars and
// discriminant) and the "promoted" fields. Promoted fields will
// get included in each variant that requested them in
// CoroutineLayout.
debug!("prefix = {:#?}", prefix);
let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields {
FieldsShape::Arbitrary { mut offsets, memory_index } => {
let mut inverse_memory_index = memory_index.invert_bijective_mapping();
// "a" (`0..b_start`) and "b" (`b_start..`) correspond to
// "outer" and "promoted" fields respectively.
let b_start = FieldIdx::from_usize(tag_index + 1);
let offsets_b = IndexVec::from_raw(offsets.raw.split_off(b_start.as_usize()));
let offsets_a = offsets;
// Disentangle the "a" and "b" components of `inverse_memory_index`
// by preserving the order but keeping only one disjoint "half" each.
// FIXME(eddyb) build a better abstraction for permutations, if possible.
let inverse_memory_index_b: IndexVec<u32, FieldIdx> = inverse_memory_index
.iter()
.filter_map(|&i| i.as_u32().checked_sub(b_start.as_u32()).map(FieldIdx::from_u32))
.collect();
inverse_memory_index.raw.retain(|&i| i < b_start);
let inverse_memory_index_a = inverse_memory_index;
// Since `inverse_memory_index_{a,b}` each only refer to their
// respective fields, they can be safely inverted
let memory_index_a = inverse_memory_index_a.invert_bijective_mapping();
let memory_index_b = inverse_memory_index_b.invert_bijective_mapping();
let outer_fields =
FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a };
(outer_fields, offsets_b, memory_index_b)
}
_ => bug!(),
};
let mut size = prefix.size;
let mut align = prefix.align;
let variants = info
.variant_fields
.iter_enumerated()
.map(|(index, variant_fields)| {
// Only include overlap-eligible fields when we compute our variant layout.
let variant_only_tys = variant_fields
.iter()
.filter(|local| match assignments[**local] {
Unassigned => bug!(),
Assigned(v) if v == index => true,
Assigned(_) => bug!("assignment does not match variant"),
Ineligible(_) => false,
})
.map(|local| {
let field_ty = instantiate_field(info.field_tys[*local].ty);
Ty::new_maybe_uninit(tcx, field_ty)
});
let mut variant = univariant_uninterned(
cx,
ty,
&variant_only_tys.map(|ty| cx.layout_of(ty)).try_collect::<IndexVec<_, _>>()?,
StructKind::Prefixed(prefix_size, prefix_align.abi),
)?;
variant.variants = Variants::Single { index };
let FieldsShape::Arbitrary { offsets, memory_index } = variant.fields else {
bug!();
};
// Now, stitch the promoted and variant-only fields back together in
// the order they are mentioned by our CoroutineLayout.
// Because we only use some subset (that can differ between variants)
// of the promoted fields, we can't just pick those elements of the
// `promoted_memory_index` (as we'd end up with gaps).
// So instead, we build an "inverse memory_index", as if all of the
// promoted fields were being used, but leave the elements not in the
// subset as `INVALID_FIELD_IDX`, which we can filter out later to
// obtain a valid (bijective) mapping.
const INVALID_FIELD_IDX: FieldIdx = FieldIdx::MAX;
debug_assert!(variant_fields.next_index() <= INVALID_FIELD_IDX);
let mut combined_inverse_memory_index = IndexVec::from_elem_n(
INVALID_FIELD_IDX,
promoted_memory_index.len() + memory_index.len(),
);
let mut offsets_and_memory_index = iter::zip(offsets, memory_index);
let combined_offsets = variant_fields
.iter_enumerated()
.map(|(i, local)| {
let (offset, memory_index) = match assignments[*local] {
Unassigned => bug!(),
Assigned(_) => {
let (offset, memory_index) = offsets_and_memory_index.next().unwrap();
(offset, promoted_memory_index.len() as u32 + memory_index)
}
Ineligible(field_idx) => {
let field_idx = field_idx.unwrap();
(promoted_offsets[field_idx], promoted_memory_index[field_idx])
}
};
combined_inverse_memory_index[memory_index] = i;
offset
})
.collect();
// Remove the unused slots and invert the mapping to obtain the
// combined `memory_index` (also see previous comment).
combined_inverse_memory_index.raw.retain(|&i| i != INVALID_FIELD_IDX);
let combined_memory_index = combined_inverse_memory_index.invert_bijective_mapping();
variant.fields = FieldsShape::Arbitrary {
offsets: combined_offsets,
memory_index: combined_memory_index,
};
size = size.max(variant.size);
align = align.max(variant.align);
Ok(variant)
})
.try_collect::<IndexVec<VariantIdx, _>>()?;
size = size.align_to(align.abi);
let uninhabited = prefix.uninhabited || variants.iter().all(|v| v.is_uninhabited());
let abi = BackendRepr::Memory { sized: true };
// this is similar to how ReprOptions populates its field_shuffle_seed
let def_hash = tcx.def_path_hash(def_id).0.to_smaller_hash();
let layout = tcx.mk_layout(LayoutData {
variants: Variants::Multiple {
tag,
tag_encoding: TagEncoding::Direct,
tag_field: tag_index,
variants,
},
fields: outer_fields,
backend_repr: abi,
// Suppress niches inside coroutines. If the niche is inside a field that is aliased (due to
// self-referentiality), getting the discriminant can cause aliasing violations.
// `UnsafeCell` blocks niches for the same reason, but we don't yet have `UnsafePinned` that
// would do the same for us here.
// See <https://github.com/rust-lang/rust/issues/63818>, <https://github.com/rust-lang/miri/issues/3780>.
// FIXME: Remove when <https://github.com/rust-lang/rust/issues/125735> is implemented and aliased coroutine fields are wrapped in `UnsafePinned`.
largest_niche: None,
uninhabited,
size,
align,
max_repr_align: None,
unadjusted_abi_align: align.abi,
randomization_seed: def_hash,
});
debug!("coroutine layout ({:?}): {:#?}", ty, layout);
Ok(layout)
}
fn record_layout_for_printing<'tcx>(cx: &LayoutCx<'tcx>, layout: TyAndLayout<'tcx>) {
// Ignore layouts that are done with non-empty environments or
// non-monomorphic layouts, as the user only wants to see the stuff

View File

@ -6,16 +6,15 @@ use base_db::ra_salsa::Cycle;
use chalk_ir::{AdtId, FloatTy, IntTy, TyKind, UintTy};
use hir_def::{
layout::{
BackendRepr, FieldsShape, Float, Integer, LayoutCalculator, LayoutCalculatorError,
LayoutData, Primitive, ReprOptions, Scalar, Size, StructKind, TargetDataLayout,
Float, Integer, LayoutCalculator, LayoutCalculatorError,
LayoutData, Primitive, ReprOptions, Scalar, StructKind, TargetDataLayout,
WrappingRange,
},
LocalFieldId, StructId,
};
use la_arena::{Idx, RawIdx};
use rustc_abi::AddressSpace;
use rustc_hashes::Hash64;
use rustc_index::{IndexSlice, IndexVec};
use rustc_index::IndexVec;
use triomphe::Arc;
@ -23,7 +22,6 @@ use crate::{
consteval::try_const_usize,
db::{HirDatabase, InternedClosure},
infer::normalize,
layout::adt::struct_variant_idx,
utils::ClosureSubst,
Interner, ProjectionTy, Substitution, TraitEnvironment, Ty,
};
@ -125,10 +123,10 @@ impl<'a> LayoutCx<'a> {
}
}
// FIXME: move this to the `rustc_abi`.
fn layout_of_simd_ty(
db: &dyn HirDatabase,
id: StructId,
repr_packed: bool,
subst: &Substitution,
env: Arc<TraitEnvironment>,
dl: &TargetDataLayout,
@ -149,33 +147,10 @@ fn layout_of_simd_ty(
};
let e_len = try_const_usize(db, &e_len).ok_or(LayoutError::HasErrorConst)? as u64;
// Compute the ABI of the element type:
let e_ly = db.layout_of_ty(e_ty, env)?;
let BackendRepr::Scalar(e_abi) = e_ly.backend_repr else {
return Err(LayoutError::Unknown);
};
// Compute the size and alignment of the vector:
let size = e_ly
.size
.checked_mul(e_len, dl)
.ok_or(LayoutError::BadCalc(LayoutCalculatorError::SizeOverflow))?;
let align = dl.llvmlike_vector_align(size);
let size = size.align_to(align.abi);
Ok(Arc::new(Layout {
variants: Variants::Single { index: struct_variant_idx() },
fields: FieldsShape::Arbitrary { offsets: [Size::ZERO].into(), memory_index: [0].into() },
backend_repr: BackendRepr::SimdVector { element: e_abi, count: e_len },
largest_niche: e_ly.largest_niche,
uninhabited: false,
size,
align,
max_repr_align: None,
unadjusted_abi_align: align.abi,
randomization_seed: Hash64::ZERO,
}))
let cx = LayoutCx::new(dl);
Ok(Arc::new(cx.calc.simd_type(e_ly, e_len, repr_packed)?))
}
pub fn layout_of_ty_query(
@ -190,13 +165,14 @@ pub fn layout_of_ty_query(
let dl = &*target;
let cx = LayoutCx::new(dl);
let ty = normalize(db, trait_env.clone(), ty);
let result = match ty.kind(Interner) {
let kind = ty.kind(Interner);
let result = match kind {
TyKind::Adt(AdtId(def), subst) => {
if let hir_def::AdtId::StructId(s) = def {
let data = db.struct_data(*s);
let repr = data.repr.unwrap_or_default();
if repr.simd() {
return layout_of_simd_ty(db, *s, subst, trait_env, &target);
return layout_of_simd_ty(db, *s, repr.packed(), subst, trait_env, &target);
}
};
return db.layout_of_adt(*def, subst.clone(), trait_env);
@ -216,7 +192,7 @@ pub fn layout_of_ty_query(
valid_range: WrappingRange { start: 0, end: 0x10FFFF },
},
),
chalk_ir::Scalar::Int(i) => scalar(
chalk_ir::Scalar::Int(i) => Layout::scalar(dl, scalar_unit(
dl,
Primitive::Int(
match i {
@ -229,8 +205,8 @@ pub fn layout_of_ty_query(
},
true,
),
),
chalk_ir::Scalar::Uint(i) => scalar(
)),
chalk_ir::Scalar::Uint(i) => Layout::scalar(dl, scalar_unit(
dl,
Primitive::Int(
match i {
@ -243,8 +219,8 @@ pub fn layout_of_ty_query(
},
false,
),
),
chalk_ir::Scalar::Float(f) => scalar(
)),
chalk_ir::Scalar::Float(f) => Layout::scalar(dl, scalar_unit(
dl,
Primitive::Float(match f {
FloatTy::F16 => Float::F16,
@ -252,7 +228,7 @@ pub fn layout_of_ty_query(
FloatTy::F64 => Float::F64,
FloatTy::F128 => Float::F128,
}),
),
)),
},
TyKind::Tuple(len, tys) => {
let kind = if *len == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized };
@ -268,56 +244,16 @@ pub fn layout_of_ty_query(
TyKind::Array(element, count) => {
let count = try_const_usize(db, count).ok_or(LayoutError::HasErrorConst)? as u64;
let element = db.layout_of_ty(element.clone(), trait_env)?;
let size = element
.size
.checked_mul(count, dl)
.ok_or(LayoutError::BadCalc(LayoutCalculatorError::SizeOverflow))?;
let backend_repr = BackendRepr::Memory { sized: true };
let largest_niche = if count != 0 { element.largest_niche } else { None };
let uninhabited = if count != 0 { element.uninhabited } else { false };
Layout {
variants: Variants::Single { index: struct_variant_idx() },
fields: FieldsShape::Array { stride: element.size, count },
backend_repr,
largest_niche,
uninhabited,
align: element.align,
size,
max_repr_align: None,
unadjusted_abi_align: element.align.abi,
randomization_seed: Hash64::ZERO,
}
cx.calc.array_like::<_, _, ()>(&element, Some(count))?
}
TyKind::Slice(element) => {
let element = db.layout_of_ty(element.clone(), trait_env)?;
Layout {
variants: Variants::Single { index: struct_variant_idx() },
fields: FieldsShape::Array { stride: element.size, count: 0 },
backend_repr: BackendRepr::Memory { sized: false },
largest_niche: None,
uninhabited: false,
align: element.align,
size: Size::ZERO,
max_repr_align: None,
unadjusted_abi_align: element.align.abi,
randomization_seed: Hash64::ZERO,
}
cx.calc.array_like::<_, _, ()>(&element, None)?
}
TyKind::Str => {
let element = scalar_unit(dl, Primitive::Int(Integer::I8, false));
cx.calc.array_like::<_, _, ()>(&Layout::scalar(dl, element), None)?
}
TyKind::Str => Layout {
variants: Variants::Single { index: struct_variant_idx() },
fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 },
backend_repr: BackendRepr::Memory { sized: false },
largest_niche: None,
uninhabited: false,
align: dl.i8_align,
size: Size::ZERO,
max_repr_align: None,
unadjusted_abi_align: dl.i8_align.abi,
randomization_seed: Hash64::ZERO,
},
// Potentially-wide pointers.
TyKind::Ref(_, _, pointee) | TyKind::Raw(_, pointee) => {
let mut data_ptr = scalar_unit(dl, Primitive::Pointer(AddressSpace::DATA));
@ -355,17 +291,12 @@ pub fn layout_of_ty_query(
};
// Effectively a (ptr, meta) tuple.
cx.calc.scalar_pair(data_ptr, metadata)
LayoutData::scalar_pair(dl, data_ptr, metadata)
}
TyKind::FnDef(_, _) => layout_of_unit(&cx)?,
TyKind::Never => cx.calc.layout_of_never_type(),
TyKind::Dyn(_) | TyKind::Foreign(_) => {
let mut unit = layout_of_unit(&cx)?;
match &mut unit.backend_repr {
BackendRepr::Memory { sized } => *sized = false,
_ => return Err(LayoutError::Unknown),
}
unit
TyKind::Never => LayoutData::never_type(dl),
TyKind::FnDef(..) | TyKind::Dyn(_) | TyKind::Foreign(_) => {
let sized = matches!(kind, TyKind::FnDef(..));
LayoutData::unit(dl, sized)
}
TyKind::Function(_) => {
let mut ptr = scalar_unit(dl, Primitive::Pointer(dl.instruction_address_space));
@ -434,16 +365,6 @@ pub fn layout_of_ty_recover(
Err(LayoutError::RecursiveTypeWithoutIndirection)
}
fn layout_of_unit(cx: &LayoutCx<'_>) -> Result<Layout, LayoutError> {
cx.calc
.univariant::<RustcFieldIdx, RustcEnumVariantIdx, &&Layout>(
IndexSlice::empty(),
&ReprOptions::default(),
StructKind::AlwaysSized,
)
.map_err(Into::into)
}
fn struct_tail_erasing_lifetimes(db: &dyn HirDatabase, pointee: Ty) -> Ty {
match pointee.kind(Interner) {
TyKind::Adt(AdtId(hir_def::AdtId::StructId(i)), subst) => {
@ -474,9 +395,5 @@ fn scalar_unit(dl: &TargetDataLayout, value: Primitive) -> Scalar {
Scalar::Initialized { value, valid_range: WrappingRange::full(value.size(dl)) }
}
fn scalar(dl: &TargetDataLayout, value: Primitive) -> Layout {
Layout::scalar(dl, scalar_unit(dl, value))
}
#[cfg(test)]
mod tests;

View File

@ -16,16 +16,12 @@ use triomphe::Arc;
use crate::{
db::HirDatabase,
lang_items::is_unsafe_cell,
layout::{field_ty, Layout, LayoutError, RustcEnumVariantIdx},
layout::{field_ty, Layout, LayoutError},
Substitution, TraitEnvironment,
};
use super::LayoutCx;
pub(crate) fn struct_variant_idx() -> RustcEnumVariantIdx {
RustcEnumVariantIdx(0)
}
pub fn layout_of_adt_query(
db: &dyn HirDatabase,
def: AdtId,

View File

@ -12,9 +12,6 @@ extern crate ra_ap_rustc_index as rustc_index;
#[cfg(feature = "in-rust-tree")]
extern crate rustc_abi;
#[cfg(feature = "in-rust-tree")]
extern crate rustc_hashes;
#[cfg(not(feature = "in-rust-tree"))]
extern crate ra_ap_rustc_abi as rustc_abi;

View File

@ -3,6 +3,9 @@ error[E0733]: recursion in an async fn requires boxing
|
LL | async fn second(self) {
| ^^^^^^^^^^^^^^^^^^^^^
LL |
LL | self.first().await.second().await;
| --------------------------------- recursive call here
|
= note: a recursive `async fn` call must introduce indirection such as `Box::pin` to avoid an infinitely sized future

View File

@ -1,4 +1,4 @@
//@ build-fail
//@ check-fail
//@ edition: 2021
use std::future::Future;

View File

@ -12,12 +12,6 @@ LL | Blah::iter(self, iterator).await
|
= note: a recursive `async fn` call must introduce indirection such as `Box::pin` to avoid an infinitely sized future
note: the above error was encountered while instantiating `fn Wrap::<()>::ice`
--> $DIR/post-mono-layout-cycle-2.rs:54:9
|
LL | t.ice();
| ^^^^^^^
error: aborting due to 1 previous error
For more information about this error, try `rustc --explain E0733`.