organize mir pretty.rs and move more things into it; move statement-related things out of mir/mod.rs

This commit is contained in:
Ralf Jung 2023-09-15 08:49:37 +02:00
parent 57444cf9f3
commit be8f5f6e7f
5 changed files with 1393 additions and 1371 deletions

View File

@ -37,7 +37,7 @@ use either::Either;
use std::borrow::Cow;
use std::cell::RefCell;
use std::collections::hash_map::Entry;
use std::fmt::{self, Debug, Formatter, Write};
use std::fmt::{self, Debug, Formatter};
use std::ops::{Index, IndexMut};
use std::{iter, mem};
@ -56,6 +56,7 @@ pub mod patch;
pub mod pretty;
mod query;
pub mod spanview;
mod statement;
mod syntax;
pub mod tcx;
mod terminator;
@ -71,6 +72,7 @@ pub use self::pretty::{
};
pub use consts::*;
use pretty::pretty_print_const_value;
pub use statement::*;
pub use syntax::*;
pub use terminator::*;
@ -1150,20 +1152,6 @@ pub struct VarDebugInfo<'tcx> {
pub argument_index: Option<u16>,
}
impl Debug for VarDebugInfo<'_> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
if let Some(box VarDebugInfoFragment { ty, ref projection }) = self.composite {
pre_fmt_projection(&projection[..], fmt)?;
write!(fmt, "({}: {})", self.name, ty)?;
post_fmt_projection(&projection[..], fmt)?;
} else {
write!(fmt, "{}", self.name)?;
}
write!(fmt, " => {:?}", self.value)
}
}
///////////////////////////////////////////////////////////////////////////
// BasicBlock
@ -1320,576 +1308,6 @@ impl<'tcx> BasicBlockData<'tcx> {
}
}
impl<O> AssertKind<O> {
/// Returns true if this an overflow checking assertion controlled by -C overflow-checks.
pub fn is_optional_overflow_check(&self) -> bool {
use AssertKind::*;
use BinOp::*;
matches!(self, OverflowNeg(..) | Overflow(Add | Sub | Mul | Shl | Shr, ..))
}
/// Get the message that is printed at runtime when this assertion fails.
///
/// The caller is expected to handle `BoundsCheck` and `MisalignedPointerDereference` by
/// invoking the appropriate lang item (panic_bounds_check/panic_misaligned_pointer_dereference)
/// instead of printing a static message.
pub fn description(&self) -> &'static str {
use AssertKind::*;
match self {
Overflow(BinOp::Add, _, _) => "attempt to add with overflow",
Overflow(BinOp::Sub, _, _) => "attempt to subtract with overflow",
Overflow(BinOp::Mul, _, _) => "attempt to multiply with overflow",
Overflow(BinOp::Div, _, _) => "attempt to divide with overflow",
Overflow(BinOp::Rem, _, _) => "attempt to calculate the remainder with overflow",
OverflowNeg(_) => "attempt to negate with overflow",
Overflow(BinOp::Shr, _, _) => "attempt to shift right with overflow",
Overflow(BinOp::Shl, _, _) => "attempt to shift left with overflow",
Overflow(op, _, _) => bug!("{:?} cannot overflow", op),
DivisionByZero(_) => "attempt to divide by zero",
RemainderByZero(_) => "attempt to calculate the remainder with a divisor of zero",
ResumedAfterReturn(GeneratorKind::Gen) => "generator resumed after completion",
ResumedAfterReturn(GeneratorKind::Async(_)) => "`async fn` resumed after completion",
ResumedAfterPanic(GeneratorKind::Gen) => "generator resumed after panicking",
ResumedAfterPanic(GeneratorKind::Async(_)) => "`async fn` resumed after panicking",
BoundsCheck { .. } | MisalignedPointerDereference { .. } => {
bug!("Unexpected AssertKind")
}
}
}
/// Format the message arguments for the `assert(cond, msg..)` terminator in MIR printing.
///
/// Needs to be kept in sync with the run-time behavior (which is defined by
/// `AssertKind::description` and the lang items mentioned in its docs).
/// Note that we deliberately show more details here than we do at runtime, such as the actual
/// numbers that overflowed -- it is much easier to do so here than at runtime.
pub fn fmt_assert_args<W: Write>(&self, f: &mut W) -> fmt::Result
where
O: Debug,
{
use AssertKind::*;
match self {
BoundsCheck { ref len, ref index } => write!(
f,
"\"index out of bounds: the length is {{}} but the index is {{}}\", {len:?}, {index:?}"
),
OverflowNeg(op) => {
write!(f, "\"attempt to negate `{{}}`, which would overflow\", {op:?}")
}
DivisionByZero(op) => write!(f, "\"attempt to divide `{{}}` by zero\", {op:?}"),
RemainderByZero(op) => write!(
f,
"\"attempt to calculate the remainder of `{{}}` with a divisor of zero\", {op:?}"
),
Overflow(BinOp::Add, l, r) => write!(
f,
"\"attempt to compute `{{}} + {{}}`, which would overflow\", {l:?}, {r:?}"
),
Overflow(BinOp::Sub, l, r) => write!(
f,
"\"attempt to compute `{{}} - {{}}`, which would overflow\", {l:?}, {r:?}"
),
Overflow(BinOp::Mul, l, r) => write!(
f,
"\"attempt to compute `{{}} * {{}}`, which would overflow\", {l:?}, {r:?}"
),
Overflow(BinOp::Div, l, r) => write!(
f,
"\"attempt to compute `{{}} / {{}}`, which would overflow\", {l:?}, {r:?}"
),
Overflow(BinOp::Rem, l, r) => write!(
f,
"\"attempt to compute the remainder of `{{}} % {{}}`, which would overflow\", {l:?}, {r:?}"
),
Overflow(BinOp::Shr, _, r) => {
write!(f, "\"attempt to shift right by `{{}}`, which would overflow\", {r:?}")
}
Overflow(BinOp::Shl, _, r) => {
write!(f, "\"attempt to shift left by `{{}}`, which would overflow\", {r:?}")
}
MisalignedPointerDereference { required, found } => {
write!(
f,
"\"misaligned pointer dereference: address must be a multiple of {{}} but is {{}}\", {required:?}, {found:?}"
)
}
_ => write!(f, "\"{}\"", self.description()),
}
}
/// Format the diagnostic message for use in a lint (e.g. when the assertion fails during const-eval).
///
/// Needs to be kept in sync with the run-time behavior (which is defined by
/// `AssertKind::description` and the lang items mentioned in its docs).
/// Note that we deliberately show more details here than we do at runtime, such as the actual
/// numbers that overflowed -- it is much easier to do so here than at runtime.
pub fn diagnostic_message(&self) -> DiagnosticMessage {
use crate::fluent_generated::*;
use AssertKind::*;
match self {
BoundsCheck { .. } => middle_bounds_check,
Overflow(BinOp::Shl, _, _) => middle_assert_shl_overflow,
Overflow(BinOp::Shr, _, _) => middle_assert_shr_overflow,
Overflow(_, _, _) => middle_assert_op_overflow,
OverflowNeg(_) => middle_assert_overflow_neg,
DivisionByZero(_) => middle_assert_divide_by_zero,
RemainderByZero(_) => middle_assert_remainder_by_zero,
ResumedAfterReturn(GeneratorKind::Async(_)) => middle_assert_async_resume_after_return,
ResumedAfterReturn(GeneratorKind::Gen) => middle_assert_generator_resume_after_return,
ResumedAfterPanic(GeneratorKind::Async(_)) => middle_assert_async_resume_after_panic,
ResumedAfterPanic(GeneratorKind::Gen) => middle_assert_generator_resume_after_panic,
MisalignedPointerDereference { .. } => middle_assert_misaligned_ptr_deref,
}
}
pub fn add_args(self, adder: &mut dyn FnMut(Cow<'static, str>, DiagnosticArgValue<'static>))
where
O: fmt::Debug,
{
use AssertKind::*;
macro_rules! add {
($name: expr, $value: expr) => {
adder($name.into(), $value.into_diagnostic_arg());
};
}
match self {
BoundsCheck { len, index } => {
add!("len", format!("{len:?}"));
add!("index", format!("{index:?}"));
}
Overflow(BinOp::Shl | BinOp::Shr, _, val)
| DivisionByZero(val)
| RemainderByZero(val)
| OverflowNeg(val) => {
add!("val", format!("{val:#?}"));
}
Overflow(binop, left, right) => {
add!("op", binop.to_hir_binop().as_str());
add!("left", format!("{left:#?}"));
add!("right", format!("{right:#?}"));
}
ResumedAfterReturn(_) | ResumedAfterPanic(_) => {}
MisalignedPointerDereference { required, found } => {
add!("required", format!("{required:#?}"));
add!("found", format!("{found:#?}"));
}
}
}
}
///////////////////////////////////////////////////////////////////////////
// Statements
/// A statement in a basic block, including information about its source code.
#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub struct Statement<'tcx> {
pub source_info: SourceInfo,
pub kind: StatementKind<'tcx>,
}
impl Statement<'_> {
/// Changes a statement to a nop. This is both faster than deleting instructions and avoids
/// invalidating statement indices in `Location`s.
pub fn make_nop(&mut self) {
self.kind = StatementKind::Nop
}
/// Changes a statement to a nop and returns the original statement.
#[must_use = "If you don't need the statement, use `make_nop` instead"]
pub fn replace_nop(&mut self) -> Self {
Statement {
source_info: self.source_info,
kind: mem::replace(&mut self.kind, StatementKind::Nop),
}
}
}
impl Debug for Statement<'_> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
use self::StatementKind::*;
match self.kind {
Assign(box (ref place, ref rv)) => write!(fmt, "{place:?} = {rv:?}"),
FakeRead(box (ref cause, ref place)) => {
write!(fmt, "FakeRead({cause:?}, {place:?})")
}
Retag(ref kind, ref place) => write!(
fmt,
"Retag({}{:?})",
match kind {
RetagKind::FnEntry => "[fn entry] ",
RetagKind::TwoPhase => "[2phase] ",
RetagKind::Raw => "[raw] ",
RetagKind::Default => "",
},
place,
),
StorageLive(ref place) => write!(fmt, "StorageLive({place:?})"),
StorageDead(ref place) => write!(fmt, "StorageDead({place:?})"),
SetDiscriminant { ref place, variant_index } => {
write!(fmt, "discriminant({place:?}) = {variant_index:?}")
}
Deinit(ref place) => write!(fmt, "Deinit({place:?})"),
PlaceMention(ref place) => {
write!(fmt, "PlaceMention({place:?})")
}
AscribeUserType(box (ref place, ref c_ty), ref variance) => {
write!(fmt, "AscribeUserType({place:?}, {variance:?}, {c_ty:?})")
}
Coverage(box self::Coverage { ref kind, code_region: Some(ref rgn) }) => {
write!(fmt, "Coverage::{kind:?} for {rgn:?}")
}
Coverage(box ref coverage) => write!(fmt, "Coverage::{:?}", coverage.kind),
Intrinsic(box ref intrinsic) => write!(fmt, "{intrinsic}"),
ConstEvalCounter => write!(fmt, "ConstEvalCounter"),
Nop => write!(fmt, "nop"),
}
}
}
impl<'tcx> StatementKind<'tcx> {
pub fn as_assign_mut(&mut self) -> Option<&mut (Place<'tcx>, Rvalue<'tcx>)> {
match self {
StatementKind::Assign(x) => Some(x),
_ => None,
}
}
pub fn as_assign(&self) -> Option<&(Place<'tcx>, Rvalue<'tcx>)> {
match self {
StatementKind::Assign(x) => Some(x),
_ => None,
}
}
}
///////////////////////////////////////////////////////////////////////////
// Places
impl<V, T> ProjectionElem<V, T> {
/// Returns `true` if the target of this projection may refer to a different region of memory
/// than the base.
fn is_indirect(&self) -> bool {
match self {
Self::Deref => true,
Self::Field(_, _)
| Self::Index(_)
| Self::OpaqueCast(_)
| Self::ConstantIndex { .. }
| Self::Subslice { .. }
| Self::Downcast(_, _) => false,
}
}
/// Returns `true` if the target of this projection always refers to the same memory region
/// whatever the state of the program.
pub fn is_stable_offset(&self) -> bool {
match self {
Self::Deref | Self::Index(_) => false,
Self::Field(_, _)
| Self::OpaqueCast(_)
| Self::ConstantIndex { .. }
| Self::Subslice { .. }
| Self::Downcast(_, _) => true,
}
}
/// Returns `true` if this is a `Downcast` projection with the given `VariantIdx`.
pub fn is_downcast_to(&self, v: VariantIdx) -> bool {
matches!(*self, Self::Downcast(_, x) if x == v)
}
/// Returns `true` if this is a `Field` projection with the given index.
pub fn is_field_to(&self, f: FieldIdx) -> bool {
matches!(*self, Self::Field(x, _) if x == f)
}
/// Returns `true` if this is accepted inside `VarDebugInfoContents::Place`.
pub fn can_use_in_debuginfo(&self) -> bool {
match self {
Self::ConstantIndex { from_end: false, .. }
| Self::Deref
| Self::Downcast(_, _)
| Self::Field(_, _) => true,
Self::ConstantIndex { from_end: true, .. }
| Self::Index(_)
| Self::OpaqueCast(_)
| Self::Subslice { .. } => false,
}
}
}
/// Alias for projections as they appear in `UserTypeProjection`, where we
/// need neither the `V` parameter for `Index` nor the `T` for `Field`.
pub type ProjectionKind = ProjectionElem<(), ()>;
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct PlaceRef<'tcx> {
pub local: Local,
pub projection: &'tcx [PlaceElem<'tcx>],
}
// Once we stop implementing `Ord` for `DefId`,
// this impl will be unnecessary. Until then, we'll
// leave this impl in place to prevent re-adding a
// dependency on the `Ord` impl for `DefId`
impl<'tcx> !PartialOrd for PlaceRef<'tcx> {}
impl<'tcx> Place<'tcx> {
// FIXME change this to a const fn by also making List::empty a const fn.
pub fn return_place() -> Place<'tcx> {
Place { local: RETURN_PLACE, projection: List::empty() }
}
/// Returns `true` if this `Place` contains a `Deref` projection.
///
/// If `Place::is_indirect` returns false, the caller knows that the `Place` refers to the
/// same region of memory as its base.
pub fn is_indirect(&self) -> bool {
self.projection.iter().any(|elem| elem.is_indirect())
}
/// Returns `true` if this `Place`'s first projection is `Deref`.
///
/// This is useful because for MIR phases `AnalysisPhase::PostCleanup` and later,
/// `Deref` projections can only occur as the first projection. In that case this method
/// is equivalent to `is_indirect`, but faster.
pub fn is_indirect_first_projection(&self) -> bool {
self.as_ref().is_indirect_first_projection()
}
/// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
/// a single deref of a local.
#[inline(always)]
pub fn local_or_deref_local(&self) -> Option<Local> {
self.as_ref().local_or_deref_local()
}
/// If this place represents a local variable like `_X` with no
/// projections, return `Some(_X)`.
#[inline(always)]
pub fn as_local(&self) -> Option<Local> {
self.as_ref().as_local()
}
#[inline]
pub fn as_ref(&self) -> PlaceRef<'tcx> {
PlaceRef { local: self.local, projection: &self.projection }
}
/// Iterate over the projections in evaluation order, i.e., the first element is the base with
/// its projection and then subsequently more projections are added.
/// As a concrete example, given the place a.b.c, this would yield:
/// - (a, .b)
/// - (a.b, .c)
///
/// Given a place without projections, the iterator is empty.
#[inline]
pub fn iter_projections(
self,
) -> impl Iterator<Item = (PlaceRef<'tcx>, PlaceElem<'tcx>)> + DoubleEndedIterator {
self.as_ref().iter_projections()
}
/// Generates a new place by appending `more_projections` to the existing ones
/// and interning the result.
pub fn project_deeper(self, more_projections: &[PlaceElem<'tcx>], tcx: TyCtxt<'tcx>) -> Self {
if more_projections.is_empty() {
return self;
}
self.as_ref().project_deeper(more_projections, tcx)
}
}
impl From<Local> for Place<'_> {
#[inline]
fn from(local: Local) -> Self {
Place { local, projection: List::empty() }
}
}
impl<'tcx> PlaceRef<'tcx> {
/// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
/// a single deref of a local.
pub fn local_or_deref_local(&self) -> Option<Local> {
match *self {
PlaceRef { local, projection: [] }
| PlaceRef { local, projection: [ProjectionElem::Deref] } => Some(local),
_ => None,
}
}
/// Returns `true` if this `Place` contains a `Deref` projection.
///
/// If `Place::is_indirect` returns false, the caller knows that the `Place` refers to the
/// same region of memory as its base.
pub fn is_indirect(&self) -> bool {
self.projection.iter().any(|elem| elem.is_indirect())
}
/// Returns `true` if this `Place`'s first projection is `Deref`.
///
/// This is useful because for MIR phases `AnalysisPhase::PostCleanup` and later,
/// `Deref` projections can only occur as the first projection. In that case this method
/// is equivalent to `is_indirect`, but faster.
pub fn is_indirect_first_projection(&self) -> bool {
// To make sure this is not accidentally used in wrong mir phase
debug_assert!(
self.projection.is_empty() || !self.projection[1..].contains(&PlaceElem::Deref)
);
self.projection.first() == Some(&PlaceElem::Deref)
}
/// If this place represents a local variable like `_X` with no
/// projections, return `Some(_X)`.
#[inline]
pub fn as_local(&self) -> Option<Local> {
match *self {
PlaceRef { local, projection: [] } => Some(local),
_ => None,
}
}
#[inline]
pub fn last_projection(&self) -> Option<(PlaceRef<'tcx>, PlaceElem<'tcx>)> {
if let &[ref proj_base @ .., elem] = self.projection {
Some((PlaceRef { local: self.local, projection: proj_base }, elem))
} else {
None
}
}
/// Iterate over the projections in evaluation order, i.e., the first element is the base with
/// its projection and then subsequently more projections are added.
/// As a concrete example, given the place a.b.c, this would yield:
/// - (a, .b)
/// - (a.b, .c)
///
/// Given a place without projections, the iterator is empty.
#[inline]
pub fn iter_projections(
self,
) -> impl Iterator<Item = (PlaceRef<'tcx>, PlaceElem<'tcx>)> + DoubleEndedIterator {
self.projection.iter().enumerate().map(move |(i, proj)| {
let base = PlaceRef { local: self.local, projection: &self.projection[..i] };
(base, *proj)
})
}
/// Generates a new place by appending `more_projections` to the existing ones
/// and interning the result.
pub fn project_deeper(
self,
more_projections: &[PlaceElem<'tcx>],
tcx: TyCtxt<'tcx>,
) -> Place<'tcx> {
let mut v: Vec<PlaceElem<'tcx>>;
let new_projections = if self.projection.is_empty() {
more_projections
} else {
v = Vec::with_capacity(self.projection.len() + more_projections.len());
v.extend(self.projection);
v.extend(more_projections);
&v
};
Place { local: self.local, projection: tcx.mk_place_elems(new_projections) }
}
}
impl From<Local> for PlaceRef<'_> {
#[inline]
fn from(local: Local) -> Self {
PlaceRef { local, projection: &[] }
}
}
impl Debug for Place<'_> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
self.as_ref().fmt(fmt)
}
}
impl Debug for PlaceRef<'_> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
pre_fmt_projection(self.projection, fmt)?;
write!(fmt, "{:?}", self.local)?;
post_fmt_projection(self.projection, fmt)
}
}
fn pre_fmt_projection(projection: &[PlaceElem<'_>], fmt: &mut Formatter<'_>) -> fmt::Result {
for &elem in projection.iter().rev() {
match elem {
ProjectionElem::OpaqueCast(_)
| ProjectionElem::Downcast(_, _)
| ProjectionElem::Field(_, _) => {
write!(fmt, "(").unwrap();
}
ProjectionElem::Deref => {
write!(fmt, "(*").unwrap();
}
ProjectionElem::Index(_)
| ProjectionElem::ConstantIndex { .. }
| ProjectionElem::Subslice { .. } => {}
}
}
Ok(())
}
fn post_fmt_projection(projection: &[PlaceElem<'_>], fmt: &mut Formatter<'_>) -> fmt::Result {
for &elem in projection.iter() {
match elem {
ProjectionElem::OpaqueCast(ty) => {
write!(fmt, " as {ty})")?;
}
ProjectionElem::Downcast(Some(name), _index) => {
write!(fmt, " as {name})")?;
}
ProjectionElem::Downcast(None, index) => {
write!(fmt, " as variant#{index:?})")?;
}
ProjectionElem::Deref => {
write!(fmt, ")")?;
}
ProjectionElem::Field(field, ty) => {
with_no_trimmed_paths!(write!(fmt, ".{:?}: {})", field.index(), ty)?);
}
ProjectionElem::Index(ref index) => {
write!(fmt, "[{index:?}]")?;
}
ProjectionElem::ConstantIndex { offset, min_length, from_end: false } => {
write!(fmt, "[{offset:?} of {min_length:?}]")?;
}
ProjectionElem::ConstantIndex { offset, min_length, from_end: true } => {
write!(fmt, "[-{offset:?} of {min_length:?}]")?;
}
ProjectionElem::Subslice { from, to, from_end: true } if to == 0 => {
write!(fmt, "[{from:?}:]")?;
}
ProjectionElem::Subslice { from, to, from_end: true } if from == 0 => {
write!(fmt, "[:-{to:?}]")?;
}
ProjectionElem::Subslice { from, to, from_end: true } => {
write!(fmt, "[{from:?}:-{to:?}]")?;
}
ProjectionElem::Subslice { from, to, from_end: false } => {
write!(fmt, "[{from:?}..{to:?}]")?;
}
}
}
Ok(())
}
///////////////////////////////////////////////////////////////////////////
// Scopes
@ -1968,345 +1386,12 @@ pub struct SourceScopeLocalData {
pub safety: Safety,
}
///////////////////////////////////////////////////////////////////////////
// Operands
impl<'tcx> Debug for Operand<'tcx> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
use self::Operand::*;
match *self {
Constant(ref a) => write!(fmt, "{a:?}"),
Copy(ref place) => write!(fmt, "{place:?}"),
Move(ref place) => write!(fmt, "move {place:?}"),
}
}
}
impl<'tcx> Operand<'tcx> {
/// Convenience helper to make a constant that refers to the fn
/// with given `DefId` and args. Since this is used to synthesize
/// MIR, assumes `user_ty` is None.
pub fn function_handle(
tcx: TyCtxt<'tcx>,
def_id: DefId,
args: impl IntoIterator<Item = GenericArg<'tcx>>,
span: Span,
) -> Self {
let ty = Ty::new_fn_def(tcx, def_id, args);
Operand::Constant(Box::new(Constant {
span,
user_ty: None,
literal: ConstantKind::Val(ConstValue::ZeroSized, ty),
}))
}
pub fn is_move(&self) -> bool {
matches!(self, Operand::Move(..))
}
/// Convenience helper to make a literal-like constant from a given scalar value.
/// Since this is used to synthesize MIR, assumes `user_ty` is None.
pub fn const_from_scalar(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
val: Scalar,
span: Span,
) -> Operand<'tcx> {
debug_assert!({
let param_env_and_ty = ty::ParamEnv::empty().and(ty);
let type_size = tcx
.layout_of(param_env_and_ty)
.unwrap_or_else(|e| panic!("could not compute layout for {ty:?}: {e:?}"))
.size;
let scalar_size = match val {
Scalar::Int(int) => int.size(),
_ => panic!("Invalid scalar type {val:?}"),
};
scalar_size == type_size
});
Operand::Constant(Box::new(Constant {
span,
user_ty: None,
literal: ConstantKind::Val(ConstValue::Scalar(val), ty),
}))
}
pub fn to_copy(&self) -> Self {
match *self {
Operand::Copy(_) | Operand::Constant(_) => self.clone(),
Operand::Move(place) => Operand::Copy(place),
}
}
/// Returns the `Place` that is the target of this `Operand`, or `None` if this `Operand` is a
/// constant.
pub fn place(&self) -> Option<Place<'tcx>> {
match self {
Operand::Copy(place) | Operand::Move(place) => Some(*place),
Operand::Constant(_) => None,
}
}
/// Returns the `Constant` that is the target of this `Operand`, or `None` if this `Operand` is a
/// place.
pub fn constant(&self) -> Option<&Constant<'tcx>> {
match self {
Operand::Constant(x) => Some(&**x),
Operand::Copy(_) | Operand::Move(_) => None,
}
}
/// Gets the `ty::FnDef` from an operand if it's a constant function item.
///
/// While this is unlikely in general, it's the normal case of what you'll
/// find as the `func` in a [`TerminatorKind::Call`].
pub fn const_fn_def(&self) -> Option<(DefId, GenericArgsRef<'tcx>)> {
let const_ty = self.constant()?.literal.ty();
if let ty::FnDef(def_id, args) = *const_ty.kind() { Some((def_id, args)) } else { None }
}
}
///////////////////////////////////////////////////////////////////////////
/// Rvalues
impl<'tcx> Rvalue<'tcx> {
/// Returns true if rvalue can be safely removed when the result is unused.
#[inline]
pub fn is_safe_to_remove(&self) -> bool {
match self {
// Pointer to int casts may be side-effects due to exposing the provenance.
// While the model is undecided, we should be conservative. See
// <https://www.ralfj.de/blog/2022/04/11/provenance-exposed.html>
Rvalue::Cast(CastKind::PointerExposeAddress, _, _) => false,
Rvalue::Use(_)
| Rvalue::CopyForDeref(_)
| Rvalue::Repeat(_, _)
| Rvalue::Ref(_, _, _)
| Rvalue::ThreadLocalRef(_)
| Rvalue::AddressOf(_, _)
| Rvalue::Len(_)
| Rvalue::Cast(
CastKind::IntToInt
| CastKind::FloatToInt
| CastKind::FloatToFloat
| CastKind::IntToFloat
| CastKind::FnPtrToPtr
| CastKind::PtrToPtr
| CastKind::PointerCoercion(_)
| CastKind::PointerFromExposedAddress
| CastKind::DynStar
| CastKind::Transmute,
_,
_,
)
| Rvalue::BinaryOp(_, _)
| Rvalue::CheckedBinaryOp(_, _)
| Rvalue::NullaryOp(_, _)
| Rvalue::UnaryOp(_, _)
| Rvalue::Discriminant(_)
| Rvalue::Aggregate(_, _)
| Rvalue::ShallowInitBox(_, _) => true,
}
}
}
impl BorrowKind {
pub fn mutability(&self) -> Mutability {
match *self {
BorrowKind::Shared | BorrowKind::Shallow => Mutability::Not,
BorrowKind::Mut { .. } => Mutability::Mut,
}
}
pub fn allows_two_phase_borrow(&self) -> bool {
match *self {
BorrowKind::Shared
| BorrowKind::Shallow
| BorrowKind::Mut { kind: MutBorrowKind::Default | MutBorrowKind::ClosureCapture } => {
false
}
BorrowKind::Mut { kind: MutBorrowKind::TwoPhaseBorrow } => true,
}
}
}
impl<'tcx> Debug for Rvalue<'tcx> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
use self::Rvalue::*;
match *self {
Use(ref place) => write!(fmt, "{place:?}"),
Repeat(ref a, b) => {
write!(fmt, "[{a:?}; ")?;
pretty_print_const(b, fmt, false)?;
write!(fmt, "]")
}
Len(ref a) => write!(fmt, "Len({a:?})"),
Cast(ref kind, ref place, ref ty) => {
with_no_trimmed_paths!(write!(fmt, "{place:?} as {ty} ({kind:?})"))
}
BinaryOp(ref op, box (ref a, ref b)) => write!(fmt, "{op:?}({a:?}, {b:?})"),
CheckedBinaryOp(ref op, box (ref a, ref b)) => {
write!(fmt, "Checked{op:?}({a:?}, {b:?})")
}
UnaryOp(ref op, ref a) => write!(fmt, "{op:?}({a:?})"),
Discriminant(ref place) => write!(fmt, "discriminant({place:?})"),
NullaryOp(ref op, ref t) => {
let t = with_no_trimmed_paths!(format!("{}", t));
match op {
NullOp::SizeOf => write!(fmt, "SizeOf({t})"),
NullOp::AlignOf => write!(fmt, "AlignOf({t})"),
NullOp::OffsetOf(fields) => write!(fmt, "OffsetOf({t}, {fields:?})"),
}
}
ThreadLocalRef(did) => ty::tls::with(|tcx| {
let muta = tcx.static_mutability(did).unwrap().prefix_str();
write!(fmt, "&/*tls*/ {}{}", muta, tcx.def_path_str(did))
}),
Ref(region, borrow_kind, ref place) => {
let kind_str = match borrow_kind {
BorrowKind::Shared => "",
BorrowKind::Shallow => "shallow ",
BorrowKind::Mut { .. } => "mut ",
};
// When printing regions, add trailing space if necessary.
let print_region = ty::tls::with(|tcx| {
tcx.sess.verbose() || tcx.sess.opts.unstable_opts.identify_regions
});
let region = if print_region {
let mut region = region.to_string();
if !region.is_empty() {
region.push(' ');
}
region
} else {
// Do not even print 'static
String::new()
};
write!(fmt, "&{region}{kind_str}{place:?}")
}
CopyForDeref(ref place) => write!(fmt, "deref_copy {place:#?}"),
AddressOf(mutability, ref place) => {
let kind_str = match mutability {
Mutability::Mut => "mut",
Mutability::Not => "const",
};
write!(fmt, "&raw {kind_str} {place:?}")
}
Aggregate(ref kind, ref places) => {
let fmt_tuple = |fmt: &mut Formatter<'_>, name: &str| {
let mut tuple_fmt = fmt.debug_tuple(name);
for place in places {
tuple_fmt.field(place);
}
tuple_fmt.finish()
};
match **kind {
AggregateKind::Array(_) => write!(fmt, "{places:?}"),
AggregateKind::Tuple => {
if places.is_empty() {
write!(fmt, "()")
} else {
fmt_tuple(fmt, "")
}
}
AggregateKind::Adt(adt_did, variant, args, _user_ty, _) => {
ty::tls::with(|tcx| {
let variant_def = &tcx.adt_def(adt_did).variant(variant);
let args = tcx.lift(args).expect("could not lift for printing");
let name = FmtPrinter::new(tcx, Namespace::ValueNS)
.print_def_path(variant_def.def_id, args)?
.into_buffer();
match variant_def.ctor_kind() {
Some(CtorKind::Const) => fmt.write_str(&name),
Some(CtorKind::Fn) => fmt_tuple(fmt, &name),
None => {
let mut struct_fmt = fmt.debug_struct(&name);
for (field, place) in iter::zip(&variant_def.fields, places) {
struct_fmt.field(field.name.as_str(), place);
}
struct_fmt.finish()
}
}
})
}
AggregateKind::Closure(def_id, args) => ty::tls::with(|tcx| {
let name = if tcx.sess.opts.unstable_opts.span_free_formats {
let args = tcx.lift(args).unwrap();
format!("[closure@{}]", tcx.def_path_str_with_args(def_id, args),)
} else {
let span = tcx.def_span(def_id);
format!(
"[closure@{}]",
tcx.sess.source_map().span_to_diagnostic_string(span)
)
};
let mut struct_fmt = fmt.debug_struct(&name);
// FIXME(project-rfc-2229#48): This should be a list of capture names/places
if let Some(def_id) = def_id.as_local()
&& let Some(upvars) = tcx.upvars_mentioned(def_id)
{
for (&var_id, place) in iter::zip(upvars.keys(), places) {
let var_name = tcx.hir().name(var_id);
struct_fmt.field(var_name.as_str(), place);
}
} else {
for (index, place) in places.iter().enumerate() {
struct_fmt.field(&format!("{index}"), place);
}
}
struct_fmt.finish()
}),
AggregateKind::Generator(def_id, _, _) => ty::tls::with(|tcx| {
let name = format!("[generator@{:?}]", tcx.def_span(def_id));
let mut struct_fmt = fmt.debug_struct(&name);
// FIXME(project-rfc-2229#48): This should be a list of capture names/places
if let Some(def_id) = def_id.as_local()
&& let Some(upvars) = tcx.upvars_mentioned(def_id)
{
for (&var_id, place) in iter::zip(upvars.keys(), places) {
let var_name = tcx.hir().name(var_id);
struct_fmt.field(var_name.as_str(), place);
}
} else {
for (index, place) in places.iter().enumerate() {
struct_fmt.field(&format!("{index}"), place);
}
}
struct_fmt.finish()
}),
}
}
ShallowInitBox(ref place, ref ty) => {
with_no_trimmed_paths!(write!(fmt, "ShallowInitBox({place:?}, {ty})"))
}
}
}
}
/// A collection of projections into user types.
///
/// They are projections because a binding can occur a part of a
/// parent pattern that has been ascribed a type.
///
/// Its a collection because there can be multiple type ascriptions on
/// It's a collection because there can be multiple type ascriptions on
/// the path from the root of the pattern down to the binding itself.
///
/// An example:

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,441 @@
/// Functionality for statements, operands, places, and things that appear in them.
use super::*;
///////////////////////////////////////////////////////////////////////////
// Statements
/// A statement in a basic block, including information about its source code.
#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub struct Statement<'tcx> {
pub source_info: SourceInfo,
pub kind: StatementKind<'tcx>,
}
impl Statement<'_> {
/// Changes a statement to a nop. This is both faster than deleting instructions and avoids
/// invalidating statement indices in `Location`s.
pub fn make_nop(&mut self) {
self.kind = StatementKind::Nop
}
/// Changes a statement to a nop and returns the original statement.
#[must_use = "If you don't need the statement, use `make_nop` instead"]
pub fn replace_nop(&mut self) -> Self {
Statement {
source_info: self.source_info,
kind: mem::replace(&mut self.kind, StatementKind::Nop),
}
}
}
impl<'tcx> StatementKind<'tcx> {
pub fn as_assign_mut(&mut self) -> Option<&mut (Place<'tcx>, Rvalue<'tcx>)> {
match self {
StatementKind::Assign(x) => Some(x),
_ => None,
}
}
pub fn as_assign(&self) -> Option<&(Place<'tcx>, Rvalue<'tcx>)> {
match self {
StatementKind::Assign(x) => Some(x),
_ => None,
}
}
}
///////////////////////////////////////////////////////////////////////////
// Places
impl<V, T> ProjectionElem<V, T> {
/// Returns `true` if the target of this projection may refer to a different region of memory
/// than the base.
fn is_indirect(&self) -> bool {
match self {
Self::Deref => true,
Self::Field(_, _)
| Self::Index(_)
| Self::OpaqueCast(_)
| Self::ConstantIndex { .. }
| Self::Subslice { .. }
| Self::Downcast(_, _) => false,
}
}
/// Returns `true` if the target of this projection always refers to the same memory region
/// whatever the state of the program.
pub fn is_stable_offset(&self) -> bool {
match self {
Self::Deref | Self::Index(_) => false,
Self::Field(_, _)
| Self::OpaqueCast(_)
| Self::ConstantIndex { .. }
| Self::Subslice { .. }
| Self::Downcast(_, _) => true,
}
}
/// Returns `true` if this is a `Downcast` projection with the given `VariantIdx`.
pub fn is_downcast_to(&self, v: VariantIdx) -> bool {
matches!(*self, Self::Downcast(_, x) if x == v)
}
/// Returns `true` if this is a `Field` projection with the given index.
pub fn is_field_to(&self, f: FieldIdx) -> bool {
matches!(*self, Self::Field(x, _) if x == f)
}
/// Returns `true` if this is accepted inside `VarDebugInfoContents::Place`.
pub fn can_use_in_debuginfo(&self) -> bool {
match self {
Self::ConstantIndex { from_end: false, .. }
| Self::Deref
| Self::Downcast(_, _)
| Self::Field(_, _) => true,
Self::ConstantIndex { from_end: true, .. }
| Self::Index(_)
| Self::OpaqueCast(_)
| Self::Subslice { .. } => false,
}
}
}
/// Alias for projections as they appear in `UserTypeProjection`, where we
/// need neither the `V` parameter for `Index` nor the `T` for `Field`.
pub type ProjectionKind = ProjectionElem<(), ()>;
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct PlaceRef<'tcx> {
pub local: Local,
pub projection: &'tcx [PlaceElem<'tcx>],
}
// Once we stop implementing `Ord` for `DefId`,
// this impl will be unnecessary. Until then, we'll
// leave this impl in place to prevent re-adding a
// dependency on the `Ord` impl for `DefId`
impl<'tcx> !PartialOrd for PlaceRef<'tcx> {}
impl<'tcx> Place<'tcx> {
// FIXME change this to a const fn by also making List::empty a const fn.
pub fn return_place() -> Place<'tcx> {
Place { local: RETURN_PLACE, projection: List::empty() }
}
/// Returns `true` if this `Place` contains a `Deref` projection.
///
/// If `Place::is_indirect` returns false, the caller knows that the `Place` refers to the
/// same region of memory as its base.
pub fn is_indirect(&self) -> bool {
self.projection.iter().any(|elem| elem.is_indirect())
}
/// Returns `true` if this `Place`'s first projection is `Deref`.
///
/// This is useful because for MIR phases `AnalysisPhase::PostCleanup` and later,
/// `Deref` projections can only occur as the first projection. In that case this method
/// is equivalent to `is_indirect`, but faster.
pub fn is_indirect_first_projection(&self) -> bool {
self.as_ref().is_indirect_first_projection()
}
/// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
/// a single deref of a local.
#[inline(always)]
pub fn local_or_deref_local(&self) -> Option<Local> {
self.as_ref().local_or_deref_local()
}
/// If this place represents a local variable like `_X` with no
/// projections, return `Some(_X)`.
#[inline(always)]
pub fn as_local(&self) -> Option<Local> {
self.as_ref().as_local()
}
#[inline]
pub fn as_ref(&self) -> PlaceRef<'tcx> {
PlaceRef { local: self.local, projection: &self.projection }
}
/// Iterate over the projections in evaluation order, i.e., the first element is the base with
/// its projection and then subsequently more projections are added.
/// As a concrete example, given the place a.b.c, this would yield:
/// - (a, .b)
/// - (a.b, .c)
///
/// Given a place without projections, the iterator is empty.
#[inline]
pub fn iter_projections(
self,
) -> impl Iterator<Item = (PlaceRef<'tcx>, PlaceElem<'tcx>)> + DoubleEndedIterator {
self.as_ref().iter_projections()
}
/// Generates a new place by appending `more_projections` to the existing ones
/// and interning the result.
pub fn project_deeper(self, more_projections: &[PlaceElem<'tcx>], tcx: TyCtxt<'tcx>) -> Self {
if more_projections.is_empty() {
return self;
}
self.as_ref().project_deeper(more_projections, tcx)
}
}
impl From<Local> for Place<'_> {
#[inline]
fn from(local: Local) -> Self {
Place { local, projection: List::empty() }
}
}
impl<'tcx> PlaceRef<'tcx> {
/// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
/// a single deref of a local.
pub fn local_or_deref_local(&self) -> Option<Local> {
match *self {
PlaceRef { local, projection: [] }
| PlaceRef { local, projection: [ProjectionElem::Deref] } => Some(local),
_ => None,
}
}
/// Returns `true` if this `Place` contains a `Deref` projection.
///
/// If `Place::is_indirect` returns false, the caller knows that the `Place` refers to the
/// same region of memory as its base.
pub fn is_indirect(&self) -> bool {
self.projection.iter().any(|elem| elem.is_indirect())
}
/// Returns `true` if this `Place`'s first projection is `Deref`.
///
/// This is useful because for MIR phases `AnalysisPhase::PostCleanup` and later,
/// `Deref` projections can only occur as the first projection. In that case this method
/// is equivalent to `is_indirect`, but faster.
pub fn is_indirect_first_projection(&self) -> bool {
// To make sure this is not accidentally used in wrong mir phase
debug_assert!(
self.projection.is_empty() || !self.projection[1..].contains(&PlaceElem::Deref)
);
self.projection.first() == Some(&PlaceElem::Deref)
}
/// If this place represents a local variable like `_X` with no
/// projections, return `Some(_X)`.
#[inline]
pub fn as_local(&self) -> Option<Local> {
match *self {
PlaceRef { local, projection: [] } => Some(local),
_ => None,
}
}
#[inline]
pub fn last_projection(&self) -> Option<(PlaceRef<'tcx>, PlaceElem<'tcx>)> {
if let &[ref proj_base @ .., elem] = self.projection {
Some((PlaceRef { local: self.local, projection: proj_base }, elem))
} else {
None
}
}
/// Iterate over the projections in evaluation order, i.e., the first element is the base with
/// its projection and then subsequently more projections are added.
/// As a concrete example, given the place a.b.c, this would yield:
/// - (a, .b)
/// - (a.b, .c)
///
/// Given a place without projections, the iterator is empty.
#[inline]
pub fn iter_projections(
self,
) -> impl Iterator<Item = (PlaceRef<'tcx>, PlaceElem<'tcx>)> + DoubleEndedIterator {
self.projection.iter().enumerate().map(move |(i, proj)| {
let base = PlaceRef { local: self.local, projection: &self.projection[..i] };
(base, *proj)
})
}
/// Generates a new place by appending `more_projections` to the existing ones
/// and interning the result.
pub fn project_deeper(
self,
more_projections: &[PlaceElem<'tcx>],
tcx: TyCtxt<'tcx>,
) -> Place<'tcx> {
let mut v: Vec<PlaceElem<'tcx>>;
let new_projections = if self.projection.is_empty() {
more_projections
} else {
v = Vec::with_capacity(self.projection.len() + more_projections.len());
v.extend(self.projection);
v.extend(more_projections);
&v
};
Place { local: self.local, projection: tcx.mk_place_elems(new_projections) }
}
}
impl From<Local> for PlaceRef<'_> {
#[inline]
fn from(local: Local) -> Self {
PlaceRef { local, projection: &[] }
}
}
///////////////////////////////////////////////////////////////////////////
// Operands
impl<'tcx> Operand<'tcx> {
/// Convenience helper to make a constant that refers to the fn
/// with given `DefId` and args. Since this is used to synthesize
/// MIR, assumes `user_ty` is None.
pub fn function_handle(
tcx: TyCtxt<'tcx>,
def_id: DefId,
args: impl IntoIterator<Item = GenericArg<'tcx>>,
span: Span,
) -> Self {
let ty = Ty::new_fn_def(tcx, def_id, args);
Operand::Constant(Box::new(Constant {
span,
user_ty: None,
literal: ConstantKind::Val(ConstValue::ZeroSized, ty),
}))
}
pub fn is_move(&self) -> bool {
matches!(self, Operand::Move(..))
}
/// Convenience helper to make a literal-like constant from a given scalar value.
/// Since this is used to synthesize MIR, assumes `user_ty` is None.
pub fn const_from_scalar(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
val: Scalar,
span: Span,
) -> Operand<'tcx> {
debug_assert!({
let param_env_and_ty = ty::ParamEnv::empty().and(ty);
let type_size = tcx
.layout_of(param_env_and_ty)
.unwrap_or_else(|e| panic!("could not compute layout for {ty:?}: {e:?}"))
.size;
let scalar_size = match val {
Scalar::Int(int) => int.size(),
_ => panic!("Invalid scalar type {val:?}"),
};
scalar_size == type_size
});
Operand::Constant(Box::new(Constant {
span,
user_ty: None,
literal: ConstantKind::Val(ConstValue::Scalar(val), ty),
}))
}
pub fn to_copy(&self) -> Self {
match *self {
Operand::Copy(_) | Operand::Constant(_) => self.clone(),
Operand::Move(place) => Operand::Copy(place),
}
}
/// Returns the `Place` that is the target of this `Operand`, or `None` if this `Operand` is a
/// constant.
pub fn place(&self) -> Option<Place<'tcx>> {
match self {
Operand::Copy(place) | Operand::Move(place) => Some(*place),
Operand::Constant(_) => None,
}
}
/// Returns the `Constant` that is the target of this `Operand`, or `None` if this `Operand` is a
/// place.
pub fn constant(&self) -> Option<&Constant<'tcx>> {
match self {
Operand::Constant(x) => Some(&**x),
Operand::Copy(_) | Operand::Move(_) => None,
}
}
/// Gets the `ty::FnDef` from an operand if it's a constant function item.
///
/// While this is unlikely in general, it's the normal case of what you'll
/// find as the `func` in a [`TerminatorKind::Call`].
pub fn const_fn_def(&self) -> Option<(DefId, GenericArgsRef<'tcx>)> {
let const_ty = self.constant()?.literal.ty();
if let ty::FnDef(def_id, args) = *const_ty.kind() { Some((def_id, args)) } else { None }
}
}
///////////////////////////////////////////////////////////////////////////
/// Rvalues
impl<'tcx> Rvalue<'tcx> {
/// Returns true if rvalue can be safely removed when the result is unused.
#[inline]
pub fn is_safe_to_remove(&self) -> bool {
match self {
// Pointer to int casts may be side-effects due to exposing the provenance.
// While the model is undecided, we should be conservative. See
// <https://www.ralfj.de/blog/2022/04/11/provenance-exposed.html>
Rvalue::Cast(CastKind::PointerExposeAddress, _, _) => false,
Rvalue::Use(_)
| Rvalue::CopyForDeref(_)
| Rvalue::Repeat(_, _)
| Rvalue::Ref(_, _, _)
| Rvalue::ThreadLocalRef(_)
| Rvalue::AddressOf(_, _)
| Rvalue::Len(_)
| Rvalue::Cast(
CastKind::IntToInt
| CastKind::FloatToInt
| CastKind::FloatToFloat
| CastKind::IntToFloat
| CastKind::FnPtrToPtr
| CastKind::PtrToPtr
| CastKind::PointerCoercion(_)
| CastKind::PointerFromExposedAddress
| CastKind::DynStar
| CastKind::Transmute,
_,
_,
)
| Rvalue::BinaryOp(_, _)
| Rvalue::CheckedBinaryOp(_, _)
| Rvalue::NullaryOp(_, _)
| Rvalue::UnaryOp(_, _)
| Rvalue::Discriminant(_)
| Rvalue::Aggregate(_, _)
| Rvalue::ShallowInitBox(_, _) => true,
}
}
}
impl BorrowKind {
pub fn mutability(&self) -> Mutability {
match *self {
BorrowKind::Shared | BorrowKind::Shallow => Mutability::Not,
BorrowKind::Mut { .. } => Mutability::Mut,
}
}
pub fn allows_two_phase_borrow(&self) -> bool {
match *self {
BorrowKind::Shared
| BorrowKind::Shallow
| BorrowKind::Mut { kind: MutBorrowKind::Default | MutBorrowKind::ClosureCapture } => {
false
}
BorrowKind::Mut { kind: MutBorrowKind::TwoPhaseBorrow } => true,
}
}
}

View File

@ -3,7 +3,7 @@
//! This is in a dedicated file so that changes to this file can be reviewed more carefully.
//! The intention is that this file only contains datatype declarations, no code.
use super::{BasicBlock, Constant, Local, SwitchTargets, UserTypeProjection};
use super::{BasicBlock, Constant, Local, UserTypeProjection};
use crate::mir::coverage::{CodeRegion, CoverageKind};
use crate::traits::Reveal;
@ -24,6 +24,7 @@ use rustc_span::def_id::LocalDefId;
use rustc_span::symbol::Symbol;
use rustc_span::Span;
use rustc_target::asm::InlineAsmRegOrRegClass;
use smallvec::SmallVec;
/// Represents the "flavors" of MIR.
///
@ -828,6 +829,27 @@ impl TerminatorKind<'_> {
}
}
#[derive(Debug, Clone, TyEncodable, TyDecodable, Hash, HashStable, PartialEq)]
pub struct SwitchTargets {
/// Possible values. The locations to branch to in each case
/// are found in the corresponding indices from the `targets` vector.
pub(super) values: SmallVec<[u128; 1]>,
/// Possible branch sites. The last element of this vector is used
/// for the otherwise branch, so targets.len() == values.len() + 1
/// should hold.
//
// This invariant is quite non-obvious and also could be improved.
// One way to make this invariant is to have something like this instead:
//
// branches: Vec<(ConstInt, BasicBlock)>,
// otherwise: Option<BasicBlock> // exhaustive if None
//
// However weve decided to keep this as-is until we figure a case
// where some other approach seems to be strictly better than other.
pub(super) targets: SmallVec<[BasicBlock; 2]>,
}
/// Action to be taken when a stack unwind happens.
#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable)]
#[derive(TypeFoldable, TypeVisitable)]

View File

@ -1,39 +1,16 @@
/// Functionality for terminators and helper types that appear in terminators.
use rustc_hir::LangItem;
use smallvec::SmallVec;
use super::{BasicBlock, InlineAsmOperand, Operand, SourceInfo, TerminatorKind, UnwindAction};
use rustc_ast::InlineAsmTemplatePiece;
pub use rustc_ast::Mutability;
use rustc_macros::HashStable;
use std::borrow::Cow;
use std::fmt::{self, Debug, Formatter, Write};
use std::iter;
use std::slice;
pub use super::query::*;
use super::*;
#[derive(Debug, Clone, TyEncodable, TyDecodable, Hash, HashStable, PartialEq)]
pub struct SwitchTargets {
/// Possible values. The locations to branch to in each case
/// are found in the corresponding indices from the `targets` vector.
values: SmallVec<[u128; 1]>,
/// Possible branch sites. The last element of this vector is used
/// for the otherwise branch, so targets.len() == values.len() + 1
/// should hold.
//
// This invariant is quite non-obvious and also could be improved.
// One way to make this invariant is to have something like this instead:
//
// branches: Vec<(ConstInt, BasicBlock)>,
// otherwise: Option<BasicBlock> // exhaustive if None
//
// However weve decided to keep this as-is until we figure a case
// where some other approach seems to be strictly better than other.
targets: SmallVec<[BasicBlock; 2]>,
}
impl SwitchTargets {
/// Creates switch targets from an iterator of values and target blocks.
///
@ -135,6 +112,168 @@ impl UnwindTerminateReason {
}
}
impl<O> AssertKind<O> {
/// Returns true if this an overflow checking assertion controlled by -C overflow-checks.
pub fn is_optional_overflow_check(&self) -> bool {
use AssertKind::*;
use BinOp::*;
matches!(self, OverflowNeg(..) | Overflow(Add | Sub | Mul | Shl | Shr, ..))
}
/// Get the message that is printed at runtime when this assertion fails.
///
/// The caller is expected to handle `BoundsCheck` and `MisalignedPointerDereference` by
/// invoking the appropriate lang item (panic_bounds_check/panic_misaligned_pointer_dereference)
/// instead of printing a static message.
pub fn description(&self) -> &'static str {
use AssertKind::*;
match self {
Overflow(BinOp::Add, _, _) => "attempt to add with overflow",
Overflow(BinOp::Sub, _, _) => "attempt to subtract with overflow",
Overflow(BinOp::Mul, _, _) => "attempt to multiply with overflow",
Overflow(BinOp::Div, _, _) => "attempt to divide with overflow",
Overflow(BinOp::Rem, _, _) => "attempt to calculate the remainder with overflow",
OverflowNeg(_) => "attempt to negate with overflow",
Overflow(BinOp::Shr, _, _) => "attempt to shift right with overflow",
Overflow(BinOp::Shl, _, _) => "attempt to shift left with overflow",
Overflow(op, _, _) => bug!("{:?} cannot overflow", op),
DivisionByZero(_) => "attempt to divide by zero",
RemainderByZero(_) => "attempt to calculate the remainder with a divisor of zero",
ResumedAfterReturn(GeneratorKind::Gen) => "generator resumed after completion",
ResumedAfterReturn(GeneratorKind::Async(_)) => "`async fn` resumed after completion",
ResumedAfterPanic(GeneratorKind::Gen) => "generator resumed after panicking",
ResumedAfterPanic(GeneratorKind::Async(_)) => "`async fn` resumed after panicking",
BoundsCheck { .. } | MisalignedPointerDereference { .. } => {
bug!("Unexpected AssertKind")
}
}
}
/// Format the message arguments for the `assert(cond, msg..)` terminator in MIR printing.
///
/// Needs to be kept in sync with the run-time behavior (which is defined by
/// `AssertKind::description` and the lang items mentioned in its docs).
/// Note that we deliberately show more details here than we do at runtime, such as the actual
/// numbers that overflowed -- it is much easier to do so here than at runtime.
pub fn fmt_assert_args<W: fmt::Write>(&self, f: &mut W) -> fmt::Result
where
O: Debug,
{
use AssertKind::*;
match self {
BoundsCheck { ref len, ref index } => write!(
f,
"\"index out of bounds: the length is {{}} but the index is {{}}\", {len:?}, {index:?}"
),
OverflowNeg(op) => {
write!(f, "\"attempt to negate `{{}}`, which would overflow\", {op:?}")
}
DivisionByZero(op) => write!(f, "\"attempt to divide `{{}}` by zero\", {op:?}"),
RemainderByZero(op) => write!(
f,
"\"attempt to calculate the remainder of `{{}}` with a divisor of zero\", {op:?}"
),
Overflow(BinOp::Add, l, r) => write!(
f,
"\"attempt to compute `{{}} + {{}}`, which would overflow\", {l:?}, {r:?}"
),
Overflow(BinOp::Sub, l, r) => write!(
f,
"\"attempt to compute `{{}} - {{}}`, which would overflow\", {l:?}, {r:?}"
),
Overflow(BinOp::Mul, l, r) => write!(
f,
"\"attempt to compute `{{}} * {{}}`, which would overflow\", {l:?}, {r:?}"
),
Overflow(BinOp::Div, l, r) => write!(
f,
"\"attempt to compute `{{}} / {{}}`, which would overflow\", {l:?}, {r:?}"
),
Overflow(BinOp::Rem, l, r) => write!(
f,
"\"attempt to compute the remainder of `{{}} % {{}}`, which would overflow\", {l:?}, {r:?}"
),
Overflow(BinOp::Shr, _, r) => {
write!(f, "\"attempt to shift right by `{{}}`, which would overflow\", {r:?}")
}
Overflow(BinOp::Shl, _, r) => {
write!(f, "\"attempt to shift left by `{{}}`, which would overflow\", {r:?}")
}
MisalignedPointerDereference { required, found } => {
write!(
f,
"\"misaligned pointer dereference: address must be a multiple of {{}} but is {{}}\", {required:?}, {found:?}"
)
}
_ => write!(f, "\"{}\"", self.description()),
}
}
/// Format the diagnostic message for use in a lint (e.g. when the assertion fails during const-eval).
///
/// Needs to be kept in sync with the run-time behavior (which is defined by
/// `AssertKind::description` and the lang items mentioned in its docs).
/// Note that we deliberately show more details here than we do at runtime, such as the actual
/// numbers that overflowed -- it is much easier to do so here than at runtime.
pub fn diagnostic_message(&self) -> DiagnosticMessage {
use crate::fluent_generated::*;
use AssertKind::*;
match self {
BoundsCheck { .. } => middle_bounds_check,
Overflow(BinOp::Shl, _, _) => middle_assert_shl_overflow,
Overflow(BinOp::Shr, _, _) => middle_assert_shr_overflow,
Overflow(_, _, _) => middle_assert_op_overflow,
OverflowNeg(_) => middle_assert_overflow_neg,
DivisionByZero(_) => middle_assert_divide_by_zero,
RemainderByZero(_) => middle_assert_remainder_by_zero,
ResumedAfterReturn(GeneratorKind::Async(_)) => middle_assert_async_resume_after_return,
ResumedAfterReturn(GeneratorKind::Gen) => middle_assert_generator_resume_after_return,
ResumedAfterPanic(GeneratorKind::Async(_)) => middle_assert_async_resume_after_panic,
ResumedAfterPanic(GeneratorKind::Gen) => middle_assert_generator_resume_after_panic,
MisalignedPointerDereference { .. } => middle_assert_misaligned_ptr_deref,
}
}
pub fn add_args(self, adder: &mut dyn FnMut(Cow<'static, str>, DiagnosticArgValue<'static>))
where
O: fmt::Debug,
{
use AssertKind::*;
macro_rules! add {
($name: expr, $value: expr) => {
adder($name.into(), $value.into_diagnostic_arg());
};
}
match self {
BoundsCheck { len, index } => {
add!("len", format!("{len:?}"));
add!("index", format!("{index:?}"));
}
Overflow(BinOp::Shl | BinOp::Shr, _, val)
| DivisionByZero(val)
| RemainderByZero(val)
| OverflowNeg(val) => {
add!("val", format!("{val:#?}"));
}
Overflow(binop, left, right) => {
add!("op", binop.to_hir_binop().as_str());
add!("left", format!("{left:#?}"));
add!("right", format!("{right:#?}"));
}
ResumedAfterReturn(_) | ResumedAfterPanic(_) => {}
MisalignedPointerDereference { required, found } => {
add!("required", format!("{required:#?}"));
add!("found", format!("{found:#?}"));
}
}
}
}
#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable)]
pub struct Terminator<'tcx> {
pub source_info: SourceInfo,
@ -299,187 +438,6 @@ impl<'tcx> TerminatorKind<'tcx> {
}
}
impl<'tcx> Debug for TerminatorKind<'tcx> {
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
self.fmt_head(fmt)?;
let successor_count = self.successors().count();
let labels = self.fmt_successor_labels();
assert_eq!(successor_count, labels.len());
// `Cleanup` is already included in successors
let show_unwind = !matches!(self.unwind(), None | Some(UnwindAction::Cleanup(_)));
let fmt_unwind = |fmt: &mut Formatter<'_>| -> fmt::Result {
write!(fmt, "unwind ")?;
match self.unwind() {
// Not needed or included in successors
None | Some(UnwindAction::Cleanup(_)) => unreachable!(),
Some(UnwindAction::Continue) => write!(fmt, "continue"),
Some(UnwindAction::Unreachable) => write!(fmt, "unreachable"),
Some(UnwindAction::Terminate(reason)) => {
write!(fmt, "terminate({})", reason.as_short_str())
}
}
};
match (successor_count, show_unwind) {
(0, false) => Ok(()),
(0, true) => {
write!(fmt, " -> ")?;
fmt_unwind(fmt)
}
(1, false) => write!(fmt, " -> {:?}", self.successors().next().unwrap()),
_ => {
write!(fmt, " -> [")?;
for (i, target) in self.successors().enumerate() {
if i > 0 {
write!(fmt, ", ")?;
}
write!(fmt, "{}: {:?}", labels[i], target)?;
}
if show_unwind {
write!(fmt, ", ")?;
fmt_unwind(fmt)?;
}
write!(fmt, "]")
}
}
}
}
impl<'tcx> TerminatorKind<'tcx> {
/// Writes the "head" part of the terminator; that is, its name and the data it uses to pick the
/// successor basic block, if any. The only information not included is the list of possible
/// successors, which may be rendered differently between the text and the graphviz format.
pub fn fmt_head<W: Write>(&self, fmt: &mut W) -> fmt::Result {
use self::TerminatorKind::*;
match self {
Goto { .. } => write!(fmt, "goto"),
SwitchInt { discr, .. } => write!(fmt, "switchInt({discr:?})"),
Return => write!(fmt, "return"),
GeneratorDrop => write!(fmt, "generator_drop"),
UnwindResume => write!(fmt, "resume"),
UnwindTerminate(reason) => {
write!(fmt, "abort({})", reason.as_short_str())
}
Yield { value, resume_arg, .. } => write!(fmt, "{resume_arg:?} = yield({value:?})"),
Unreachable => write!(fmt, "unreachable"),
Drop { place, .. } => write!(fmt, "drop({place:?})"),
Call { func, args, destination, .. } => {
write!(fmt, "{destination:?} = ")?;
write!(fmt, "{func:?}(")?;
for (index, arg) in args.iter().enumerate() {
if index > 0 {
write!(fmt, ", ")?;
}
write!(fmt, "{arg:?}")?;
}
write!(fmt, ")")
}
Assert { cond, expected, msg, .. } => {
write!(fmt, "assert(")?;
if !expected {
write!(fmt, "!")?;
}
write!(fmt, "{cond:?}, ")?;
msg.fmt_assert_args(fmt)?;
write!(fmt, ")")
}
FalseEdge { .. } => write!(fmt, "falseEdge"),
FalseUnwind { .. } => write!(fmt, "falseUnwind"),
InlineAsm { template, ref operands, options, .. } => {
write!(fmt, "asm!(\"{}\"", InlineAsmTemplatePiece::to_string(template))?;
for op in operands {
write!(fmt, ", ")?;
let print_late = |&late| if late { "late" } else { "" };
match op {
InlineAsmOperand::In { reg, value } => {
write!(fmt, "in({reg}) {value:?}")?;
}
InlineAsmOperand::Out { reg, late, place: Some(place) } => {
write!(fmt, "{}out({}) {:?}", print_late(late), reg, place)?;
}
InlineAsmOperand::Out { reg, late, place: None } => {
write!(fmt, "{}out({}) _", print_late(late), reg)?;
}
InlineAsmOperand::InOut {
reg,
late,
in_value,
out_place: Some(out_place),
} => {
write!(
fmt,
"in{}out({}) {:?} => {:?}",
print_late(late),
reg,
in_value,
out_place
)?;
}
InlineAsmOperand::InOut { reg, late, in_value, out_place: None } => {
write!(fmt, "in{}out({}) {:?} => _", print_late(late), reg, in_value)?;
}
InlineAsmOperand::Const { value } => {
write!(fmt, "const {value:?}")?;
}
InlineAsmOperand::SymFn { value } => {
write!(fmt, "sym_fn {value:?}")?;
}
InlineAsmOperand::SymStatic { def_id } => {
write!(fmt, "sym_static {def_id:?}")?;
}
}
}
write!(fmt, ", options({options:?}))")
}
}
}
/// Returns the list of labels for the edges to the successor basic blocks.
pub fn fmt_successor_labels(&self) -> Vec<Cow<'static, str>> {
use self::TerminatorKind::*;
match *self {
Return | UnwindResume | UnwindTerminate(_) | Unreachable | GeneratorDrop => vec![],
Goto { .. } => vec!["".into()],
SwitchInt { ref targets, .. } => targets
.values
.iter()
.map(|&u| Cow::Owned(u.to_string()))
.chain(iter::once("otherwise".into()))
.collect(),
Call { target: Some(_), unwind: UnwindAction::Cleanup(_), .. } => {
vec!["return".into(), "unwind".into()]
}
Call { target: Some(_), unwind: _, .. } => vec!["return".into()],
Call { target: None, unwind: UnwindAction::Cleanup(_), .. } => vec!["unwind".into()],
Call { target: None, unwind: _, .. } => vec![],
Yield { drop: Some(_), .. } => vec!["resume".into(), "drop".into()],
Yield { drop: None, .. } => vec!["resume".into()],
Drop { unwind: UnwindAction::Cleanup(_), .. } => vec!["return".into(), "unwind".into()],
Drop { unwind: _, .. } => vec!["return".into()],
Assert { unwind: UnwindAction::Cleanup(_), .. } => {
vec!["success".into(), "unwind".into()]
}
Assert { unwind: _, .. } => vec!["success".into()],
FalseEdge { .. } => vec!["real".into(), "imaginary".into()],
FalseUnwind { unwind: UnwindAction::Cleanup(_), .. } => {
vec!["real".into(), "unwind".into()]
}
FalseUnwind { unwind: _, .. } => vec!["real".into()],
InlineAsm { destination: Some(_), unwind: UnwindAction::Cleanup(_), .. } => {
vec!["return".into(), "unwind".into()]
}
InlineAsm { destination: Some(_), unwind: _, .. } => {
vec!["return".into()]
}
InlineAsm { destination: None, unwind: UnwindAction::Cleanup(_), .. } => {
vec!["unwind".into()]
}
InlineAsm { destination: None, unwind: _, .. } => vec![],
}
}
}
#[derive(Copy, Clone, Debug)]
pub enum TerminatorEdges<'mir, 'tcx> {
/// For terminators that have no successor, like `return`.