Allow overloading explicit dereferences.

This commit is contained in:
Eduard Burtescu 2014-03-05 00:26:51 +02:00
parent 52532d13a6
commit bcc5486c17
14 changed files with 463 additions and 135 deletions

View File

@ -2485,8 +2485,11 @@ before the expression they apply to.
`*`
: Dereference. When applied to a [pointer](#pointer-types) it denotes the pointed-to location.
For pointers to mutable locations, the resulting [lvalue](#lvalues-rvalues-and-temporaries) can be assigned to.
For [enums](#enumerated-types) that have only a single variant, containing a single parameter,
the dereference operator accesses this parameter.
On non-pointer types, it calls calls the `deref` method of the `std::ops::Deref` trait, or the
`deref_mut` method of the `std::ops::DerefMut` trait (if implemented by the type and required
for an outer expression that will or could mutate the dereference), and produces the
result of dereferencing the `&` or `&mut` borrowed pointer returned from the overload method.
`!`
: Logical negation. On the boolean type, this flips between `true` and
`false`. On integer types, this inverts the individual bits in the

View File

@ -921,14 +921,17 @@ impl mc::Typer for TcxTyper {
Ok(ty::node_id_to_type(self.tcx, id))
}
fn node_method_ty(&mut self, id: ast::NodeId) -> Option<ty::t> {
self.method_map.borrow().get().find(&id).map(|method| method.ty)
}
fn adjustment(&mut self, id: ast::NodeId) -> Option<@ty::AutoAdjustment> {
let adjustments = self.tcx.adjustments.borrow();
adjustments.get().find_copy(&id)
}
fn is_method_call(&mut self, id: ast::NodeId) -> bool {
let method_map = self.method_map.borrow();
method_map.get().contains_key(&id)
self.method_map.borrow().get().contains_key(&id)
}
fn temporary_scope(&mut self, id: ast::NodeId) -> Option<ast::NodeId> {

View File

@ -267,6 +267,7 @@ pub type McResult<T> = Result<T, ()>;
pub trait Typer {
fn tcx(&self) -> ty::ctxt;
fn node_ty(&mut self, id: ast::NodeId) -> McResult<ty::t>;
fn node_method_ty(&mut self, id: ast::NodeId) -> Option<ty::t>;
fn adjustment(&mut self, node_id: ast::NodeId) -> Option<@ty::AutoAdjustment>;
fn is_method_call(&mut self, id: ast::NodeId) -> bool;
fn temporary_scope(&mut self, rvalue_id: ast::NodeId) -> Option<ast::NodeId>;
@ -433,11 +434,13 @@ impl<TYPER:Typer> MemCategorizationContext<TYPER> {
let expr_ty = if_ok!(self.expr_ty(expr));
match expr.node {
ast::ExprUnary(ast::UnDeref, e_base) => {
if self.typer.is_method_call(expr.id) {
return Ok(self.cat_rvalue_node(expr.id(), expr.span(), expr_ty));
}
let base_cmt = if_ok!(self.cat_expr(e_base));
let base_cmt = match self.typer.node_method_ty(expr.id) {
Some(method_ty) => {
let ref_ty = ty::ty_fn_ret(method_ty);
self.cat_rvalue_node(expr.id(), expr.span(), ref_ty)
}
None => if_ok!(self.cat_expr(e_base))
};
Ok(self.cat_deref(expr, base_cmt, 0))
}

View File

@ -444,14 +444,12 @@ pub fn trans_call<'a>(
call_ex: &ast::Expr,
f: &ast::Expr,
args: CallArgs,
id: ast::NodeId,
dest: expr::Dest)
-> &'a Block<'a> {
let _icx = push_ctxt("trans_call");
trans_call_inner(in_cx,
Some(common::expr_info(call_ex)),
expr_ty(in_cx, f),
node_id_type(in_cx, id),
|cx, _| trans(cx, f),
args,
Some(dest)).bcx
@ -471,7 +469,6 @@ pub fn trans_method_call<'a>(
bcx,
Some(common::expr_info(call_ex)),
monomorphize_type(bcx, method_ty),
expr_ty(bcx, call_ex),
|cx, arg_cleanup_scope| {
meth::trans_method_callee(cx, call_ex.id, rcvr, arg_cleanup_scope)
},
@ -490,11 +487,9 @@ pub fn trans_lang_call<'a>(
} else {
csearch::get_type(bcx.ccx().tcx, did).ty
};
let rty = ty::ty_fn_ret(fty);
callee::trans_call_inner(bcx,
None,
fty,
rty,
|bcx, _| {
trans_fn_ref_with_vtables_to_callee(bcx,
did,
@ -520,12 +515,10 @@ pub fn trans_lang_call_with_type_params<'a>(
fty = csearch::get_type(bcx.tcx(), did).ty;
}
let rty = ty::ty_fn_ret(fty);
return callee::trans_call_inner(
bcx,
None,
fty,
rty,
|bcx, _| {
let callee =
trans_fn_ref_with_vtables_to_callee(bcx, did, 0,
@ -554,7 +547,6 @@ pub fn trans_call_inner<'a>(
bcx: &'a Block<'a>,
call_info: Option<NodeInfo>,
callee_ty: ty::t,
ret_ty: ty::t,
get_callee: |bcx: &'a Block<'a>,
arg_cleanup_scope: cleanup::ScopeId|
-> Callee<'a>,
@ -610,9 +602,10 @@ pub fn trans_call_inner<'a>(
}
};
let abi = match ty::get(callee_ty).sty {
ty::ty_bare_fn(ref f) => f.abis,
_ => AbiSet::Rust()
let (abi, ret_ty) = match ty::get(callee_ty).sty {
ty::ty_bare_fn(ref f) => (f.abis, f.sig.output),
ty::ty_closure(ref f) => (AbiSet::Rust(), f.sig.output),
_ => fail!("expected bare rust fn or closure in trans_call_inner")
};
let is_rust_fn =
abi.is_rust() ||

View File

@ -467,10 +467,6 @@ fn trans_datum_unadjusted<'a>(bcx: &'a Block<'a>,
trans_binary(bcx, expr, op, lhs, rhs)
}
ast::ExprUnary(ast::UnDeref, base) => {
let basedatum = unpack_datum!(bcx, trans(bcx, base));
deref_once(bcx, expr, basedatum, 0)
}
ast::ExprUnary(op, x) => {
trans_unary_datum(bcx, expr, op, x)
}
@ -782,12 +778,7 @@ fn trans_rvalue_dps_unadjusted<'a>(bcx: &'a Block<'a>,
closure::trans_expr_fn(bcx, sigil, decl, body, expr.id, dest)
}
ast::ExprCall(f, ref args) => {
callee::trans_call(bcx,
expr,
f,
callee::ArgExprs(args.as_slice()),
expr.id,
dest)
callee::trans_call(bcx, expr, f, callee::ArgExprs(args.as_slice()), dest)
}
ast::ExprMethodCall(_, _, ref args) => {
callee::trans_method_call(bcx,
@ -798,18 +789,15 @@ fn trans_rvalue_dps_unadjusted<'a>(bcx: &'a Block<'a>,
}
ast::ExprBinary(_, lhs, rhs) => {
// if not overloaded, would be RvalueDatumExpr
trans_overloaded_op(bcx, expr, lhs,
Some(&*rhs), expr_ty(bcx, expr), dest)
trans_overloaded_op(bcx, expr, lhs, Some(&*rhs), Some(dest)).bcx
}
ast::ExprUnary(_, subexpr) => {
// if not overloaded, would be RvalueDatumExpr
trans_overloaded_op(bcx, expr, subexpr,
None, expr_ty(bcx, expr), dest)
trans_overloaded_op(bcx, expr, subexpr, None, Some(dest)).bcx
}
ast::ExprIndex(base, idx) => {
// if not overloaded, would be RvalueDatumExpr
trans_overloaded_op(bcx, expr, base,
Some(&*idx), expr_ty(bcx, expr), dest)
trans_overloaded_op(bcx, expr, base, Some(&*idx), Some(dest)).bcx
}
ast::ExprCast(val, _) => {
// DPS output mode means this is a trait cast:
@ -1185,17 +1173,14 @@ fn trans_unary_datum<'a>(
let mut bcx = bcx;
let _icx = push_ctxt("trans_unary_datum");
// if deref, would be LvalueExpr
assert!(op != ast::UnDeref);
// if overloaded, would be RvalueDpsExpr
{
let overloaded = {
let method_map = bcx.ccx().maps.method_map.borrow();
assert!(!method_map.get().contains_key(&un_expr.id));
}
method_map.get().contains_key(&un_expr.id)
};
// if overloaded, would be RvalueDpsExpr
assert!(!overloaded || op == ast::UnDeref);
let un_ty = expr_ty(bcx, un_expr);
let sub_ty = expr_ty(bcx, sub_expr);
return match op {
ast::UnNot => {
@ -1226,15 +1211,19 @@ fn trans_unary_datum<'a>(
immediate_rvalue_bcx(bcx, llneg, un_ty).to_expr_datumblock()
}
ast::UnBox => {
trans_boxed_expr(bcx, un_ty, sub_expr, sub_ty, heap_managed)
trans_boxed_expr(bcx, un_ty, sub_expr, expr_ty(bcx, sub_expr), heap_managed)
}
ast::UnUniq => {
trans_boxed_expr(bcx, un_ty, sub_expr, sub_ty, heap_exchange)
trans_boxed_expr(bcx, un_ty, sub_expr, expr_ty(bcx, sub_expr), heap_exchange)
}
ast::UnDeref => {
bcx.sess().bug("deref expressions should have been \
translated using trans_lvalue(), not \
trans_unary_datum()")
if overloaded {
let r = trans_overloaded_op(bcx, un_expr, sub_expr, None, None);
DatumBlock(r.bcx, Datum(r.val, un_ty, LvalueExpr))
} else {
let datum = unpack_datum!(bcx, trans(bcx, sub_expr));
deref_once(bcx, un_expr, datum, 0)
}
}
};
}
@ -1506,14 +1495,12 @@ fn trans_overloaded_op<'a, 'b>(
expr: &ast::Expr,
rcvr: &'b ast::Expr,
arg: Option<&'b ast::Expr>,
ret_ty: ty::t,
dest: Dest)
-> &'a Block<'a> {
dest: Option<Dest>)
-> Result<'a> {
let method_ty = bcx.ccx().maps.method_map.borrow().get().get(&expr.id).ty;
callee::trans_call_inner(bcx,
Some(expr_info(expr)),
monomorphize_type(bcx, method_ty),
ret_ty,
|bcx, arg_cleanup_scope| {
meth::trans_method_callee(bcx,
expr.id,
@ -1521,7 +1508,7 @@ fn trans_overloaded_op<'a, 'b>(
arg_cleanup_scope)
},
callee::ArgAutorefSecond(rcvr, arg),
Some(dest)).bcx
dest)
}
fn int_cast(bcx: &Block,

View File

@ -105,9 +105,8 @@ impl<'a> Reflector<'a> {
for (i, a) in args.iter().enumerate() {
debug!("arg {}: {}", i, bcx.val_to_str(*a));
}
let bool_ty = ty::mk_bool();
let result = unpack_result!(bcx, callee::trans_call_inner(
self.bcx, None, mth_ty, bool_ty,
self.bcx, None, mth_ty,
|bcx, _| meth::trans_trait_callee_from_llval(bcx,
mth_ty,
mth_idx,

View File

@ -3284,6 +3284,7 @@ pub fn expr_kind(tcx: ctxt,
// exception, as its result is always unit.
return match expr.node {
ast::ExprAssignOp(..) => RvalueStmtExpr,
ast::ExprUnary(ast::UnDeref, _) => LvalueExpr,
_ => RvalueDpsExpr
};
}

View File

@ -1243,6 +1243,11 @@ impl FnCtxt {
}
}
pub enum LvaluePreference {
PreferMutLvalue,
NoPreference
}
pub fn do_autoderef(fcx: @FnCtxt, sp: Span, t: ty::t) -> (ty::t, uint) {
/*!
*
@ -1307,6 +1312,40 @@ pub fn do_autoderef(fcx: @FnCtxt, sp: Span, t: ty::t) -> (ty::t, uint) {
};
}
fn try_overloaded_deref(fcx: @FnCtxt,
expr: &ast::Expr,
base_expr: &ast::Expr,
base_ty: ty::t,
lvalue_pref: LvaluePreference)
-> Option<ty::mt> {
// Try DerefMut first, if preferred.
let method = match (lvalue_pref, fcx.tcx().lang_items.deref_mut_trait()) {
(PreferMutLvalue, Some(trait_did)) => {
method::lookup_in_trait(fcx, expr, base_expr, token::intern("deref_mut"),
trait_did, base_ty, [], DontAutoderefReceiver)
}
_ => None
};
// Otherwise, fall back to Deref.
let method = match (method, fcx.tcx().lang_items.deref_trait()) {
(None, Some(trait_did)) => {
method::lookup_in_trait(fcx, expr, base_expr, token::intern("deref"),
trait_did, base_ty, [], DontAutoderefReceiver)
}
(method, _) => method
};
match method {
Some(method) => {
let ref_ty = ty::ty_fn_ret(method.ty);
fcx.inh.method_map.borrow_mut().get().insert(expr.id, method);
ty::deref(ref_ty, true)
}
None => None
}
}
// AST fragment checking
pub fn check_lit(fcx: @FnCtxt, lit: &ast::Lit) -> ty::t {
let tcx = fcx.ccx.tcx;
@ -1349,35 +1388,43 @@ pub fn valid_range_bounds(ccx: @CrateCtxt,
pub fn check_expr_has_type(
fcx: @FnCtxt, expr: &ast::Expr,
expected: ty::t) {
check_expr_with_unifier(fcx, expr, Some(expected), || {
check_expr_with_unifier(fcx, expr, Some(expected), NoPreference, || {
demand::suptype(fcx, expr.span, expected, fcx.expr_ty(expr));
});
}
pub fn check_expr_coercable_to_type(
fcx: @FnCtxt, expr: &ast::Expr,
expected: ty::t) {
check_expr_with_unifier(fcx, expr, Some(expected), || {
fn check_expr_coercable_to_type(fcx: @FnCtxt, expr: &ast::Expr, expected: ty::t) {
check_expr_with_unifier(fcx, expr, Some(expected), NoPreference, || {
demand::coerce(fcx, expr.span, expected, expr)
});
}
pub fn check_expr_with_hint(
fcx: @FnCtxt, expr: &ast::Expr,
expected: ty::t) {
check_expr_with_unifier(fcx, expr, Some(expected), || ())
fn check_expr_with_hint(fcx: @FnCtxt, expr: &ast::Expr, expected: ty::t) {
check_expr_with_unifier(fcx, expr, Some(expected), NoPreference, || ())
}
pub fn check_expr_with_opt_hint(
fcx: @FnCtxt, expr: &ast::Expr,
expected: Option<ty::t>) {
check_expr_with_unifier(fcx, expr, expected, || ())
fn check_expr_with_opt_hint(fcx: @FnCtxt, expr: &ast::Expr,
expected: Option<ty::t>) {
check_expr_with_unifier(fcx, expr, expected, NoPreference, || ())
}
pub fn check_expr(fcx: @FnCtxt, expr: &ast::Expr) {
check_expr_with_unifier(fcx, expr, None, || ())
fn check_expr_with_opt_hint_and_lvalue_pref(fcx: @FnCtxt,
expr: &ast::Expr,
expected: Option<ty::t>,
lvalue_pref: LvaluePreference) {
check_expr_with_unifier(fcx, expr, expected, lvalue_pref, || ())
}
fn check_expr(fcx: @FnCtxt, expr: &ast::Expr) {
check_expr_with_unifier(fcx, expr, None, NoPreference, || ())
}
fn check_expr_with_lvalue_pref(fcx: @FnCtxt, expr: &ast::Expr,
lvalue_pref: LvaluePreference) {
check_expr_with_unifier(fcx, expr, None, lvalue_pref, || ())
}
// determine the `self` type, using fresh variables for all variables
// declared on the impl declaration e.g., `impl<A,B> for ~[(A,B)]`
// would return ($0, $1) where $0 and $1 are freshly instantiated type
@ -1606,10 +1653,11 @@ fn check_type_parameter_positions_in_path(function_context: @FnCtxt,
/// Note that inspecting a type's structure *directly* may expose the fact
/// that there are actually multiple representations for both `ty_err` and
/// `ty_bot`, so avoid that when err and bot need to be handled differently.
pub fn check_expr_with_unifier(fcx: @FnCtxt,
expr: &ast::Expr,
expected: Option<ty::t>,
unifier: ||) {
fn check_expr_with_unifier(fcx: @FnCtxt,
expr: &ast::Expr,
expected: Option<ty::t>,
lvalue_pref: LvaluePreference,
unifier: ||) {
debug!(">> typechecking");
fn check_method_argument_types(
@ -1795,18 +1843,6 @@ pub fn check_expr_with_unifier(fcx: @FnCtxt,
vec::from_fn(len, |_| ty::mk_err())
}
// A generic function for checking assignment expressions
fn check_assignment(fcx: @FnCtxt,
lhs: &ast::Expr,
rhs: &ast::Expr,
id: ast::NodeId) {
check_expr(fcx, lhs);
let lhs_type = fcx.expr_ty(lhs);
check_expr_has_type(fcx, rhs, lhs_type);
fcx.write_ty(id, ty::mk_nil());
// The callee checks for bot / err, we don't need to
}
fn write_call(fcx: @FnCtxt, call_expr: &ast::Expr, output: ty::t) {
fcx.write_ty(call_expr.id, output);
}
@ -1868,7 +1904,10 @@ pub fn check_expr_with_unifier(fcx: @FnCtxt,
args: &[@ast::Expr],
tps: &[ast::P<ast::Ty>]) {
let rcvr = args[0];
check_expr(fcx, rcvr);
// We can't know if we need &mut self before we look up the method,
// so treat the receiver as mutable just in case - only explicit
// overloaded dereferences care about the distinction.
check_expr_with_lvalue_pref(fcx, rcvr, PreferMutLvalue);
// no need to check for bot/err -- callee does that
let expr_t = structurally_resolved_type(fcx,
@ -1999,7 +2038,12 @@ pub fn check_expr_with_unifier(fcx: @FnCtxt,
is_binop_assignment: IsBinopAssignment) {
let tcx = fcx.ccx.tcx;
check_expr(fcx, lhs);
let lvalue_pref = match is_binop_assignment {
BinopAssignment => PreferMutLvalue,
SimpleBinop => NoPreference
};
check_expr_with_lvalue_pref(fcx, lhs, lvalue_pref);
// Callee does bot / err checking
let lhs_t = structurally_resolved_type(fcx, lhs.span,
fcx.expr_ty(lhs));
@ -2246,11 +2290,12 @@ pub fn check_expr_with_unifier(fcx: @FnCtxt,
// Check field access expressions
fn check_field(fcx: @FnCtxt,
expr: &ast::Expr,
lvalue_pref: LvaluePreference,
base: &ast::Expr,
field: ast::Name,
tys: &[ast::P<ast::Ty>]) {
let tcx = fcx.ccx.tcx;
let bot = check_expr(fcx, base);
let bot = check_expr_with_lvalue_pref(fcx, base, lvalue_pref);
let expr_t = structurally_resolved_type(fcx, expr.span,
fcx.expr_ty(base));
let (base_t, derefs) = do_autoderef(fcx, expr.span, expr_t);
@ -2278,7 +2323,7 @@ pub fn check_expr_with_unifier(fcx: @FnCtxt,
_ => ()
}
let tps : ~[ty::t] = tys.iter().map(|&ty| fcx.to_ty(ty)).collect();
let tps: ~[ty::t] = tys.iter().map(|&ty| fcx.to_ty(ty)).collect();
match method::lookup(fcx,
expr,
base,
@ -2678,10 +2723,13 @@ pub fn check_expr_with_unifier(fcx: @FnCtxt,
ast::UnDeref => None
}
});
check_expr_with_opt_hint(fcx, oprnd, exp_inner);
let lvalue_pref = match unop {
ast::UnDeref => lvalue_pref,
_ => NoPreference
};
check_expr_with_opt_hint_and_lvalue_pref(fcx, oprnd, exp_inner, lvalue_pref);
let mut oprnd_t = fcx.expr_ty(oprnd);
if !ty::type_is_error(oprnd_t) &&
!ty::type_is_bot(oprnd_t) {
if !ty::type_is_error(oprnd_t) && !ty::type_is_bot(oprnd_t) {
match unop {
ast::UnBox => {
oprnd_t = ty::mk_box(tcx, oprnd_t)
@ -2690,33 +2738,35 @@ pub fn check_expr_with_unifier(fcx: @FnCtxt,
oprnd_t = ty::mk_uniq(tcx, oprnd_t);
}
ast::UnDeref => {
let sty = structure_of(fcx, expr.span, oprnd_t);
let operand_ty = ty::deref_sty(sty, true);
match operand_ty {
Some(mt) => {
oprnd_t = mt.ty
}
None => {
match *sty {
ty::ty_struct(did, ref substs) if {
let fields = ty::struct_fields(fcx.tcx(), did, substs);
fields.len() == 1
&& fields[0].ident == token::special_idents::unnamed_field
} => {
oprnd_t = structurally_resolved_type(fcx, expr.span, oprnd_t);
oprnd_t = match ty::deref(oprnd_t, true) {
Some(mt) => mt.ty,
None => match try_overloaded_deref(fcx, expr, oprnd,
oprnd_t, lvalue_pref) {
Some(mt) => mt.ty,
None => {
let is_newtype = match ty::get(oprnd_t).sty {
ty::ty_struct(did, ref substs) => {
let fields = ty::struct_fields(fcx.tcx(), did, substs);
fields.len() == 1
&& fields[0].ident == token::special_idents::unnamed_field
}
_ => false
};
if is_newtype {
// This is an obsolete struct deref
tcx.sess.span_err(
expr.span,
"single-field tuple-structs can no longer be dereferenced");
}
_ => {
fcx.type_error_message(expr.span,
|actual| {
format!("type `{}` cannot be dereferenced", actual)
tcx.sess.span_err(expr.span,
"single-field tuple-structs can \
no longer be dereferenced");
} else {
fcx.type_error_message(expr.span, |actual| {
format!("type `{}` cannot be dereferenced", actual)
}, oprnd_t, None);
}
ty::mk_err()
}
}
}
};
}
ast::UnNot => {
oprnd_t = structurally_resolved_type(fcx, oprnd.span,
@ -2747,7 +2797,11 @@ pub fn check_expr_with_unifier(fcx: @FnCtxt,
fcx, expected,
|sty| match *sty { ty::ty_rptr(_, ref mt) => Some(mt.ty),
_ => None });
check_expr_with_opt_hint(fcx, oprnd, hint);
let lvalue_pref = match mutbl {
ast::MutMutable => PreferMutLvalue,
ast::MutImmutable => NoPreference
};
check_expr_with_opt_hint_and_lvalue_pref(fcx, oprnd, hint, lvalue_pref);
// Note: at this point, we cannot say what the best lifetime
// is to use for resulting pointer. We want to use the
@ -2817,11 +2871,11 @@ pub fn check_expr_with_unifier(fcx: @FnCtxt,
fcx.write_ty(id, ty::mk_u32())
}
ast::ExprParen(a) => {
check_expr_with_opt_hint(fcx, a, expected);
check_expr_with_opt_hint_and_lvalue_pref(fcx, a, expected, lvalue_pref);
fcx.write_ty(id, fcx.expr_ty(a));
}
ast::ExprAssign(lhs, rhs) => {
check_assignment(fcx, lhs, rhs, id);
check_expr_with_lvalue_pref(fcx, lhs, PreferMutLvalue);
let tcx = fcx.tcx();
if !ty::expr_is_lval(tcx, fcx.ccx.method_map, lhs) {
@ -2829,14 +2883,14 @@ pub fn check_expr_with_unifier(fcx: @FnCtxt,
}
let lhs_ty = fcx.expr_ty(lhs);
check_expr_has_type(fcx, rhs, lhs_ty);
let rhs_ty = fcx.expr_ty(rhs);
if ty::type_is_error(lhs_ty) || ty::type_is_error(rhs_ty) {
fcx.write_error(id);
}
else if ty::type_is_bot(lhs_ty) || ty::type_is_bot(rhs_ty) {
} else if ty::type_is_bot(lhs_ty) || ty::type_is_bot(rhs_ty) {
fcx.write_bot(id);
}
else {
} else {
fcx.write_nil(id);
}
}
@ -3111,10 +3165,10 @@ pub fn check_expr_with_unifier(fcx: @FnCtxt,
}
}
ast::ExprField(base, field, ref tys) => {
check_field(fcx, expr, base, field.name, tys.as_slice());
check_field(fcx, expr, lvalue_pref, base, field.name, tys.as_slice());
}
ast::ExprIndex(base, idx) => {
check_expr(fcx, base);
check_expr_with_lvalue_pref(fcx, base, lvalue_pref);
check_expr(fcx, idx);
let raw_base_t = fcx.expr_ty(base);
let idx_t = fcx.expr_ty(idx);

View File

@ -226,12 +226,6 @@ impl Rcx {
self.resolve_type(t)
}
/// Try to resolve the callee type for the given method call.
pub fn resolve_method_type(&mut self, id: ast::NodeId) -> ty::t {
let t = self.fcx.method_ty(id);
self.resolve_type(t)
}
/// Try to resolve the type for the given node.
pub fn resolve_expr_type_adjusted(&mut self, expr: &ast::Expr) -> ty::t {
let ty_unadjusted = self.resolve_node_type(expr.id);
@ -258,14 +252,19 @@ impl<'a> mc::Typer for &'a mut Rcx {
if ty::type_is_error(t) {Err(())} else {Ok(t)}
}
fn node_method_ty(&mut self, id: ast::NodeId) -> Option<ty::t> {
self.fcx.inh.method_map.borrow().get().find(&id).map(|method| {
self.resolve_type(method.ty)
})
}
fn adjustment(&mut self, id: ast::NodeId) -> Option<@ty::AutoAdjustment> {
let adjustments = self.fcx.inh.adjustments.borrow();
adjustments.get().find_copy(&id)
}
fn is_method_call(&mut self, id: ast::NodeId) -> bool {
let method_map = self.fcx.inh.method_map.borrow();
method_map.get().contains_key(&id)
self.fcx.inh.method_map.borrow().get().contains_key(&id)
}
fn temporary_scope(&mut self, id: ast::NodeId) -> Option<ast::NodeId> {
@ -489,7 +488,13 @@ fn visit_expr(rcx: &mut Rcx, expr: &ast::Expr) {
ast::ExprUnary(ast::UnDeref, base) => {
// For *a, the lifetime of a must enclose the deref
let base_ty = rcx.resolve_node_type(base.id);
let base_ty = match rcx.fcx.inh.method_map.get().find(&expr.id) {
Some(method) => {
constrain_call(rcx, None, expr, Some(base), [], true);
ty::ty_fn_ret(method.ty)
}
None => rcx.resolve_node_type(base.id)
};
constrain_derefs(rcx, expr, 1, base_ty);
visit::walk_expr(rcx, expr, ());
@ -764,7 +769,7 @@ fn constrain_call(rcx: &mut Rcx,
implicitly_ref_args);
let callee_ty = match fn_expr_id {
Some(id) => rcx.resolve_node_type(id),
None => rcx.resolve_method_type(call_expr.id)
None => rcx.resolve_type(rcx.fcx.method_ty(call_expr.id))
};
if ty::type_is_error(callee_ty) {
// Bail, as function type is unknown

View File

@ -0,0 +1,68 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Test how overloaded deref interacts with borrows when DerefMut
// is implemented.
use std::ops::{Deref, DerefMut};
struct Own<T> {
value: *mut T
}
impl<T> Deref<T> for Own<T> {
fn deref<'a>(&'a self) -> &'a T {
unsafe { &*self.value }
}
}
impl<T> DerefMut<T> for Own<T> {
fn deref_mut<'a>(&'a mut self) -> &'a mut T {
unsafe { &mut *self.value }
}
}
fn deref_imm(x: Own<int>) {
let _i = &*x;
}
fn deref_mut1(x: Own<int>) {
let _i = &mut *x; //~ ERROR cannot borrow
}
fn deref_mut2(mut x: Own<int>) {
let _i = &mut *x;
}
fn deref_extend<'a>(x: &'a Own<int>) -> &'a int {
&**x
}
fn deref_extend_mut1<'a>(x: &'a Own<int>) -> &'a mut int {
&mut **x //~ ERROR cannot borrow
}
fn deref_extend_mut2<'a>(x: &'a mut Own<int>) -> &'a mut int {
&mut **x
}
fn assign1<'a>(x: Own<int>) {
*x = 3; //~ ERROR cannot borrow
}
fn assign2<'a>(x: &'a Own<int>) {
**x = 3; //~ ERROR cannot borrow
}
fn assign3<'a>(x: &'a mut Own<int>) {
**x = 3;
}
pub fn main() {}

View File

@ -0,0 +1,62 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Test how overloaded deref interacts with borrows when only
// Deref and not DerefMut is implemented.
use std::ops::Deref;
struct Rc<T> {
value: *T
}
impl<T> Deref<T> for Rc<T> {
fn deref<'a>(&'a self) -> &'a T {
unsafe { &*self.value }
}
}
fn deref_imm(x: Rc<int>) {
let _i = &*x;
}
fn deref_mut1(x: Rc<int>) {
let _i = &mut *x; //~ ERROR cannot borrow
}
fn deref_mut2(mut x: Rc<int>) {
let _i = &mut *x; //~ ERROR cannot borrow
}
fn deref_extend<'a>(x: &'a Rc<int>) -> &'a int {
&**x
}
fn deref_extend_mut1<'a>(x: &'a Rc<int>) -> &'a mut int {
&mut **x //~ ERROR cannot borrow
}
fn deref_extend_mut2<'a>(x: &'a mut Rc<int>) -> &'a mut int {
&mut **x //~ ERROR cannot borrow
}
fn assign1<'a>(x: Rc<int>) {
*x = 3; //~ ERROR cannot assign
}
fn assign2<'a>(x: &'a Rc<int>) {
**x = 3; //~ ERROR cannot assign
}
fn assign3<'a>(x: &'a mut Rc<int>) {
**x = 3; //~ ERROR cannot assign
}
pub fn main() {}

View File

@ -0,0 +1,16 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::rc::Rc;
pub fn main() {
let _x = *Rc::new(~"hi");
//~^ ERROR cannot move out of dereference of `&`-pointer
}

View File

@ -0,0 +1,85 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::cell::Cell;
use std::ops::{Deref, DerefMut};
use std::vec_ng::Vec;
struct DerefCounter<T> {
count_imm: Cell<uint>,
count_mut: uint,
value: T
}
impl<T> DerefCounter<T> {
fn new(value: T) -> DerefCounter<T> {
DerefCounter {
count_imm: Cell::new(0),
count_mut: 0,
value: value
}
}
fn counts(&self) -> (uint, uint) {
(self.count_imm.get(), self.count_mut)
}
}
impl<T> Deref<T> for DerefCounter<T> {
fn deref<'a>(&'a self) -> &'a T {
self.count_imm.set(self.count_imm.get() + 1);
&self.value
}
}
impl<T> DerefMut<T> for DerefCounter<T> {
fn deref_mut<'a>(&'a mut self) -> &'a mut T {
self.count_mut += 1;
&mut self.value
}
}
pub fn main() {
let mut n = DerefCounter::new(0);
let mut v = DerefCounter::new(Vec::new());
let _ = *n; // Immutable deref + copy a POD.
assert_eq!(n.counts(), (1, 0));
let _ = (&*n, &*v); // Immutable deref + borrow.
assert_eq!(n.counts(), (2, 0)); assert_eq!(v.counts(), (1, 0));
let _ = (&mut *n, &mut *v); // Mutable deref + mutable borrow.
assert_eq!(n.counts(), (2, 1)); assert_eq!(v.counts(), (1, 1));
let mut v2 = Vec::new();
v2.push(1);
*n = 5; *v = v2; // Mutable deref + assignment.
assert_eq!(n.counts(), (2, 2)); assert_eq!(v.counts(), (1, 2));
*n -= 3; // Mutable deref + assignment with binary operation.
assert_eq!(n.counts(), (2, 3));
// Mutable deref used for calling a method taking &self.
// N.B. This is required because method lookup hasn't been performed so
// we don't know whether the called method takes mutable self, before
// the dereference itself is type-checked (a chicken-and-egg problem).
(*n).to_str();
assert_eq!(n.counts(), (2, 4));
// Mutable deref used for calling a method taking &mut self.
(*v).push(2);
assert_eq!(v.counts(), (1, 3));
// Check the final states.
assert_eq!(*n, 2);
assert_eq!((*v).as_slice(), &[1, 2]);
}

View File

@ -0,0 +1,49 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::cell::RefCell;
use std::rc::Rc;
#[deriving(Eq, Show)]
struct Point {
x: int,
y: int
}
pub fn main() {
assert_eq!(*Rc::new(5), 5);
assert_eq!(***Rc::new(~~5), 5);
assert_eq!(*Rc::new(Point {x: 2, y: 4}), Point {x: 2, y: 4});
let i = Rc::new(RefCell::new(2));
let i_value = *(*i).borrow();
*(*i).borrow_mut() = 5;
assert_eq!((i_value, *(*i).borrow()), (2, 5));
let s = Rc::new(~"foo");
assert_eq!(*s, ~"foo");
assert_eq!((*s).as_slice(), "foo");
let mut_s = Rc::new(RefCell::new(~"foo"));
(*(*mut_s).borrow_mut()).push_str("bar");
// assert_eq! would fail here because it stores the LHS and RHS in two locals.
assert!((*(*mut_s).borrow()).as_slice() == "foobar");
assert!((*(*mut_s).borrow_mut()).as_slice() == "foobar");
let p = Rc::new(RefCell::new(Point {x: 1, y: 2}));
(*(*p).borrow_mut()).x = 3;
(*(*p).borrow_mut()).y += 3;
assert_eq!(*(*p).borrow(), Point {x: 3, y: 5});
let v = Rc::new(RefCell::new(~[1, 2, 3]));
(*(*v).borrow_mut())[0] = 3;
(*(*v).borrow_mut())[1] += 3;
assert_eq!(((*(*v).borrow())[0], (*(*v).borrow())[1], (*(*v).borrow())[2]), (3, 5, 3));
}