mirror of
https://github.com/rust-lang/rust.git
synced 2024-10-30 22:12:15 +00:00
Auto merge of #116176 - FedericoStra:isqrt, r=dtolnay
Add "integer square root" method to integer primitive types For every suffix `N` among `8`, `16`, `32`, `64`, `128` and `size`, this PR adds the methods ```rust const fn uN::isqrt() -> uN; const fn iN::isqrt() -> iN; const fn iN::checked_isqrt() -> Option<iN>; ``` to compute the [integer square root](https://en.wikipedia.org/wiki/Integer_square_root), addressing issue #89273. The implementation is based on the [base 2 digit-by-digit algorithm](https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_(base_2)) on Wikipedia, which after some benchmarking has proved to be faster than both binary search and Heron's/Newton's method. I haven't had the time to understand and port [this code](http://atoms.alife.co.uk/sqrt/SquareRoot.java) based on lookup tables instead, but I'm not sure whether it's worth complicating such a function this much for relatively little benefit.
This commit is contained in:
commit
b8536c1aa1
@ -178,6 +178,7 @@
|
||||
#![feature(ip)]
|
||||
#![feature(ip_bits)]
|
||||
#![feature(is_ascii_octdigit)]
|
||||
#![feature(isqrt)]
|
||||
#![feature(maybe_uninit_uninit_array)]
|
||||
#![feature(ptr_alignment_type)]
|
||||
#![feature(ptr_metadata)]
|
||||
|
@ -898,6 +898,30 @@ macro_rules! int_impl {
|
||||
acc.checked_mul(base)
|
||||
}
|
||||
|
||||
/// Returns the square root of the number, rounded down.
|
||||
///
|
||||
/// Returns `None` if `self` is negative.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// Basic usage:
|
||||
/// ```
|
||||
/// #![feature(isqrt)]
|
||||
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_isqrt(), Some(3));")]
|
||||
/// ```
|
||||
#[unstable(feature = "isqrt", issue = "116226")]
|
||||
#[rustc_const_unstable(feature = "isqrt", issue = "116226")]
|
||||
#[must_use = "this returns the result of the operation, \
|
||||
without modifying the original"]
|
||||
#[inline]
|
||||
pub const fn checked_isqrt(self) -> Option<Self> {
|
||||
if self < 0 {
|
||||
None
|
||||
} else {
|
||||
Some((self as $UnsignedT).isqrt() as Self)
|
||||
}
|
||||
}
|
||||
|
||||
/// Saturating integer addition. Computes `self + rhs`, saturating at the numeric
|
||||
/// bounds instead of overflowing.
|
||||
///
|
||||
@ -2061,6 +2085,36 @@ macro_rules! int_impl {
|
||||
acc * base
|
||||
}
|
||||
|
||||
/// Returns the square root of the number, rounded down.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// This function will panic if `self` is negative.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// Basic usage:
|
||||
/// ```
|
||||
/// #![feature(isqrt)]
|
||||
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
|
||||
/// ```
|
||||
#[unstable(feature = "isqrt", issue = "116226")]
|
||||
#[rustc_const_unstable(feature = "isqrt", issue = "116226")]
|
||||
#[must_use = "this returns the result of the operation, \
|
||||
without modifying the original"]
|
||||
#[inline]
|
||||
pub const fn isqrt(self) -> Self {
|
||||
// I would like to implement it as
|
||||
// ```
|
||||
// self.checked_isqrt().expect("argument of integer square root must be non-negative")
|
||||
// ```
|
||||
// but `expect` is not yet stable as a `const fn`.
|
||||
match self.checked_isqrt() {
|
||||
Some(sqrt) => sqrt,
|
||||
None => panic!("argument of integer square root must be non-negative"),
|
||||
}
|
||||
}
|
||||
|
||||
/// Calculates the quotient of Euclidean division of `self` by `rhs`.
|
||||
///
|
||||
/// This computes the integer `q` such that `self = q * rhs + r`, with
|
||||
|
@ -1995,6 +1995,54 @@ macro_rules! uint_impl {
|
||||
acc * base
|
||||
}
|
||||
|
||||
/// Returns the square root of the number, rounded down.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// Basic usage:
|
||||
/// ```
|
||||
/// #![feature(isqrt)]
|
||||
#[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
|
||||
/// ```
|
||||
#[unstable(feature = "isqrt", issue = "116226")]
|
||||
#[rustc_const_unstable(feature = "isqrt", issue = "116226")]
|
||||
#[must_use = "this returns the result of the operation, \
|
||||
without modifying the original"]
|
||||
#[inline]
|
||||
pub const fn isqrt(self) -> Self {
|
||||
if self < 2 {
|
||||
return self;
|
||||
}
|
||||
|
||||
// The algorithm is based on the one presented in
|
||||
// <https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_(base_2)>
|
||||
// which cites as source the following C code:
|
||||
// <https://web.archive.org/web/20120306040058/http://medialab.freaknet.org/martin/src/sqrt/sqrt.c>.
|
||||
|
||||
let mut op = self;
|
||||
let mut res = 0;
|
||||
let mut one = 1 << (self.ilog2() & !1);
|
||||
|
||||
while one != 0 {
|
||||
if op >= res + one {
|
||||
op -= res + one;
|
||||
res = (res >> 1) + one;
|
||||
} else {
|
||||
res >>= 1;
|
||||
}
|
||||
one >>= 2;
|
||||
}
|
||||
|
||||
// SAFETY: the result is positive and fits in an integer with half as many bits.
|
||||
// Inform the optimizer about it.
|
||||
unsafe {
|
||||
intrinsics::assume(0 < res);
|
||||
intrinsics::assume(res < 1 << (Self::BITS / 2));
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
/// Performs Euclidean division.
|
||||
///
|
||||
/// Since, for the positive integers, all common
|
||||
|
@ -56,6 +56,7 @@
|
||||
#![feature(min_specialization)]
|
||||
#![feature(numfmt)]
|
||||
#![feature(num_midpoint)]
|
||||
#![feature(isqrt)]
|
||||
#![feature(step_trait)]
|
||||
#![feature(str_internals)]
|
||||
#![feature(std_internals)]
|
||||
|
@ -290,6 +290,38 @@ macro_rules! int_module {
|
||||
assert_eq!(r.saturating_pow(0), 1 as $T);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_isqrt() {
|
||||
assert_eq!($T::MIN.checked_isqrt(), None);
|
||||
assert_eq!((-1 as $T).checked_isqrt(), None);
|
||||
assert_eq!((0 as $T).isqrt(), 0 as $T);
|
||||
assert_eq!((1 as $T).isqrt(), 1 as $T);
|
||||
assert_eq!((2 as $T).isqrt(), 1 as $T);
|
||||
assert_eq!((99 as $T).isqrt(), 9 as $T);
|
||||
assert_eq!((100 as $T).isqrt(), 10 as $T);
|
||||
}
|
||||
|
||||
#[cfg(not(miri))] // Miri is too slow
|
||||
#[test]
|
||||
fn test_lots_of_isqrt() {
|
||||
let n_max: $T = (1024 * 1024).min($T::MAX as u128) as $T;
|
||||
for n in 0..=n_max {
|
||||
let isqrt: $T = n.isqrt();
|
||||
|
||||
assert!(isqrt.pow(2) <= n);
|
||||
let (square, overflow) = (isqrt + 1).overflowing_pow(2);
|
||||
assert!(overflow || square > n);
|
||||
}
|
||||
|
||||
for n in ($T::MAX - 127)..=$T::MAX {
|
||||
let isqrt: $T = n.isqrt();
|
||||
|
||||
assert!(isqrt.pow(2) <= n);
|
||||
let (square, overflow) = (isqrt + 1).overflowing_pow(2);
|
||||
assert!(overflow || square > n);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_div_floor() {
|
||||
let a: $T = 8;
|
||||
|
@ -206,6 +206,35 @@ macro_rules! uint_module {
|
||||
assert_eq!(r.saturating_pow(2), MAX);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_isqrt() {
|
||||
assert_eq!((0 as $T).isqrt(), 0 as $T);
|
||||
assert_eq!((1 as $T).isqrt(), 1 as $T);
|
||||
assert_eq!((2 as $T).isqrt(), 1 as $T);
|
||||
assert_eq!((99 as $T).isqrt(), 9 as $T);
|
||||
assert_eq!((100 as $T).isqrt(), 10 as $T);
|
||||
assert_eq!($T::MAX.isqrt(), (1 << ($T::BITS / 2)) - 1);
|
||||
}
|
||||
|
||||
#[cfg(not(miri))] // Miri is too slow
|
||||
#[test]
|
||||
fn test_lots_of_isqrt() {
|
||||
let n_max: $T = (1024 * 1024).min($T::MAX as u128) as $T;
|
||||
for n in 0..=n_max {
|
||||
let isqrt: $T = n.isqrt();
|
||||
|
||||
assert!(isqrt.pow(2) <= n);
|
||||
assert!(isqrt + 1 == (1 as $T) << ($T::BITS / 2) || (isqrt + 1).pow(2) > n);
|
||||
}
|
||||
|
||||
for n in ($T::MAX - 255)..=$T::MAX {
|
||||
let isqrt: $T = n.isqrt();
|
||||
|
||||
assert!(isqrt.pow(2) <= n);
|
||||
assert!(isqrt + 1 == (1 as $T) << ($T::BITS / 2) || (isqrt + 1).pow(2) > n);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_div_floor() {
|
||||
assert_eq!((8 as $T).div_floor(3), 2);
|
||||
|
Loading…
Reference in New Issue
Block a user