mirror of
https://github.com/rust-lang/rust.git
synced 2024-11-22 14:55:26 +00:00
move candidate assembly into a submodule
This commit is contained in:
parent
634977f8f2
commit
b8172ec405
611
src/librustc_trait_selection/traits/select/candidate_assembly.rs
Normal file
611
src/librustc_trait_selection/traits/select/candidate_assembly.rs
Normal file
@ -0,0 +1,611 @@
|
||||
//! Candidate assembly.
|
||||
//!
|
||||
//! The selection process begins by examining all in-scope impls,
|
||||
//! caller obligations, and so forth and assembling a list of
|
||||
//! candidates. See the [rustc dev guide] for more details.
|
||||
//!
|
||||
//! [rustc dev guide]:https://rustc-dev-guide.rust-lang.org/traits/resolution.html#candidate-assembly
|
||||
use rustc_hir as hir;
|
||||
use rustc_infer::traits::{Obligation, SelectionError, TraitObligation};
|
||||
use rustc_middle::ty::{self, TypeFoldable};
|
||||
use rustc_target::spec::abi::Abi;
|
||||
|
||||
use crate::traits::{util, SelectionResult};
|
||||
|
||||
use super::BuiltinImplConditions;
|
||||
use super::SelectionCandidate::{self, *};
|
||||
use super::{SelectionCandidateSet, SelectionContext, TraitObligationStack};
|
||||
|
||||
impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
|
||||
pub(super) fn candidate_from_obligation<'o>(
|
||||
&mut self,
|
||||
stack: &TraitObligationStack<'o, 'tcx>,
|
||||
) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
|
||||
// Watch out for overflow. This intentionally bypasses (and does
|
||||
// not update) the cache.
|
||||
self.check_recursion_limit(&stack.obligation, &stack.obligation)?;
|
||||
|
||||
// Check the cache. Note that we freshen the trait-ref
|
||||
// separately rather than using `stack.fresh_trait_ref` --
|
||||
// this is because we want the unbound variables to be
|
||||
// replaced with fresh types starting from index 0.
|
||||
let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate);
|
||||
debug!(
|
||||
"candidate_from_obligation(cache_fresh_trait_pred={:?}, obligation={:?})",
|
||||
cache_fresh_trait_pred, stack
|
||||
);
|
||||
debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
|
||||
|
||||
if let Some(c) =
|
||||
self.check_candidate_cache(stack.obligation.param_env, cache_fresh_trait_pred)
|
||||
{
|
||||
debug!("CACHE HIT: SELECT({:?})={:?}", cache_fresh_trait_pred, c);
|
||||
return c;
|
||||
}
|
||||
|
||||
// If no match, compute result and insert into cache.
|
||||
//
|
||||
// FIXME(nikomatsakis) -- this cache is not taking into
|
||||
// account cycles that may have occurred in forming the
|
||||
// candidate. I don't know of any specific problems that
|
||||
// result but it seems awfully suspicious.
|
||||
let (candidate, dep_node) =
|
||||
self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
|
||||
|
||||
debug!("CACHE MISS: SELECT({:?})={:?}", cache_fresh_trait_pred, candidate);
|
||||
self.insert_candidate_cache(
|
||||
stack.obligation.param_env,
|
||||
cache_fresh_trait_pred,
|
||||
dep_node,
|
||||
candidate.clone(),
|
||||
);
|
||||
candidate
|
||||
}
|
||||
|
||||
pub(super) fn assemble_candidates<'o>(
|
||||
&mut self,
|
||||
stack: &TraitObligationStack<'o, 'tcx>,
|
||||
) -> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>> {
|
||||
let TraitObligationStack { obligation, .. } = *stack;
|
||||
let obligation = &Obligation {
|
||||
param_env: obligation.param_env,
|
||||
cause: obligation.cause.clone(),
|
||||
recursion_depth: obligation.recursion_depth,
|
||||
predicate: self.infcx().resolve_vars_if_possible(&obligation.predicate),
|
||||
};
|
||||
|
||||
if obligation.predicate.skip_binder().self_ty().is_ty_var() {
|
||||
// Self is a type variable (e.g., `_: AsRef<str>`).
|
||||
//
|
||||
// This is somewhat problematic, as the current scheme can't really
|
||||
// handle it turning to be a projection. This does end up as truly
|
||||
// ambiguous in most cases anyway.
|
||||
//
|
||||
// Take the fast path out - this also improves
|
||||
// performance by preventing assemble_candidates_from_impls from
|
||||
// matching every impl for this trait.
|
||||
return Ok(SelectionCandidateSet { vec: vec![], ambiguous: true });
|
||||
}
|
||||
|
||||
let mut candidates = SelectionCandidateSet { vec: Vec::new(), ambiguous: false };
|
||||
|
||||
self.assemble_candidates_for_trait_alias(obligation, &mut candidates)?;
|
||||
|
||||
// Other bounds. Consider both in-scope bounds from fn decl
|
||||
// and applicable impls. There is a certain set of precedence rules here.
|
||||
let def_id = obligation.predicate.def_id();
|
||||
let lang_items = self.tcx().lang_items();
|
||||
|
||||
if lang_items.copy_trait() == Some(def_id) {
|
||||
debug!("obligation self ty is {:?}", obligation.predicate.skip_binder().self_ty());
|
||||
|
||||
// User-defined copy impls are permitted, but only for
|
||||
// structs and enums.
|
||||
self.assemble_candidates_from_impls(obligation, &mut candidates)?;
|
||||
|
||||
// For other types, we'll use the builtin rules.
|
||||
let copy_conditions = self.copy_clone_conditions(obligation);
|
||||
self.assemble_builtin_bound_candidates(copy_conditions, &mut candidates)?;
|
||||
} else if lang_items.discriminant_kind_trait() == Some(def_id) {
|
||||
// `DiscriminantKind` is automatically implemented for every type.
|
||||
candidates.vec.push(DiscriminantKindCandidate);
|
||||
} else if lang_items.sized_trait() == Some(def_id) {
|
||||
// Sized is never implementable by end-users, it is
|
||||
// always automatically computed.
|
||||
let sized_conditions = self.sized_conditions(obligation);
|
||||
self.assemble_builtin_bound_candidates(sized_conditions, &mut candidates)?;
|
||||
} else if lang_items.unsize_trait() == Some(def_id) {
|
||||
self.assemble_candidates_for_unsizing(obligation, &mut candidates);
|
||||
} else {
|
||||
if lang_items.clone_trait() == Some(def_id) {
|
||||
// Same builtin conditions as `Copy`, i.e., every type which has builtin support
|
||||
// for `Copy` also has builtin support for `Clone`, and tuples/arrays of `Clone`
|
||||
// types have builtin support for `Clone`.
|
||||
let clone_conditions = self.copy_clone_conditions(obligation);
|
||||
self.assemble_builtin_bound_candidates(clone_conditions, &mut candidates)?;
|
||||
}
|
||||
|
||||
self.assemble_generator_candidates(obligation, &mut candidates)?;
|
||||
self.assemble_closure_candidates(obligation, &mut candidates)?;
|
||||
self.assemble_fn_pointer_candidates(obligation, &mut candidates)?;
|
||||
self.assemble_candidates_from_impls(obligation, &mut candidates)?;
|
||||
self.assemble_candidates_from_object_ty(obligation, &mut candidates);
|
||||
}
|
||||
|
||||
self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
|
||||
self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
|
||||
// Auto implementations have lower priority, so we only
|
||||
// consider triggering a default if there is no other impl that can apply.
|
||||
if candidates.vec.is_empty() {
|
||||
self.assemble_candidates_from_auto_impls(obligation, &mut candidates)?;
|
||||
}
|
||||
debug!("candidate list size: {}", candidates.vec.len());
|
||||
Ok(candidates)
|
||||
}
|
||||
|
||||
fn assemble_candidates_from_projected_tys(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) {
|
||||
debug!("assemble_candidates_for_projected_tys({:?})", obligation);
|
||||
|
||||
// Before we go into the whole placeholder thing, just
|
||||
// quickly check if the self-type is a projection at all.
|
||||
match obligation.predicate.skip_binder().trait_ref.self_ty().kind {
|
||||
ty::Projection(_) | ty::Opaque(..) => {}
|
||||
ty::Infer(ty::TyVar(_)) => {
|
||||
span_bug!(
|
||||
obligation.cause.span,
|
||||
"Self=_ should have been handled by assemble_candidates"
|
||||
);
|
||||
}
|
||||
_ => return,
|
||||
}
|
||||
|
||||
let result = self.infcx.probe(|snapshot| {
|
||||
self.match_projection_obligation_against_definition_bounds(obligation, snapshot)
|
||||
});
|
||||
|
||||
if result {
|
||||
candidates.vec.push(ProjectionCandidate);
|
||||
}
|
||||
}
|
||||
|
||||
/// Given an obligation like `<SomeTrait for T>`, searches the obligations that the caller
|
||||
/// supplied to find out whether it is listed among them.
|
||||
///
|
||||
/// Never affects the inference environment.
|
||||
fn assemble_candidates_from_caller_bounds<'o>(
|
||||
&mut self,
|
||||
stack: &TraitObligationStack<'o, 'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) -> Result<(), SelectionError<'tcx>> {
|
||||
debug!("assemble_candidates_from_caller_bounds({:?})", stack.obligation);
|
||||
|
||||
let all_bounds = stack
|
||||
.obligation
|
||||
.param_env
|
||||
.caller_bounds
|
||||
.iter()
|
||||
.filter_map(|o| o.to_opt_poly_trait_ref());
|
||||
|
||||
// Micro-optimization: filter out predicates relating to different traits.
|
||||
let matching_bounds =
|
||||
all_bounds.filter(|p| p.def_id() == stack.obligation.predicate.def_id());
|
||||
|
||||
// Keep only those bounds which may apply, and propagate overflow if it occurs.
|
||||
let mut param_candidates = vec![];
|
||||
for bound in matching_bounds {
|
||||
let wc = self.evaluate_where_clause(stack, bound)?;
|
||||
if wc.may_apply() {
|
||||
param_candidates.push(ParamCandidate(bound));
|
||||
}
|
||||
}
|
||||
|
||||
candidates.vec.extend(param_candidates);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn assemble_generator_candidates(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) -> Result<(), SelectionError<'tcx>> {
|
||||
if self.tcx().lang_items().gen_trait() != Some(obligation.predicate.def_id()) {
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
// Okay to skip binder because the substs on generator types never
|
||||
// touch bound regions, they just capture the in-scope
|
||||
// type/region parameters.
|
||||
let self_ty = *obligation.self_ty().skip_binder();
|
||||
match self_ty.kind {
|
||||
ty::Generator(..) => {
|
||||
debug!(
|
||||
"assemble_generator_candidates: self_ty={:?} obligation={:?}",
|
||||
self_ty, obligation
|
||||
);
|
||||
|
||||
candidates.vec.push(GeneratorCandidate);
|
||||
}
|
||||
ty::Infer(ty::TyVar(_)) => {
|
||||
debug!("assemble_generator_candidates: ambiguous self-type");
|
||||
candidates.ambiguous = true;
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Checks for the artificial impl that the compiler will create for an obligation like `X :
|
||||
/// FnMut<..>` where `X` is a closure type.
|
||||
///
|
||||
/// Note: the type parameters on a closure candidate are modeled as *output* type
|
||||
/// parameters and hence do not affect whether this trait is a match or not. They will be
|
||||
/// unified during the confirmation step.
|
||||
fn assemble_closure_candidates(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) -> Result<(), SelectionError<'tcx>> {
|
||||
let kind = match self.tcx().fn_trait_kind_from_lang_item(obligation.predicate.def_id()) {
|
||||
Some(k) => k,
|
||||
None => {
|
||||
return Ok(());
|
||||
}
|
||||
};
|
||||
|
||||
// Okay to skip binder because the substs on closure types never
|
||||
// touch bound regions, they just capture the in-scope
|
||||
// type/region parameters
|
||||
match obligation.self_ty().skip_binder().kind {
|
||||
ty::Closure(_, closure_substs) => {
|
||||
debug!("assemble_unboxed_candidates: kind={:?} obligation={:?}", kind, obligation);
|
||||
match self.infcx.closure_kind(closure_substs) {
|
||||
Some(closure_kind) => {
|
||||
debug!("assemble_unboxed_candidates: closure_kind = {:?}", closure_kind);
|
||||
if closure_kind.extends(kind) {
|
||||
candidates.vec.push(ClosureCandidate);
|
||||
}
|
||||
}
|
||||
None => {
|
||||
debug!("assemble_unboxed_candidates: closure_kind not yet known");
|
||||
candidates.vec.push(ClosureCandidate);
|
||||
}
|
||||
}
|
||||
}
|
||||
ty::Infer(ty::TyVar(_)) => {
|
||||
debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
|
||||
candidates.ambiguous = true;
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Implements one of the `Fn()` family for a fn pointer.
|
||||
fn assemble_fn_pointer_candidates(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) -> Result<(), SelectionError<'tcx>> {
|
||||
// We provide impl of all fn traits for fn pointers.
|
||||
if self.tcx().fn_trait_kind_from_lang_item(obligation.predicate.def_id()).is_none() {
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
// Okay to skip binder because what we are inspecting doesn't involve bound regions.
|
||||
let self_ty = *obligation.self_ty().skip_binder();
|
||||
match self_ty.kind {
|
||||
ty::Infer(ty::TyVar(_)) => {
|
||||
debug!("assemble_fn_pointer_candidates: ambiguous self-type");
|
||||
candidates.ambiguous = true; // Could wind up being a fn() type.
|
||||
}
|
||||
// Provide an impl, but only for suitable `fn` pointers.
|
||||
ty::FnDef(..) | ty::FnPtr(_) => {
|
||||
if let ty::FnSig {
|
||||
unsafety: hir::Unsafety::Normal,
|
||||
abi: Abi::Rust,
|
||||
c_variadic: false,
|
||||
..
|
||||
} = self_ty.fn_sig(self.tcx()).skip_binder()
|
||||
{
|
||||
candidates.vec.push(FnPointerCandidate);
|
||||
}
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Searches for impls that might apply to `obligation`.
|
||||
fn assemble_candidates_from_impls(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) -> Result<(), SelectionError<'tcx>> {
|
||||
debug!("assemble_candidates_from_impls(obligation={:?})", obligation);
|
||||
|
||||
self.tcx().for_each_relevant_impl(
|
||||
obligation.predicate.def_id(),
|
||||
obligation.predicate.skip_binder().trait_ref.self_ty(),
|
||||
|impl_def_id| {
|
||||
self.infcx.probe(|snapshot| {
|
||||
if let Ok(_substs) = self.match_impl(impl_def_id, obligation, snapshot) {
|
||||
candidates.vec.push(ImplCandidate(impl_def_id));
|
||||
}
|
||||
});
|
||||
},
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn assemble_candidates_from_auto_impls(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) -> Result<(), SelectionError<'tcx>> {
|
||||
// Okay to skip binder here because the tests we do below do not involve bound regions.
|
||||
let self_ty = *obligation.self_ty().skip_binder();
|
||||
debug!("assemble_candidates_from_auto_impls(self_ty={:?})", self_ty);
|
||||
|
||||
let def_id = obligation.predicate.def_id();
|
||||
|
||||
if self.tcx().trait_is_auto(def_id) {
|
||||
match self_ty.kind {
|
||||
ty::Dynamic(..) => {
|
||||
// For object types, we don't know what the closed
|
||||
// over types are. This means we conservatively
|
||||
// say nothing; a candidate may be added by
|
||||
// `assemble_candidates_from_object_ty`.
|
||||
}
|
||||
ty::Foreign(..) => {
|
||||
// Since the contents of foreign types is unknown,
|
||||
// we don't add any `..` impl. Default traits could
|
||||
// still be provided by a manual implementation for
|
||||
// this trait and type.
|
||||
}
|
||||
ty::Param(..) | ty::Projection(..) => {
|
||||
// In these cases, we don't know what the actual
|
||||
// type is. Therefore, we cannot break it down
|
||||
// into its constituent types. So we don't
|
||||
// consider the `..` impl but instead just add no
|
||||
// candidates: this means that typeck will only
|
||||
// succeed if there is another reason to believe
|
||||
// that this obligation holds. That could be a
|
||||
// where-clause or, in the case of an object type,
|
||||
// it could be that the object type lists the
|
||||
// trait (e.g., `Foo+Send : Send`). See
|
||||
// `compile-fail/typeck-default-trait-impl-send-param.rs`
|
||||
// for an example of a test case that exercises
|
||||
// this path.
|
||||
}
|
||||
ty::Infer(ty::TyVar(_)) => {
|
||||
// The auto impl might apply; we don't know.
|
||||
candidates.ambiguous = true;
|
||||
}
|
||||
ty::Generator(_, _, movability)
|
||||
if self.tcx().lang_items().unpin_trait() == Some(def_id) =>
|
||||
{
|
||||
match movability {
|
||||
hir::Movability::Static => {
|
||||
// Immovable generators are never `Unpin`, so
|
||||
// suppress the normal auto-impl candidate for it.
|
||||
}
|
||||
hir::Movability::Movable => {
|
||||
// Movable generators are always `Unpin`, so add an
|
||||
// unconditional builtin candidate.
|
||||
candidates.vec.push(BuiltinCandidate { has_nested: false });
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
_ => candidates.vec.push(AutoImplCandidate(def_id)),
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Searches for impls that might apply to `obligation`.
|
||||
fn assemble_candidates_from_object_ty(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) {
|
||||
debug!(
|
||||
"assemble_candidates_from_object_ty(self_ty={:?})",
|
||||
obligation.self_ty().skip_binder()
|
||||
);
|
||||
|
||||
self.infcx.probe(|_snapshot| {
|
||||
// The code below doesn't care about regions, and the
|
||||
// self-ty here doesn't escape this probe, so just erase
|
||||
// any LBR.
|
||||
let self_ty = self.tcx().erase_late_bound_regions(&obligation.self_ty());
|
||||
let poly_trait_ref = match self_ty.kind {
|
||||
ty::Dynamic(ref data, ..) => {
|
||||
if data.auto_traits().any(|did| did == obligation.predicate.def_id()) {
|
||||
debug!(
|
||||
"assemble_candidates_from_object_ty: matched builtin bound, \
|
||||
pushing candidate"
|
||||
);
|
||||
candidates.vec.push(BuiltinObjectCandidate);
|
||||
return;
|
||||
}
|
||||
|
||||
if let Some(principal) = data.principal() {
|
||||
if !self.infcx.tcx.features().object_safe_for_dispatch {
|
||||
principal.with_self_ty(self.tcx(), self_ty)
|
||||
} else if self.tcx().is_object_safe(principal.def_id()) {
|
||||
principal.with_self_ty(self.tcx(), self_ty)
|
||||
} else {
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
// Only auto trait bounds exist.
|
||||
return;
|
||||
}
|
||||
}
|
||||
ty::Infer(ty::TyVar(_)) => {
|
||||
debug!("assemble_candidates_from_object_ty: ambiguous");
|
||||
candidates.ambiguous = true; // could wind up being an object type
|
||||
return;
|
||||
}
|
||||
_ => return,
|
||||
};
|
||||
|
||||
debug!("assemble_candidates_from_object_ty: poly_trait_ref={:?}", poly_trait_ref);
|
||||
|
||||
// Count only those upcast versions that match the trait-ref
|
||||
// we are looking for. Specifically, do not only check for the
|
||||
// correct trait, but also the correct type parameters.
|
||||
// For example, we may be trying to upcast `Foo` to `Bar<i32>`,
|
||||
// but `Foo` is declared as `trait Foo: Bar<u32>`.
|
||||
let upcast_trait_refs = util::supertraits(self.tcx(), poly_trait_ref)
|
||||
.filter(|upcast_trait_ref| {
|
||||
self.infcx
|
||||
.probe(|_| self.match_poly_trait_ref(obligation, *upcast_trait_ref).is_ok())
|
||||
})
|
||||
.count();
|
||||
|
||||
if upcast_trait_refs > 1 {
|
||||
// Can be upcast in many ways; need more type information.
|
||||
candidates.ambiguous = true;
|
||||
} else if upcast_trait_refs == 1 {
|
||||
candidates.vec.push(ObjectCandidate);
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
/// Searches for unsizing that might apply to `obligation`.
|
||||
fn assemble_candidates_for_unsizing(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) {
|
||||
// We currently never consider higher-ranked obligations e.g.
|
||||
// `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
|
||||
// because they are a priori invalid, and we could potentially add support
|
||||
// for them later, it's just that there isn't really a strong need for it.
|
||||
// A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
|
||||
// impl, and those are generally applied to concrete types.
|
||||
//
|
||||
// That said, one might try to write a fn with a where clause like
|
||||
// for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
|
||||
// where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
|
||||
// Still, you'd be more likely to write that where clause as
|
||||
// T: Trait
|
||||
// so it seems ok if we (conservatively) fail to accept that `Unsize`
|
||||
// obligation above. Should be possible to extend this in the future.
|
||||
let source = match obligation.self_ty().no_bound_vars() {
|
||||
Some(t) => t,
|
||||
None => {
|
||||
// Don't add any candidates if there are bound regions.
|
||||
return;
|
||||
}
|
||||
};
|
||||
let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
|
||||
|
||||
debug!("assemble_candidates_for_unsizing(source={:?}, target={:?})", source, target);
|
||||
|
||||
let may_apply = match (&source.kind, &target.kind) {
|
||||
// Trait+Kx+'a -> Trait+Ky+'b (upcasts).
|
||||
(&ty::Dynamic(ref data_a, ..), &ty::Dynamic(ref data_b, ..)) => {
|
||||
// Upcasts permit two things:
|
||||
//
|
||||
// 1. Dropping auto traits, e.g., `Foo + Send` to `Foo`
|
||||
// 2. Tightening the region bound, e.g., `Foo + 'a` to `Foo + 'b` if `'a: 'b`
|
||||
//
|
||||
// Note that neither of these changes requires any
|
||||
// change at runtime. Eventually this will be
|
||||
// generalized.
|
||||
//
|
||||
// We always upcast when we can because of reason
|
||||
// #2 (region bounds).
|
||||
data_a.principal_def_id() == data_b.principal_def_id()
|
||||
&& data_b
|
||||
.auto_traits()
|
||||
// All of a's auto traits need to be in b's auto traits.
|
||||
.all(|b| data_a.auto_traits().any(|a| a == b))
|
||||
}
|
||||
|
||||
// `T` -> `Trait`
|
||||
(_, &ty::Dynamic(..)) => true,
|
||||
|
||||
// Ambiguous handling is below `T` -> `Trait`, because inference
|
||||
// variables can still implement `Unsize<Trait>` and nested
|
||||
// obligations will have the final say (likely deferred).
|
||||
(&ty::Infer(ty::TyVar(_)), _) | (_, &ty::Infer(ty::TyVar(_))) => {
|
||||
debug!("assemble_candidates_for_unsizing: ambiguous");
|
||||
candidates.ambiguous = true;
|
||||
false
|
||||
}
|
||||
|
||||
// `[T; n]` -> `[T]`
|
||||
(&ty::Array(..), &ty::Slice(_)) => true,
|
||||
|
||||
// `Struct<T>` -> `Struct<U>`
|
||||
(&ty::Adt(def_id_a, _), &ty::Adt(def_id_b, _)) if def_id_a.is_struct() => {
|
||||
def_id_a == def_id_b
|
||||
}
|
||||
|
||||
// `(.., T)` -> `(.., U)`
|
||||
(&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => tys_a.len() == tys_b.len(),
|
||||
|
||||
_ => false,
|
||||
};
|
||||
|
||||
if may_apply {
|
||||
candidates.vec.push(BuiltinUnsizeCandidate);
|
||||
}
|
||||
}
|
||||
|
||||
fn assemble_candidates_for_trait_alias(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) -> Result<(), SelectionError<'tcx>> {
|
||||
// Okay to skip binder here because the tests we do below do not involve bound regions.
|
||||
let self_ty = *obligation.self_ty().skip_binder();
|
||||
debug!("assemble_candidates_for_trait_alias(self_ty={:?})", self_ty);
|
||||
|
||||
let def_id = obligation.predicate.def_id();
|
||||
|
||||
if self.tcx().is_trait_alias(def_id) {
|
||||
candidates.vec.push(TraitAliasCandidate(def_id));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Assembles the trait which are built-in to the language itself:
|
||||
/// `Copy`, `Clone` and `Sized`.
|
||||
fn assemble_builtin_bound_candidates(
|
||||
&mut self,
|
||||
conditions: BuiltinImplConditions<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) -> Result<(), SelectionError<'tcx>> {
|
||||
match conditions {
|
||||
BuiltinImplConditions::Where(nested) => {
|
||||
debug!("builtin_bound: nested={:?}", nested);
|
||||
candidates
|
||||
.vec
|
||||
.push(BuiltinCandidate { has_nested: !nested.skip_binder().is_empty() });
|
||||
}
|
||||
BuiltinImplConditions::None => {}
|
||||
BuiltinImplConditions::Ambiguous => {
|
||||
debug!("assemble_builtin_bound_candidates: ambiguous builtin");
|
||||
candidates.ambiguous = true;
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
@ -53,7 +53,6 @@ use rustc_middle::ty::{
|
||||
self, ToPolyTraitRef, ToPredicate, Ty, TyCtxt, TypeFoldable, WithConstness,
|
||||
};
|
||||
use rustc_span::symbol::sym;
|
||||
use rustc_target::spec::abi::Abi;
|
||||
|
||||
use std::cell::{Cell, RefCell};
|
||||
use std::cmp;
|
||||
@ -63,6 +62,8 @@ use std::rc::Rc;
|
||||
|
||||
pub use rustc_middle::traits::select::*;
|
||||
|
||||
mod candidate_assembly;
|
||||
|
||||
pub struct SelectionContext<'cx, 'tcx> {
|
||||
infcx: &'cx InferCtxt<'cx, 'tcx>,
|
||||
|
||||
@ -932,61 +933,6 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// CANDIDATE ASSEMBLY
|
||||
//
|
||||
// The selection process begins by examining all in-scope impls,
|
||||
// caller obligations, and so forth and assembling a list of
|
||||
// candidates. See the [rustc dev guide] for more details.
|
||||
//
|
||||
// [rustc dev guide]:
|
||||
// https://rustc-dev-guide.rust-lang.org/traits/resolution.html#candidate-assembly
|
||||
|
||||
fn candidate_from_obligation<'o>(
|
||||
&mut self,
|
||||
stack: &TraitObligationStack<'o, 'tcx>,
|
||||
) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
|
||||
// Watch out for overflow. This intentionally bypasses (and does
|
||||
// not update) the cache.
|
||||
self.check_recursion_limit(&stack.obligation, &stack.obligation)?;
|
||||
|
||||
// Check the cache. Note that we freshen the trait-ref
|
||||
// separately rather than using `stack.fresh_trait_ref` --
|
||||
// this is because we want the unbound variables to be
|
||||
// replaced with fresh types starting from index 0.
|
||||
let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate);
|
||||
debug!(
|
||||
"candidate_from_obligation(cache_fresh_trait_pred={:?}, obligation={:?})",
|
||||
cache_fresh_trait_pred, stack
|
||||
);
|
||||
debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
|
||||
|
||||
if let Some(c) =
|
||||
self.check_candidate_cache(stack.obligation.param_env, cache_fresh_trait_pred)
|
||||
{
|
||||
debug!("CACHE HIT: SELECT({:?})={:?}", cache_fresh_trait_pred, c);
|
||||
return c;
|
||||
}
|
||||
|
||||
// If no match, compute result and insert into cache.
|
||||
//
|
||||
// FIXME(nikomatsakis) -- this cache is not taking into
|
||||
// account cycles that may have occurred in forming the
|
||||
// candidate. I don't know of any specific problems that
|
||||
// result but it seems awfully suspicious.
|
||||
let (candidate, dep_node) =
|
||||
self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
|
||||
|
||||
debug!("CACHE MISS: SELECT({:?})={:?}", cache_fresh_trait_pred, candidate);
|
||||
self.insert_candidate_cache(
|
||||
stack.obligation.param_env,
|
||||
cache_fresh_trait_pred,
|
||||
dep_node,
|
||||
candidate.clone(),
|
||||
);
|
||||
candidate
|
||||
}
|
||||
|
||||
fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
|
||||
where
|
||||
OP: FnOnce(&mut Self) -> R,
|
||||
@ -1320,116 +1266,6 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
|
||||
.insert(param_env.and(trait_ref), WithDepNode::new(dep_node, candidate));
|
||||
}
|
||||
|
||||
fn assemble_candidates<'o>(
|
||||
&mut self,
|
||||
stack: &TraitObligationStack<'o, 'tcx>,
|
||||
) -> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>> {
|
||||
let TraitObligationStack { obligation, .. } = *stack;
|
||||
let obligation = &Obligation {
|
||||
param_env: obligation.param_env,
|
||||
cause: obligation.cause.clone(),
|
||||
recursion_depth: obligation.recursion_depth,
|
||||
predicate: self.infcx().resolve_vars_if_possible(&obligation.predicate),
|
||||
};
|
||||
|
||||
if obligation.predicate.skip_binder().self_ty().is_ty_var() {
|
||||
// Self is a type variable (e.g., `_: AsRef<str>`).
|
||||
//
|
||||
// This is somewhat problematic, as the current scheme can't really
|
||||
// handle it turning to be a projection. This does end up as truly
|
||||
// ambiguous in most cases anyway.
|
||||
//
|
||||
// Take the fast path out - this also improves
|
||||
// performance by preventing assemble_candidates_from_impls from
|
||||
// matching every impl for this trait.
|
||||
return Ok(SelectionCandidateSet { vec: vec![], ambiguous: true });
|
||||
}
|
||||
|
||||
let mut candidates = SelectionCandidateSet { vec: Vec::new(), ambiguous: false };
|
||||
|
||||
self.assemble_candidates_for_trait_alias(obligation, &mut candidates)?;
|
||||
|
||||
// Other bounds. Consider both in-scope bounds from fn decl
|
||||
// and applicable impls. There is a certain set of precedence rules here.
|
||||
let def_id = obligation.predicate.def_id();
|
||||
let lang_items = self.tcx().lang_items();
|
||||
|
||||
if lang_items.copy_trait() == Some(def_id) {
|
||||
debug!("obligation self ty is {:?}", obligation.predicate.skip_binder().self_ty());
|
||||
|
||||
// User-defined copy impls are permitted, but only for
|
||||
// structs and enums.
|
||||
self.assemble_candidates_from_impls(obligation, &mut candidates)?;
|
||||
|
||||
// For other types, we'll use the builtin rules.
|
||||
let copy_conditions = self.copy_clone_conditions(obligation);
|
||||
self.assemble_builtin_bound_candidates(copy_conditions, &mut candidates)?;
|
||||
} else if lang_items.discriminant_kind_trait() == Some(def_id) {
|
||||
// `DiscriminantKind` is automatically implemented for every type.
|
||||
candidates.vec.push(DiscriminantKindCandidate);
|
||||
} else if lang_items.sized_trait() == Some(def_id) {
|
||||
// Sized is never implementable by end-users, it is
|
||||
// always automatically computed.
|
||||
let sized_conditions = self.sized_conditions(obligation);
|
||||
self.assemble_builtin_bound_candidates(sized_conditions, &mut candidates)?;
|
||||
} else if lang_items.unsize_trait() == Some(def_id) {
|
||||
self.assemble_candidates_for_unsizing(obligation, &mut candidates);
|
||||
} else {
|
||||
if lang_items.clone_trait() == Some(def_id) {
|
||||
// Same builtin conditions as `Copy`, i.e., every type which has builtin support
|
||||
// for `Copy` also has builtin support for `Clone`, and tuples/arrays of `Clone`
|
||||
// types have builtin support for `Clone`.
|
||||
let clone_conditions = self.copy_clone_conditions(obligation);
|
||||
self.assemble_builtin_bound_candidates(clone_conditions, &mut candidates)?;
|
||||
}
|
||||
|
||||
self.assemble_generator_candidates(obligation, &mut candidates)?;
|
||||
self.assemble_closure_candidates(obligation, &mut candidates)?;
|
||||
self.assemble_fn_pointer_candidates(obligation, &mut candidates)?;
|
||||
self.assemble_candidates_from_impls(obligation, &mut candidates)?;
|
||||
self.assemble_candidates_from_object_ty(obligation, &mut candidates);
|
||||
}
|
||||
|
||||
self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
|
||||
self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
|
||||
// Auto implementations have lower priority, so we only
|
||||
// consider triggering a default if there is no other impl that can apply.
|
||||
if candidates.vec.is_empty() {
|
||||
self.assemble_candidates_from_auto_impls(obligation, &mut candidates)?;
|
||||
}
|
||||
debug!("candidate list size: {}", candidates.vec.len());
|
||||
Ok(candidates)
|
||||
}
|
||||
|
||||
fn assemble_candidates_from_projected_tys(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) {
|
||||
debug!("assemble_candidates_for_projected_tys({:?})", obligation);
|
||||
|
||||
// Before we go into the whole placeholder thing, just
|
||||
// quickly check if the self-type is a projection at all.
|
||||
match obligation.predicate.skip_binder().trait_ref.self_ty().kind {
|
||||
ty::Projection(_) | ty::Opaque(..) => {}
|
||||
ty::Infer(ty::TyVar(_)) => {
|
||||
span_bug!(
|
||||
obligation.cause.span,
|
||||
"Self=_ should have been handled by assemble_candidates"
|
||||
);
|
||||
}
|
||||
_ => return,
|
||||
}
|
||||
|
||||
let result = self.infcx.probe(|snapshot| {
|
||||
self.match_projection_obligation_against_definition_bounds(obligation, snapshot)
|
||||
});
|
||||
|
||||
if result {
|
||||
candidates.vec.push(ProjectionCandidate);
|
||||
}
|
||||
}
|
||||
|
||||
fn match_projection_obligation_against_definition_bounds(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
@ -1523,42 +1359,6 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
|
||||
&& self.infcx.leak_check(false, placeholder_map, snapshot).is_ok()
|
||||
}
|
||||
|
||||
/// Given an obligation like `<SomeTrait for T>`, searches the obligations that the caller
|
||||
/// supplied to find out whether it is listed among them.
|
||||
///
|
||||
/// Never affects the inference environment.
|
||||
fn assemble_candidates_from_caller_bounds<'o>(
|
||||
&mut self,
|
||||
stack: &TraitObligationStack<'o, 'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) -> Result<(), SelectionError<'tcx>> {
|
||||
debug!("assemble_candidates_from_caller_bounds({:?})", stack.obligation);
|
||||
|
||||
let all_bounds = stack
|
||||
.obligation
|
||||
.param_env
|
||||
.caller_bounds
|
||||
.iter()
|
||||
.filter_map(|o| o.to_opt_poly_trait_ref());
|
||||
|
||||
// Micro-optimization: filter out predicates relating to different traits.
|
||||
let matching_bounds =
|
||||
all_bounds.filter(|p| p.def_id() == stack.obligation.predicate.def_id());
|
||||
|
||||
// Keep only those bounds which may apply, and propagate overflow if it occurs.
|
||||
let mut param_candidates = vec![];
|
||||
for bound in matching_bounds {
|
||||
let wc = self.evaluate_where_clause(stack, bound)?;
|
||||
if wc.may_apply() {
|
||||
param_candidates.push(ParamCandidate(bound));
|
||||
}
|
||||
}
|
||||
|
||||
candidates.vec.extend(param_candidates);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn evaluate_where_clause<'o>(
|
||||
&mut self,
|
||||
stack: &TraitObligationStack<'o, 'tcx>,
|
||||
@ -1574,383 +1374,6 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
|
||||
})
|
||||
}
|
||||
|
||||
fn assemble_generator_candidates(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) -> Result<(), SelectionError<'tcx>> {
|
||||
if self.tcx().lang_items().gen_trait() != Some(obligation.predicate.def_id()) {
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
// Okay to skip binder because the substs on generator types never
|
||||
// touch bound regions, they just capture the in-scope
|
||||
// type/region parameters.
|
||||
let self_ty = *obligation.self_ty().skip_binder();
|
||||
match self_ty.kind {
|
||||
ty::Generator(..) => {
|
||||
debug!(
|
||||
"assemble_generator_candidates: self_ty={:?} obligation={:?}",
|
||||
self_ty, obligation
|
||||
);
|
||||
|
||||
candidates.vec.push(GeneratorCandidate);
|
||||
}
|
||||
ty::Infer(ty::TyVar(_)) => {
|
||||
debug!("assemble_generator_candidates: ambiguous self-type");
|
||||
candidates.ambiguous = true;
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Checks for the artificial impl that the compiler will create for an obligation like `X :
|
||||
/// FnMut<..>` where `X` is a closure type.
|
||||
///
|
||||
/// Note: the type parameters on a closure candidate are modeled as *output* type
|
||||
/// parameters and hence do not affect whether this trait is a match or not. They will be
|
||||
/// unified during the confirmation step.
|
||||
fn assemble_closure_candidates(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) -> Result<(), SelectionError<'tcx>> {
|
||||
let kind = match self.tcx().fn_trait_kind_from_lang_item(obligation.predicate.def_id()) {
|
||||
Some(k) => k,
|
||||
None => {
|
||||
return Ok(());
|
||||
}
|
||||
};
|
||||
|
||||
// Okay to skip binder because the substs on closure types never
|
||||
// touch bound regions, they just capture the in-scope
|
||||
// type/region parameters
|
||||
match obligation.self_ty().skip_binder().kind {
|
||||
ty::Closure(_, closure_substs) => {
|
||||
debug!("assemble_unboxed_candidates: kind={:?} obligation={:?}", kind, obligation);
|
||||
match self.infcx.closure_kind(closure_substs) {
|
||||
Some(closure_kind) => {
|
||||
debug!("assemble_unboxed_candidates: closure_kind = {:?}", closure_kind);
|
||||
if closure_kind.extends(kind) {
|
||||
candidates.vec.push(ClosureCandidate);
|
||||
}
|
||||
}
|
||||
None => {
|
||||
debug!("assemble_unboxed_candidates: closure_kind not yet known");
|
||||
candidates.vec.push(ClosureCandidate);
|
||||
}
|
||||
}
|
||||
}
|
||||
ty::Infer(ty::TyVar(_)) => {
|
||||
debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
|
||||
candidates.ambiguous = true;
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Implements one of the `Fn()` family for a fn pointer.
|
||||
fn assemble_fn_pointer_candidates(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) -> Result<(), SelectionError<'tcx>> {
|
||||
// We provide impl of all fn traits for fn pointers.
|
||||
if self.tcx().fn_trait_kind_from_lang_item(obligation.predicate.def_id()).is_none() {
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
// Okay to skip binder because what we are inspecting doesn't involve bound regions.
|
||||
let self_ty = *obligation.self_ty().skip_binder();
|
||||
match self_ty.kind {
|
||||
ty::Infer(ty::TyVar(_)) => {
|
||||
debug!("assemble_fn_pointer_candidates: ambiguous self-type");
|
||||
candidates.ambiguous = true; // Could wind up being a fn() type.
|
||||
}
|
||||
// Provide an impl, but only for suitable `fn` pointers.
|
||||
ty::FnDef(..) | ty::FnPtr(_) => {
|
||||
if let ty::FnSig {
|
||||
unsafety: hir::Unsafety::Normal,
|
||||
abi: Abi::Rust,
|
||||
c_variadic: false,
|
||||
..
|
||||
} = self_ty.fn_sig(self.tcx()).skip_binder()
|
||||
{
|
||||
candidates.vec.push(FnPointerCandidate);
|
||||
}
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Searches for impls that might apply to `obligation`.
|
||||
fn assemble_candidates_from_impls(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) -> Result<(), SelectionError<'tcx>> {
|
||||
debug!("assemble_candidates_from_impls(obligation={:?})", obligation);
|
||||
|
||||
self.tcx().for_each_relevant_impl(
|
||||
obligation.predicate.def_id(),
|
||||
obligation.predicate.skip_binder().trait_ref.self_ty(),
|
||||
|impl_def_id| {
|
||||
self.infcx.probe(|snapshot| {
|
||||
if let Ok(_substs) = self.match_impl(impl_def_id, obligation, snapshot) {
|
||||
candidates.vec.push(ImplCandidate(impl_def_id));
|
||||
}
|
||||
});
|
||||
},
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn assemble_candidates_from_auto_impls(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) -> Result<(), SelectionError<'tcx>> {
|
||||
// Okay to skip binder here because the tests we do below do not involve bound regions.
|
||||
let self_ty = *obligation.self_ty().skip_binder();
|
||||
debug!("assemble_candidates_from_auto_impls(self_ty={:?})", self_ty);
|
||||
|
||||
let def_id = obligation.predicate.def_id();
|
||||
|
||||
if self.tcx().trait_is_auto(def_id) {
|
||||
match self_ty.kind {
|
||||
ty::Dynamic(..) => {
|
||||
// For object types, we don't know what the closed
|
||||
// over types are. This means we conservatively
|
||||
// say nothing; a candidate may be added by
|
||||
// `assemble_candidates_from_object_ty`.
|
||||
}
|
||||
ty::Foreign(..) => {
|
||||
// Since the contents of foreign types is unknown,
|
||||
// we don't add any `..` impl. Default traits could
|
||||
// still be provided by a manual implementation for
|
||||
// this trait and type.
|
||||
}
|
||||
ty::Param(..) | ty::Projection(..) => {
|
||||
// In these cases, we don't know what the actual
|
||||
// type is. Therefore, we cannot break it down
|
||||
// into its constituent types. So we don't
|
||||
// consider the `..` impl but instead just add no
|
||||
// candidates: this means that typeck will only
|
||||
// succeed if there is another reason to believe
|
||||
// that this obligation holds. That could be a
|
||||
// where-clause or, in the case of an object type,
|
||||
// it could be that the object type lists the
|
||||
// trait (e.g., `Foo+Send : Send`). See
|
||||
// `compile-fail/typeck-default-trait-impl-send-param.rs`
|
||||
// for an example of a test case that exercises
|
||||
// this path.
|
||||
}
|
||||
ty::Infer(ty::TyVar(_)) => {
|
||||
// The auto impl might apply; we don't know.
|
||||
candidates.ambiguous = true;
|
||||
}
|
||||
ty::Generator(_, _, movability)
|
||||
if self.tcx().lang_items().unpin_trait() == Some(def_id) =>
|
||||
{
|
||||
match movability {
|
||||
hir::Movability::Static => {
|
||||
// Immovable generators are never `Unpin`, so
|
||||
// suppress the normal auto-impl candidate for it.
|
||||
}
|
||||
hir::Movability::Movable => {
|
||||
// Movable generators are always `Unpin`, so add an
|
||||
// unconditional builtin candidate.
|
||||
candidates.vec.push(BuiltinCandidate { has_nested: false });
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
_ => candidates.vec.push(AutoImplCandidate(def_id)),
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Searches for impls that might apply to `obligation`.
|
||||
fn assemble_candidates_from_object_ty(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) {
|
||||
debug!(
|
||||
"assemble_candidates_from_object_ty(self_ty={:?})",
|
||||
obligation.self_ty().skip_binder()
|
||||
);
|
||||
|
||||
self.infcx.probe(|_snapshot| {
|
||||
// The code below doesn't care about regions, and the
|
||||
// self-ty here doesn't escape this probe, so just erase
|
||||
// any LBR.
|
||||
let self_ty = self.tcx().erase_late_bound_regions(&obligation.self_ty());
|
||||
let poly_trait_ref = match self_ty.kind {
|
||||
ty::Dynamic(ref data, ..) => {
|
||||
if data.auto_traits().any(|did| did == obligation.predicate.def_id()) {
|
||||
debug!(
|
||||
"assemble_candidates_from_object_ty: matched builtin bound, \
|
||||
pushing candidate"
|
||||
);
|
||||
candidates.vec.push(BuiltinObjectCandidate);
|
||||
return;
|
||||
}
|
||||
|
||||
if let Some(principal) = data.principal() {
|
||||
if !self.infcx.tcx.features().object_safe_for_dispatch {
|
||||
principal.with_self_ty(self.tcx(), self_ty)
|
||||
} else if self.tcx().is_object_safe(principal.def_id()) {
|
||||
principal.with_self_ty(self.tcx(), self_ty)
|
||||
} else {
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
// Only auto trait bounds exist.
|
||||
return;
|
||||
}
|
||||
}
|
||||
ty::Infer(ty::TyVar(_)) => {
|
||||
debug!("assemble_candidates_from_object_ty: ambiguous");
|
||||
candidates.ambiguous = true; // could wind up being an object type
|
||||
return;
|
||||
}
|
||||
_ => return,
|
||||
};
|
||||
|
||||
debug!("assemble_candidates_from_object_ty: poly_trait_ref={:?}", poly_trait_ref);
|
||||
|
||||
// Count only those upcast versions that match the trait-ref
|
||||
// we are looking for. Specifically, do not only check for the
|
||||
// correct trait, but also the correct type parameters.
|
||||
// For example, we may be trying to upcast `Foo` to `Bar<i32>`,
|
||||
// but `Foo` is declared as `trait Foo: Bar<u32>`.
|
||||
let upcast_trait_refs = util::supertraits(self.tcx(), poly_trait_ref)
|
||||
.filter(|upcast_trait_ref| {
|
||||
self.infcx
|
||||
.probe(|_| self.match_poly_trait_ref(obligation, *upcast_trait_ref).is_ok())
|
||||
})
|
||||
.count();
|
||||
|
||||
if upcast_trait_refs > 1 {
|
||||
// Can be upcast in many ways; need more type information.
|
||||
candidates.ambiguous = true;
|
||||
} else if upcast_trait_refs == 1 {
|
||||
candidates.vec.push(ObjectCandidate);
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
/// Searches for unsizing that might apply to `obligation`.
|
||||
fn assemble_candidates_for_unsizing(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) {
|
||||
// We currently never consider higher-ranked obligations e.g.
|
||||
// `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
|
||||
// because they are a priori invalid, and we could potentially add support
|
||||
// for them later, it's just that there isn't really a strong need for it.
|
||||
// A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
|
||||
// impl, and those are generally applied to concrete types.
|
||||
//
|
||||
// That said, one might try to write a fn with a where clause like
|
||||
// for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
|
||||
// where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
|
||||
// Still, you'd be more likely to write that where clause as
|
||||
// T: Trait
|
||||
// so it seems ok if we (conservatively) fail to accept that `Unsize`
|
||||
// obligation above. Should be possible to extend this in the future.
|
||||
let source = match obligation.self_ty().no_bound_vars() {
|
||||
Some(t) => t,
|
||||
None => {
|
||||
// Don't add any candidates if there are bound regions.
|
||||
return;
|
||||
}
|
||||
};
|
||||
let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
|
||||
|
||||
debug!("assemble_candidates_for_unsizing(source={:?}, target={:?})", source, target);
|
||||
|
||||
let may_apply = match (&source.kind, &target.kind) {
|
||||
// Trait+Kx+'a -> Trait+Ky+'b (upcasts).
|
||||
(&ty::Dynamic(ref data_a, ..), &ty::Dynamic(ref data_b, ..)) => {
|
||||
// Upcasts permit two things:
|
||||
//
|
||||
// 1. Dropping auto traits, e.g., `Foo + Send` to `Foo`
|
||||
// 2. Tightening the region bound, e.g., `Foo + 'a` to `Foo + 'b` if `'a: 'b`
|
||||
//
|
||||
// Note that neither of these changes requires any
|
||||
// change at runtime. Eventually this will be
|
||||
// generalized.
|
||||
//
|
||||
// We always upcast when we can because of reason
|
||||
// #2 (region bounds).
|
||||
data_a.principal_def_id() == data_b.principal_def_id()
|
||||
&& data_b
|
||||
.auto_traits()
|
||||
// All of a's auto traits need to be in b's auto traits.
|
||||
.all(|b| data_a.auto_traits().any(|a| a == b))
|
||||
}
|
||||
|
||||
// `T` -> `Trait`
|
||||
(_, &ty::Dynamic(..)) => true,
|
||||
|
||||
// Ambiguous handling is below `T` -> `Trait`, because inference
|
||||
// variables can still implement `Unsize<Trait>` and nested
|
||||
// obligations will have the final say (likely deferred).
|
||||
(&ty::Infer(ty::TyVar(_)), _) | (_, &ty::Infer(ty::TyVar(_))) => {
|
||||
debug!("assemble_candidates_for_unsizing: ambiguous");
|
||||
candidates.ambiguous = true;
|
||||
false
|
||||
}
|
||||
|
||||
// `[T; n]` -> `[T]`
|
||||
(&ty::Array(..), &ty::Slice(_)) => true,
|
||||
|
||||
// `Struct<T>` -> `Struct<U>`
|
||||
(&ty::Adt(def_id_a, _), &ty::Adt(def_id_b, _)) if def_id_a.is_struct() => {
|
||||
def_id_a == def_id_b
|
||||
}
|
||||
|
||||
// `(.., T)` -> `(.., U)`
|
||||
(&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => tys_a.len() == tys_b.len(),
|
||||
|
||||
_ => false,
|
||||
};
|
||||
|
||||
if may_apply {
|
||||
candidates.vec.push(BuiltinUnsizeCandidate);
|
||||
}
|
||||
}
|
||||
|
||||
fn assemble_candidates_for_trait_alias(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) -> Result<(), SelectionError<'tcx>> {
|
||||
// Okay to skip binder here because the tests we do below do not involve bound regions.
|
||||
let self_ty = *obligation.self_ty().skip_binder();
|
||||
debug!("assemble_candidates_for_trait_alias(self_ty={:?})", self_ty);
|
||||
|
||||
let def_id = obligation.predicate.def_id();
|
||||
|
||||
if self.tcx().is_trait_alias(def_id) {
|
||||
candidates.vec.push(TraitAliasCandidate(def_id));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// WINNOW
|
||||
//
|
||||
@ -2128,34 +1551,6 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// BUILTIN BOUNDS
|
||||
//
|
||||
// These cover the traits that are built-in to the language
|
||||
// itself: `Copy`, `Clone` and `Sized`.
|
||||
|
||||
fn assemble_builtin_bound_candidates(
|
||||
&mut self,
|
||||
conditions: BuiltinImplConditions<'tcx>,
|
||||
candidates: &mut SelectionCandidateSet<'tcx>,
|
||||
) -> Result<(), SelectionError<'tcx>> {
|
||||
match conditions {
|
||||
BuiltinImplConditions::Where(nested) => {
|
||||
debug!("builtin_bound: nested={:?}", nested);
|
||||
candidates
|
||||
.vec
|
||||
.push(BuiltinCandidate { has_nested: !nested.skip_binder().is_empty() });
|
||||
}
|
||||
BuiltinImplConditions::None => {}
|
||||
BuiltinImplConditions::Ambiguous => {
|
||||
debug!("assemble_builtin_bound_candidates: ambiguous builtin");
|
||||
candidates.ambiguous = true;
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn sized_conditions(
|
||||
&mut self,
|
||||
obligation: &TraitObligation<'tcx>,
|
||||
|
Loading…
Reference in New Issue
Block a user