Rollup merge of #21355 - alfie:suffix, r=steveklabnik

More [u]int => [i|u]size and [i|u] => [i|u]s changes
This commit is contained in:
Barosl LEE 2015-01-21 02:16:46 +09:00
commit b7afe5ec27

View File

@ -257,10 +257,10 @@ cases mentioned in [Number literals](#number-literals) below.
| [Number literals](#number-literals)`*` | Example | Exponentiation | Suffixes |
|----------------------------------------|---------|----------------|----------|
| Decimal integer | `98_222i` | `N/A` | Integer suffixes |
| Hex integer | `0xffi` | `N/A` | Integer suffixes |
| Octal integer | `0o77i` | `N/A` | Integer suffixes |
| Binary integer | `0b1111_0000i` | `N/A` | Integer suffixes |
| Decimal integer | `98_222is` | `N/A` | Integer suffixes |
| Hex integer | `0xffis` | `N/A` | Integer suffixes |
| Octal integer | `0o77is` | `N/A` | Integer suffixes |
| Binary integer | `0b1111_0000is` | `N/A` | Integer suffixes |
| Floating-point | `123.0E+77f64` | `Optional` | Floating-point suffixes |
`*` All number literals allow `_` as a visual separator: `1_234.0E+18f64`
@ -268,7 +268,7 @@ cases mentioned in [Number literals](#number-literals) below.
##### Suffixes
| Integer | Floating-point |
|---------|----------------|
| `i` (`int`), `u` (`uint`), `u8`, `i8`, `u16`, `i16`, `u32`, `i32`, `u64`, `i64` | `f32`, `f64` |
| `is` (`isize`), `us` (`usize`), `u8`, `i8`, `u16`, `i16`, `u32`, `i32`, `u64`, `i64` | `f32`, `f64` |
#### Character and string literals
@ -468,7 +468,7 @@ Like any literal, an integer literal may be followed (immediately,
without any spaces) by an _integer suffix_, which forcibly sets the
type of the literal. There are 10 valid values for an integer suffix:
* The `i` and `u` suffixes give the literal type `int` or `uint`,
* The `is` and `us` suffixes give the literal type `isize` or `usize`,
respectively.
* Each of the signed and unsigned machine types `u8`, `i8`,
`u16`, `i16`, `u32`, `i32`, `u64` and `i64`
@ -483,9 +483,9 @@ context overconstrains the type, it is also considered a static type error.
Examples of integer literals of various forms:
```
123i; // type int
123u; // type uint
123_u; // type uint
123is; // type isize
123us; // type usize
123_us // type usize
0xff_u8; // type u8
0o70_i16; // type i16
0b1111_1111_1001_0000_i32; // type i32
@ -578,8 +578,8 @@ Two examples of paths with type arguments:
# struct HashMap<K, V>;
# fn f() {
# fn id<T>(t: T) -> T { t }
type T = HashMap<int,String>; // Type arguments used in a type expression
let x = id::<int>(10); // Type arguments used in a call expression
type T = HashMap<i32,String>; // Type arguments used in a type expression
let x = id::<i32>(10); // Type arguments used in a call expression
# }
```
@ -1002,11 +1002,11 @@ use std::option::Option::{Some, None};
use std::collections::hash_map::{mod, HashMap};
fn foo<T>(_: T){}
fn bar(map1: HashMap<String, uint>, map2: hash_map::HashMap<String, uint>){}
fn bar(map1: HashMap<String, usize>, map2: hash_map::HashMap<String, usize>){}
fn main() {
// Equivalent to 'std::iter::range_step(0u, 10u, 2u);'
range_step(0u, 10u, 2u);
// Equivalent to 'std::iter::range_step(0us, 10, 2);'
range_step(0us, 10, 2);
// Equivalent to 'foo(vec![std::option::Option::Some(1.0f64),
// std::option::Option::None]);'
@ -1104,7 +1104,7 @@ interpreted as an implicit `return` expression applied to the final-expression.
An example of a function:
```
fn add(x: int, y: int) -> int {
fn add(x: i32, y: i32) -> i32 {
return x + y;
}
```
@ -1113,7 +1113,7 @@ As with `let` bindings, function arguments are irrefutable patterns, so any
pattern that is valid in a let binding is also valid as an argument.
```
fn first((value, _): (int, int)) -> int { value }
fn first((value, _): (i32, i32)) -> i32 { value }
```
@ -1139,8 +1139,8 @@ used as a type name.
When a generic function is referenced, its type is instantiated based on the
context of the reference. For example, calling the `iter` function defined
above on `[1, 2]` will instantiate type parameter `T` with `int`, and require
the closure parameter to have type `fn(int)`.
above on `[1, 2]` will instantiate type parameter `T` with `isize`, and require
the closure parameter to have type `fn(isize)`.
The type parameters can also be explicitly supplied in a trailing
[path](#paths) component after the function name. This might be necessary if
@ -1272,7 +1272,7 @@ typecheck:
```
# fn my_err(s: &str) -> ! { panic!() }
fn f(i: int) -> int {
fn f(i: i32) -> i32 {
if i == 42 {
return 42;
}
@ -1283,7 +1283,7 @@ fn f(i: int) -> int {
```
This will not compile without the `!` annotation on `my_err`, since the `else`
branch of the conditional in `f` does not return an `int`, as required by the
branch of the conditional in `f` does not return an `i32`, as required by the
signature of `f`. Adding the `!` annotation to `my_err` informs the
typechecker that, should control ever enter `my_err`, no further type judgments
about `f` need to hold, since control will never resume in any context that
@ -1301,18 +1301,18 @@ modifier.
```
// Declares an extern fn, the ABI defaults to "C"
extern fn new_int() -> int { 0 }
extern fn new_i32() -> i32 { 0 }
// Declares an extern fn with "stdcall" ABI
extern "stdcall" fn new_int_stdcall() -> int { 0 }
extern "stdcall" fn new_i32_stdcall() -> i32 { 0 }
```
Unlike normal functions, extern fns have an `extern "ABI" fn()`. This is the
same type as the functions declared in an extern block.
```
# extern fn new_int() -> int { 0 }
let fptr: extern "C" fn() -> int = new_int;
# extern fn new_i32() -> i32 { 0 }
let fptr: extern "C" fn() -> i32 = new_i32;
```
Extern functions may be called directly from Rust code as Rust uses large,
@ -1348,18 +1348,18 @@ keyword `struct`.
An example of a `struct` item and its use:
```
struct Point {x: int, y: int}
struct Point {x: i32, y: i32}
let p = Point {x: 10, y: 11};
let px: int = p.x;
let px: i32 = p.x;
```
A _tuple structure_ is a nominal [tuple type](#tuple-types), also defined with
the keyword `struct`. For example:
```
struct Point(int, int);
struct Point(i32, i32);
let p = Point(10, 11);
let px: int = match p { Point(x, _) => x };
let px: i32 = match p { Point(x, _) => x };
```
A _unit-like struct_ is a structure without any fields, defined by leaving off
@ -1457,14 +1457,14 @@ a type derived from those primitive types. The derived types are references with
the `static` lifetime, fixed-size arrays, tuples, enum variants, and structs.
```
const BIT1: uint = 1 << 0;
const BIT2: uint = 1 << 1;
const BIT1: u32 = 1 << 0;
const BIT2: u32 = 1 << 1;
const BITS: [uint; 2] = [BIT1, BIT2];
const BITS: [u32; 2] = [BIT1, BIT2];
const STRING: &'static str = "bitstring";
struct BitsNStrings<'a> {
mybits: [uint; 2],
mybits: [u32; 2],
mystring: &'a str
}
@ -1500,14 +1500,14 @@ Constants should in general be preferred over statics, unless large amounts of
data are being stored, or single-address and mutability properties are required.
```
use std::sync::atomic::{AtomicUint, Ordering, ATOMIC_UINT_INIT};;
use std::sync::atomic::{AtomicUint, Ordering, ATOMIC_USIZE_INIT};;
// Note that ATOMIC_UINT_INIT is a *const*, but it may be used to initialize a
// Note that ATOMIC_USIZE_INIT is a *const*, but it may be used to initialize a
// static. This static can be modified, so it is not placed in read-only memory.
static COUNTER: AtomicUint = ATOMIC_UINT_INIT;
static COUNTER: AtomicUint = ATOMIC_USIZE_INIT;
// This table is a candidate to be placed in read-only memory.
static TABLE: &'static [uint] = &[1, 2, 3, /* ... */];
static TABLE: &'static [usize] = &[1, 2, 3, /* ... */];
for slot in TABLE.iter() {
println!("{}", slot);
@ -1529,13 +1529,13 @@ Mutable statics are still very useful, however. They can be used with C
libraries and can also be bound from C libraries (in an `extern` block).
```
# fn atomic_add(_: &mut uint, _: uint) -> uint { 2 }
# fn atomic_add(_: &mut u32, _: u32) -> u32 { 2 }
static mut LEVELS: uint = 0;
static mut LEVELS: u32 = 0;
// This violates the idea of no shared state, and this doesn't internally
// protect against races, so this function is `unsafe`
unsafe fn bump_levels_unsafe1() -> uint {
unsafe fn bump_levels_unsafe1() -> u32 {
let ret = LEVELS;
LEVELS += 1;
return ret;
@ -1544,7 +1544,7 @@ unsafe fn bump_levels_unsafe1() -> uint {
// Assuming that we have an atomic_add function which returns the old value,
// this function is "safe" but the meaning of the return value may not be what
// callers expect, so it's still marked as `unsafe`
unsafe fn bump_levels_unsafe2() -> uint {
unsafe fn bump_levels_unsafe2() -> u32 {
return atomic_add(&mut LEVELS, 1);
}
```
@ -1564,8 +1564,8 @@ Traits are implemented for specific types through separate
[implementations](#implementations).
```
# type Surface = int;
# type BoundingBox = int;
# type Surface = i32;
# type BoundingBox = i32;
trait Shape {
fn draw(&self, Surface);
fn bounding_box(&self) -> BoundingBox;
@ -1583,8 +1583,8 @@ functions](#generic-functions).
```
trait Seq<T> {
fn len(&self) -> uint;
fn elt_at(&self, n: uint) -> T;
fn len(&self) -> u32;
fn elt_at(&self, n: u32) -> T;
fn iter<F>(&self, F) where F: Fn(T);
}
```
@ -1595,7 +1595,7 @@ parameter, and within the generic function, the methods of the trait can be
called on values that have the parameter's type. For example:
```
# type Surface = int;
# type Surface = i32;
# trait Shape { fn draw(&self, Surface); }
fn draw_twice<T: Shape>(surface: Surface, sh: T) {
sh.draw(surface);
@ -1610,8 +1610,8 @@ trait is in scope) to pointers to the trait name, used as a type.
```
# trait Shape { }
# impl Shape for int { }
# let mycircle = 0i;
# impl Shape for i32 { }
# let mycircle = 0i32;
let myshape: Box<Shape> = Box::new(mycircle) as Box<Shape>;
```
@ -1629,12 +1629,12 @@ module. For example:
```
trait Num {
fn from_int(n: int) -> Self;
fn from_i32(n: i32) -> Self;
}
impl Num for f64 {
fn from_int(n: int) -> f64 { n as f64 }
fn from_i32(n: i32) -> f64 { n as f64 }
}
let x: f64 = Num::from_int(42);
let x: f64 = Num::from_i32(42);
```
Traits may inherit from other traits. For example, in
@ -1669,9 +1669,9 @@ Likewise, supertrait methods may also be called on trait objects.
```{.ignore}
# trait Shape { fn area(&self) -> f64; }
# trait Circle : Shape { fn radius(&self) -> f64; }
# impl Shape for int { fn area(&self) -> f64 { 0.0 } }
# impl Circle for int { fn radius(&self) -> f64 { 0.0 } }
# let mycircle = 0;
# impl Shape for i32 { fn area(&self) -> f64 { 0.0 } }
# impl Circle for i32 { fn radius(&self) -> f64 { 0.0 } }
# let mycircle = 0i32;
let mycircle = Box::new(mycircle) as Box<Circle>;
let nonsense = mycircle.radius() * mycircle.area();
```
@ -1686,7 +1686,7 @@ Implementations are defined with the keyword `impl`.
```
# struct Point {x: f64, y: f64};
# impl Copy for Point {}
# type Surface = int;
# type Surface = i32;
# struct BoundingBox {x: f64, y: f64, width: f64, height: f64};
# trait Shape { fn draw(&self, Surface); fn bounding_box(&self) -> BoundingBox; }
# fn do_draw_circle(s: Surface, c: Circle) { }
@ -1715,7 +1715,7 @@ limited to nominal types (enums, structs), and the implementation must appear
in the same module or a sub-module as the `self` type:
```
struct Point {x: int, y: int}
struct Point {x: i32, y: i32}
impl Point {
fn log(&self) {
@ -1826,7 +1826,7 @@ struct Foo;
// Declare a public struct with a private field
pub struct Bar {
field: int
field: i32
}
// Declare a public enum with two public variants
@ -2226,15 +2226,15 @@ plugins](book/plugin.html#lint-plugins) can provide additional lint checks.
mod m1 {
// Missing documentation is ignored here
#[allow(missing_docs)]
pub fn undocumented_one() -> int { 1 }
pub fn undocumented_one() -> i32 { 1 }
// Missing documentation signals a warning here
#[warn(missing_docs)]
pub fn undocumented_too() -> int { 2 }
pub fn undocumented_too() -> i32 { 2 }
// Missing documentation signals an error here
#[deny(missing_docs)]
pub fn undocumented_end() -> int { 3 }
pub fn undocumented_end() -> i32 { 3 }
}
```
@ -2247,16 +2247,16 @@ mod m2{
#[allow(missing_docs)]
mod nested {
// Missing documentation is ignored here
pub fn undocumented_one() -> int { 1 }
pub fn undocumented_one() -> i32 { 1 }
// Missing documentation signals a warning here,
// despite the allow above.
#[warn(missing_docs)]
pub fn undocumented_two() -> int { 2 }
pub fn undocumented_two() -> i32 { 2 }
}
// Missing documentation signals a warning here
pub fn undocumented_too() -> int { 3 }
pub fn undocumented_too() -> i32 { 3 }
}
```
@ -2269,7 +2269,7 @@ mod m3 {
// Attempting to toggle warning signals an error here
#[allow(missing_docs)]
/// Returns 2.
pub fn undocumented_too() -> int { 2 }
pub fn undocumented_too() -> i32 { 2 }
}
```
@ -2461,7 +2461,7 @@ the `PartialEq` or `Clone` constraints for the appropriate `impl`:
```
#[derive(PartialEq, Clone)]
struct Foo<T> {
a: int,
a: i32,
b: T
}
```
@ -2469,7 +2469,7 @@ struct Foo<T> {
The generated `impl` for `PartialEq` is equivalent to
```
# struct Foo<T> { a: int, b: T }
# struct Foo<T> { a: i32, b: T }
impl<T: PartialEq> PartialEq for Foo<T> {
fn eq(&self, other: &Foo<T>) -> bool {
self.a == other.a && self.b == other.b
@ -2821,7 +2821,7 @@ parentheses. They are used to create [tuple-typed](#tuple-types) values.
```{.tuple}
(0,);
(0.0, 4.5);
("a", 4u, true);
("a", 4us, true);
```
### Unit expressions
@ -2862,7 +2862,7 @@ The following are examples of structure expressions:
```
# struct Point { x: f64, y: f64 }
# struct TuplePoint(f64, f64);
# mod game { pub struct User<'a> { pub name: &'a str, pub age: uint, pub score: uint } }
# mod game { pub struct User<'a> { pub name: &'a str, pub age: u32, pub score: uint } }
# struct Cookie; fn some_fn<T>(t: T) {}
Point {x: 10.0, y: 20.0};
TuplePoint(10.0, 20.0);
@ -2883,7 +2883,7 @@ were explicitly specified and the values in the base expression for all other
fields.
```
# struct Point3d { x: int, y: int, z: int }
# struct Point3d { x: i32, y: i32, z: i32 }
let base = Point3d {x: 1, y: 2, z: 3};
Point3d {y: 0, z: 10, .. base};
```
@ -2958,9 +2958,9 @@ constant expression that can be evaluated at compile time, such as a
[literal](#literals) or a [static item](#static-items).
```
[1i, 2, 3, 4];
[1is, 2, 3, 4];
["a", "b", "c", "d"];
[0i; 128]; // array with 128 zeros
[0is; 128]; // array with 128 zeros
[0u8, 0u8, 0u8, 0u8];
```
@ -3113,7 +3113,7 @@ An example of an `as` expression:
```
# fn sum(v: &[f64]) -> f64 { 0.0 }
# fn len(v: &[f64]) -> int { 0 }
# fn len(v: &[f64]) -> i32 { 0 }
fn avg(v: &[f64]) -> f64 {
let sum: f64 = sum(v);
@ -3133,7 +3133,7 @@ moves](#moved-and-copied-types) its right-hand operand to its left-hand
operand.
```
# let mut x = 0i;
# let mut x = 0is;
# let y = 0;
x = y;
@ -3184,7 +3184,7 @@ paren_expr : '(' expr ')' ;
An example of a parenthesized expression:
```
let x: int = (2 + 3) * 4;
let x: i32 = (2 + 3) * 4;
```
@ -3204,9 +3204,9 @@ then the expression completes.
Some examples of call expressions:
```
# fn add(x: int, y: int) -> int { 0 }
# fn add(x: i32, y: i32) -> i32 { 0 }
let x: int = add(1, 2);
let x: i32 = add(1i32, 2i32);
let pi: Option<f32> = "3.14".parse();
```
@ -3245,8 +3245,8 @@ In this example, we define a function `ten_times` that takes a higher-order
function argument, and call it with a lambda expression as an argument:
```
fn ten_times<F>(f: F) where F: Fn(int) {
let mut i = 0;
fn ten_times<F>(f: F) where F: Fn(i32) {
let mut i = 0i32;
while i < 10 {
f(i);
i += 1;
@ -3270,7 +3270,7 @@ conditional expression evaluates to `false`, the `while` expression completes.
An example:
```
let mut i = 0u;
let mut i = 0us;
while i < 10 {
println!("hello");
@ -3333,7 +3333,7 @@ by an implementation of `std::iter::Iterator`.
An example of a for loop over the contents of an array:
```
# type Foo = int;
# type Foo = i32;
# fn bar(f: Foo) { }
# let a = 0;
# let b = 0;
@ -3349,8 +3349,8 @@ for e in v.iter() {
An example of a for loop over a series of integers:
```
# fn bar(b:uint) { }
for i in range(0u, 256) {
# fn bar(b:usize) { }
for i in range(0us, 256) {
bar(i);
}
```
@ -3402,7 +3402,7 @@ fields of a particular variant. For example:
enum List<X> { Nil, Cons(X, Box<List<X>>) }
fn main() {
let x: List<int> = List::Cons(10, box List::Cons(11, box List::Nil));
let x: List<i32> = List::Cons(10, box List::Cons(11, box List::Nil));
match x {
List::Cons(_, box List::Nil) => panic!("singleton list"),
@ -3428,7 +3428,7 @@ corresponding slice to the variable. Example:
```
# #![feature(advanced_slice_patterns)]
fn is_symmetric(list: &[uint]) -> bool {
fn is_symmetric(list: &[u32]) -> bool {
match list {
[] | [_] => true,
[x, inside.., y] if x == y => is_symmetric(inside),
@ -3437,8 +3437,8 @@ fn is_symmetric(list: &[uint]) -> bool {
}
fn main() {
let sym = &[0, 1, 4, 2, 4, 1, 0];
let not_sym = &[0, 1, 7, 2, 4, 1, 0];
let sym = &[0us, 1, 4, 2, 4, 1, 0];
let not_sym = &[0us, 1, 7, 2, 4, 1, 0];
assert!(is_symmetric(sym));
assert!(!is_symmetric(not_sym));
}
@ -3462,13 +3462,13 @@ An example of a `match` expression:
```
#![feature(box_syntax)]
# fn process_pair(a: int, b: int) { }
# fn process_pair(a: i32, b: i32) { }
# fn process_ten() { }
enum List<X> { Nil, Cons(X, Box<List<X>>) }
fn main() {
let x: List<int> = List::Cons(10, box List::Cons(11, box List::Nil));
let x: List<i32> = List::Cons(10, box List::Cons(11, box List::Nil));
match x {
List::Cons(a, box List::Cons(b, _)) => {
@ -3520,11 +3520,11 @@ fn main() {
```
Patterns can also dereference pointers by using the `&`, `&mut` and `box`
symbols, as appropriate. For example, these two matches on `x: &int` are
symbols, as appropriate. For example, these two matches on `x: &isize` are
equivalent:
```
# let x = &3i;
# let x = &3is;
let y = match *x { 0 => "zero", _ => "some" };
let z = match x { &0 => "zero", _ => "some" };
@ -3545,7 +3545,7 @@ Multiple match patterns may be joined with the `|` operator. A range of values
may be specified with `...`. For example:
```
# let x = 2i;
# let x = 2is;
let message = match x {
0 | 1 => "not many",
@ -3565,8 +3565,8 @@ may refer to the variables bound within the pattern they follow.
```
# let maybe_digit = Some(0);
# fn process_digit(i: int) { }
# fn process_other(i: int) { }
# fn process_digit(i: i32) { }
# fn process_other(i: i32) { }
let message = match maybe_digit {
Some(x) if x < 10 => process_digit(x),
@ -3614,7 +3614,7 @@ caller frame.
An example of a `return` expression:
```
fn max(a: int, b: int) -> int {
fn max(a: i32, b: i32) -> i32 {
if a > b {
return a;
}
@ -3666,12 +3666,12 @@ The machine types are the following:
#### Machine-dependent integer types
The `uint` type is an unsigned integer type with the same number of bits as the
The `usize` type is an unsigned integer type with the same number of bits as the
platform's pointer type. It can represent every memory address in the process.
The `int` type is a signed integer type with the same number of bits as the
The `isize` type is a signed integer type with the same number of bits as the
platform's pointer type. The theoretical upper bound on object and array size
is the maximum `int` value. This ensures that `int` can be used to calculate
is the maximum `isize` value. This ensures that `isize` can be used to calculate
differences between pointers into an object or array and can address every byte
within an object along with one byte past the end.
@ -3707,7 +3707,7 @@ by the tuple type.
An example of a tuple type and its use:
```
type Pair<'a> = (int, &'a str);
type Pair<'a> = (i32, &'a str);
let p: Pair<'static> = (10, "hello");
let (a, b) = p;
assert!(b != "world");
@ -3858,13 +3858,13 @@ or `extern`), a sequence of input types and an output type.
An example of a `fn` type:
```
fn add(x: int, y: int) -> int {
fn add(x: i32, y: i32) -> i32 {
return x + y;
}
let mut x = add(5,7);
type Binop = fn(int, int) -> int;
type Binop = fn(i32, i32) -> i32;
let bo: Binop = add;
x = bo(5,7);
```
@ -3886,16 +3886,16 @@ The type of a closure mapping an input of type `A` to an output of type `B` is
An example of creating and calling a closure:
```rust
let captured_var = 10i;
let captured_var = 10is;
let closure_no_args = |&:| println!("captured_var={}", captured_var);
let closure_args = |&: arg: int| -> int {
let closure_args = |&: arg: isize| -> isize {
println!("captured_var={}, arg={}", captured_var, arg);
arg // Note lack of semicolon after 'arg'
};
fn call_closure<F: Fn(), G: Fn(int) -> int>(c1: F, c2: G) {
fn call_closure<F: Fn(), G: Fn(isize) -> isize>(c1: F, c2: G) {
c1();
c2(2);
}
@ -3927,7 +3927,7 @@ trait Printable {
fn stringify(&self) -> String;
}
impl Printable for int {
impl Printable for isize {
fn stringify(&self) -> String { self.to_string() }
}
@ -3936,7 +3936,7 @@ fn print(a: Box<Printable>) {
}
fn main() {
print(Box::new(10i) as Box<Printable>);
print(Box::new(10is) as Box<Printable>);
}
```
@ -4102,7 +4102,7 @@ Local variables are immutable unless declared otherwise like: `let mut x = ...`.
Function parameters are immutable unless declared with `mut`. The `mut` keyword
applies only to the following parameter (so `|mut x, y|` and `fn f(mut x:
Box<int>, y: Box<int>)` declare one mutable variable `x` and one immutable
Box<i32>, y: Box<i32>)` declare one mutable variable `x` and one immutable
variable `y`).
Methods that take either `self` or `Box<Self>` can optionally place them in a
@ -4130,7 +4130,7 @@ the type of a box is `std::owned::Box<T>`.
An example of a box type and value:
```
let x: Box<int> = Box::new(10);
let x: Box<i32> = Box::new(10);
```
Box values exist in 1:1 correspondence with their heap allocation, copying a
@ -4139,7 +4139,7 @@ copy of a box to move ownership of the value. After a value has been moved,
the source location cannot be used unless it is reinitialized.
```
let x: Box<int> = Box::new(10);
let x: Box<i32> = Box::new(10);
let y = x;
// attempting to use `x` will result in an error here
```