mirror of
https://github.com/rust-lang/rust.git
synced 2024-10-31 14:31:55 +00:00
Auto merge of #119338 - compiler-errors:upcast-plus-autos, r=lcnr
Consider principal trait ref's auto-trait super-traits in dyn upcasting Given traits like: ```rust trait Subtrait: Supertrait + Send {} trait Supertrait {} ``` We should be able to upcast `dyn Subtrait` to `dyn Supertrait + Send`. This is not currently possible, because when upcasting, we look at the list of auto traits in the object type (`dyn Subtrait`, which has no auto traits in its bounds) and compare them to the target's auto traits (`dyn Supertrait + Send`, which has `Send` in its bound). Since the target has auto traits that are not present in the source, the upcasting fails. This is overly restrictive, since `dyn Subtrait` will always implement `Send` via its built-in object impl. I propose to loosen this restriction here. r? types --- ### ~~Aside: Fix this in astconv instead?~~ ### edit: This causes too many failures. See https://github.com/rust-lang/rust/pull/119825#issuecomment-1890847150 We may also fix this by by automatically elaborating all auto-trait supertraits during `AstConv::conv_object_ty_poly_trait_ref`. That is, we can make it so that `dyn Subtrait` is elaborated into the same type of `dyn Subtrait + Send`. I'm open to considering this solution instead, but it would break coherence in the following example: ```rust trait Foo: Send {} trait Bar {} impl Bar for dyn Foo {} impl Bar for dyn Foo + Send {} //~^ This would begin to be an overlapping impl. ```
This commit is contained in:
commit
b656f5171b
@ -1,7 +1,10 @@
|
||||
//! Dealing with trait goals, i.e. `T: Trait<'a, U>`.
|
||||
|
||||
use crate::traits::supertrait_def_ids;
|
||||
|
||||
use super::assembly::{self, structural_traits, Candidate};
|
||||
use super::{EvalCtxt, GoalSource, SolverMode};
|
||||
use rustc_data_structures::fx::FxIndexSet;
|
||||
use rustc_hir::def_id::DefId;
|
||||
use rustc_hir::{LangItem, Movability};
|
||||
use rustc_infer::traits::query::NoSolution;
|
||||
@ -663,13 +666,6 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
|
||||
let tcx = self.tcx();
|
||||
let Goal { predicate: (a_ty, _b_ty), .. } = goal;
|
||||
|
||||
// All of a's auto traits need to be in b's auto traits.
|
||||
let auto_traits_compatible =
|
||||
b_data.auto_traits().all(|b| a_data.auto_traits().any(|a| a == b));
|
||||
if !auto_traits_compatible {
|
||||
return vec![];
|
||||
}
|
||||
|
||||
let mut responses = vec![];
|
||||
// If the principal def ids match (or are both none), then we're not doing
|
||||
// trait upcasting. We're just removing auto traits (or shortening the lifetime).
|
||||
@ -757,6 +753,17 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
|
||||
) -> QueryResult<'tcx> {
|
||||
let param_env = goal.param_env;
|
||||
|
||||
// We may upcast to auto traits that are either explicitly listed in
|
||||
// the object type's bounds, or implied by the principal trait ref's
|
||||
// supertraits.
|
||||
let a_auto_traits: FxIndexSet<DefId> = a_data
|
||||
.auto_traits()
|
||||
.chain(a_data.principal_def_id().into_iter().flat_map(|principal_def_id| {
|
||||
supertrait_def_ids(self.tcx(), principal_def_id)
|
||||
.filter(|def_id| self.tcx().trait_is_auto(*def_id))
|
||||
}))
|
||||
.collect();
|
||||
|
||||
// More than one projection in a_ty's bounds may match the projection
|
||||
// in b_ty's bound. Use this to first determine *which* apply without
|
||||
// having any inference side-effects. We process obligations because
|
||||
@ -806,7 +813,7 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
|
||||
}
|
||||
// Check that b_ty's auto traits are present in a_ty's bounds.
|
||||
ty::ExistentialPredicate::AutoTrait(def_id) => {
|
||||
if !a_data.auto_traits().any(|source_def_id| source_def_id == def_id) {
|
||||
if !a_auto_traits.contains(&def_id) {
|
||||
return Err(NoSolution);
|
||||
}
|
||||
}
|
||||
|
@ -10,7 +10,7 @@ use std::ops::ControlFlow;
|
||||
|
||||
use hir::def_id::DefId;
|
||||
use hir::LangItem;
|
||||
use rustc_data_structures::fx::FxHashSet;
|
||||
use rustc_data_structures::fx::{FxHashSet, FxIndexSet};
|
||||
use rustc_hir as hir;
|
||||
use rustc_infer::traits::ObligationCause;
|
||||
use rustc_infer::traits::{Obligation, PolyTraitObligation, SelectionError};
|
||||
@ -968,52 +968,61 @@ impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
|
||||
//
|
||||
// We always perform upcasting coercions when we can because of reason
|
||||
// #2 (region bounds).
|
||||
let auto_traits_compatible = b_data
|
||||
.auto_traits()
|
||||
// All of a's auto traits need to be in b's auto traits.
|
||||
.all(|b| a_data.auto_traits().any(|a| a == b));
|
||||
if auto_traits_compatible {
|
||||
let principal_def_id_a = a_data.principal_def_id();
|
||||
let principal_def_id_b = b_data.principal_def_id();
|
||||
if principal_def_id_a == principal_def_id_b {
|
||||
// no cyclic
|
||||
let principal_def_id_a = a_data.principal_def_id();
|
||||
let principal_def_id_b = b_data.principal_def_id();
|
||||
if principal_def_id_a == principal_def_id_b {
|
||||
// We may upcast to auto traits that are either explicitly listed in
|
||||
// the object type's bounds, or implied by the principal trait ref's
|
||||
// supertraits.
|
||||
let a_auto_traits: FxIndexSet<DefId> = a_data
|
||||
.auto_traits()
|
||||
.chain(principal_def_id_a.into_iter().flat_map(|principal_def_id| {
|
||||
util::supertrait_def_ids(self.tcx(), principal_def_id)
|
||||
.filter(|def_id| self.tcx().trait_is_auto(*def_id))
|
||||
}))
|
||||
.collect();
|
||||
let auto_traits_compatible = b_data
|
||||
.auto_traits()
|
||||
// All of a's auto traits need to be in b's auto traits.
|
||||
.all(|b| a_auto_traits.contains(&b));
|
||||
if auto_traits_compatible {
|
||||
candidates.vec.push(BuiltinUnsizeCandidate);
|
||||
} else if principal_def_id_a.is_some() && principal_def_id_b.is_some() {
|
||||
// not casual unsizing, now check whether this is trait upcasting coercion.
|
||||
let principal_a = a_data.principal().unwrap();
|
||||
let target_trait_did = principal_def_id_b.unwrap();
|
||||
let source_trait_ref = principal_a.with_self_ty(self.tcx(), source);
|
||||
if let Some(deref_trait_ref) = self.need_migrate_deref_output_trait_object(
|
||||
source,
|
||||
obligation.param_env,
|
||||
&obligation.cause,
|
||||
) {
|
||||
if deref_trait_ref.def_id() == target_trait_did {
|
||||
return;
|
||||
}
|
||||
}
|
||||
} else if principal_def_id_a.is_some() && principal_def_id_b.is_some() {
|
||||
// not casual unsizing, now check whether this is trait upcasting coercion.
|
||||
let principal_a = a_data.principal().unwrap();
|
||||
let target_trait_did = principal_def_id_b.unwrap();
|
||||
let source_trait_ref = principal_a.with_self_ty(self.tcx(), source);
|
||||
if let Some(deref_trait_ref) = self.need_migrate_deref_output_trait_object(
|
||||
source,
|
||||
obligation.param_env,
|
||||
&obligation.cause,
|
||||
) {
|
||||
if deref_trait_ref.def_id() == target_trait_did {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
for (idx, upcast_trait_ref) in
|
||||
util::supertraits(self.tcx(), source_trait_ref).enumerate()
|
||||
{
|
||||
self.infcx.probe(|_| {
|
||||
if upcast_trait_ref.def_id() == target_trait_did
|
||||
&& let Ok(nested) = self.match_upcast_principal(
|
||||
obligation,
|
||||
upcast_trait_ref,
|
||||
a_data,
|
||||
b_data,
|
||||
a_region,
|
||||
b_region,
|
||||
)
|
||||
{
|
||||
if nested.is_none() {
|
||||
candidates.ambiguous = true;
|
||||
}
|
||||
candidates.vec.push(TraitUpcastingUnsizeCandidate(idx));
|
||||
for (idx, upcast_trait_ref) in
|
||||
util::supertraits(self.tcx(), source_trait_ref).enumerate()
|
||||
{
|
||||
self.infcx.probe(|_| {
|
||||
if upcast_trait_ref.def_id() == target_trait_did
|
||||
&& let Ok(nested) = self.match_upcast_principal(
|
||||
obligation,
|
||||
upcast_trait_ref,
|
||||
a_data,
|
||||
b_data,
|
||||
a_region,
|
||||
b_region,
|
||||
)
|
||||
{
|
||||
if nested.is_none() {
|
||||
candidates.ambiguous = true;
|
||||
}
|
||||
})
|
||||
}
|
||||
candidates.vec.push(TraitUpcastingUnsizeCandidate(idx));
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -2526,6 +2526,17 @@ impl<'tcx> SelectionContext<'_, 'tcx> {
|
||||
let tcx = self.tcx();
|
||||
let mut nested = vec![];
|
||||
|
||||
// We may upcast to auto traits that are either explicitly listed in
|
||||
// the object type's bounds, or implied by the principal trait ref's
|
||||
// supertraits.
|
||||
let a_auto_traits: FxIndexSet<DefId> = a_data
|
||||
.auto_traits()
|
||||
.chain(a_data.principal_def_id().into_iter().flat_map(|principal_def_id| {
|
||||
util::supertrait_def_ids(tcx, principal_def_id)
|
||||
.filter(|def_id| tcx.trait_is_auto(*def_id))
|
||||
}))
|
||||
.collect();
|
||||
|
||||
let upcast_principal = normalize_with_depth_to(
|
||||
self,
|
||||
obligation.param_env,
|
||||
@ -2588,7 +2599,7 @@ impl<'tcx> SelectionContext<'_, 'tcx> {
|
||||
}
|
||||
// Check that b_ty's auto traits are present in a_ty's bounds.
|
||||
ty::ExistentialPredicate::AutoTrait(def_id) => {
|
||||
if !a_data.auto_traits().any(|source_def_id| source_def_id == def_id) {
|
||||
if !a_auto_traits.contains(&def_id) {
|
||||
return Err(SelectionError::Unimplemented);
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,14 @@
|
||||
// check-pass
|
||||
// revisions: current next
|
||||
//[next] compile-flags: -Znext-solver
|
||||
|
||||
#![feature(trait_upcasting)]
|
||||
|
||||
trait Target {}
|
||||
trait Source: Send + Target {}
|
||||
|
||||
fn upcast(x: &dyn Source) -> &(dyn Target + Send) { x }
|
||||
|
||||
fn same(x: &dyn Source) -> &(dyn Source + Send) { x }
|
||||
|
||||
fn main() {}
|
Loading…
Reference in New Issue
Block a user