rollup merge of #22015: alexcrichton/netv2

This commit is an implementation of [RFC 807][rfc] which adds a `std::net`
module for basic neworking based on top of `std::io`. This module serves as a
replacement for the `std::old_io::net` module and networking primitives in
`old_io`.

[rfc]: fillmein

The major focus of this redesign is to cut back on the level of abstraction to
the point that each of the networking types is just a bare socket. To this end
functionality such as timeouts and cloning has been removed (although cloning
can be done through `duplicate`, it may just yield an error).

With this `net` module comes a new implementation of `SocketAddr` and `IpAddr`.
This work is entirely based on #20785 and the only changes were to alter the
in-memory representation to match the `libc`-expected variants and to move from
public fields to accessors.
This commit is contained in:
Alex Crichton 2015-02-11 15:25:40 -08:00
commit a1056360ec
18 changed files with 3214 additions and 6 deletions

View File

@ -253,6 +253,7 @@ pub mod ffi;
pub mod old_io; pub mod old_io;
pub mod io; pub mod io;
pub mod fs; pub mod fs;
pub mod net;
pub mod os; pub mod os;
pub mod env; pub mod env;
pub mod path; pub mod path;

592
src/libstd/net/addr.rs Normal file
View File

@ -0,0 +1,592 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::v1::*;
use fmt;
use hash;
use io;
use libc::{self, socklen_t, sa_family_t};
use mem;
use net::{IpAddr, lookup_host, ntoh, hton};
use option;
use sys_common::{FromInner, AsInner, IntoInner};
use vec;
/// Representation of a socket address for networking applications
///
/// A socket address consists of at least an (ip, port) pair and may also
/// contain other information depending on the protocol.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct SocketAddr {
repr: Repr,
}
#[derive(Copy)]
enum Repr {
V4(libc::sockaddr_in),
V6(libc::sockaddr_in6),
}
impl SocketAddr {
/// Creates a new socket address from the (ip, port) pair.
pub fn new(ip: IpAddr, port: u16) -> SocketAddr {
let repr = match ip {
IpAddr::V4(ref ip) => {
Repr::V4(libc::sockaddr_in {
sin_family: libc::AF_INET as sa_family_t,
sin_port: hton(port),
sin_addr: *ip.as_inner(),
.. unsafe { mem::zeroed() }
})
}
IpAddr::V6(ref ip) => {
Repr::V6(libc::sockaddr_in6 {
sin6_family: libc::AF_INET6 as sa_family_t,
sin6_port: hton(port),
sin6_addr: *ip.as_inner(),
.. unsafe { mem::zeroed() }
})
}
};
SocketAddr { repr: repr }
}
/// Gets the IP address associated with this socket address.
pub fn ip(&self) -> IpAddr {
match self.repr {
Repr::V4(ref sa) => IpAddr::V4(FromInner::from_inner(sa.sin_addr)),
Repr::V6(ref sa) => IpAddr::V6(FromInner::from_inner(sa.sin6_addr)),
}
}
/// Gets the port number associated with this socket address
pub fn port(&self) -> u16 {
match self.repr {
Repr::V4(ref sa) => ntoh(sa.sin_port),
Repr::V6(ref sa) => ntoh(sa.sin6_port),
}
}
fn set_port(&mut self, port: u16) {
match self.repr {
Repr::V4(ref mut sa) => sa.sin_port = hton(port),
Repr::V6(ref mut sa) => sa.sin6_port = hton(port),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for SocketAddr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.repr {
Repr::V4(_) => write!(f, "{}:{}", self.ip(), self.port()),
Repr::V6(_) => write!(f, "[{}]:{}", self.ip(), self.port()),
}
}
}
impl FromInner<libc::sockaddr_in> for SocketAddr {
fn from_inner(addr: libc::sockaddr_in) -> SocketAddr {
SocketAddr { repr: Repr::V4(addr) }
}
}
impl FromInner<libc::sockaddr_in6> for SocketAddr {
fn from_inner(addr: libc::sockaddr_in6) -> SocketAddr {
SocketAddr { repr: Repr::V6(addr) }
}
}
impl<'a> IntoInner<(*const libc::sockaddr, socklen_t)> for &'a SocketAddr {
fn into_inner(self) -> (*const libc::sockaddr, socklen_t) {
match self.repr {
Repr::V4(ref a) => {
(a as *const _ as *const _, mem::size_of_val(a) as socklen_t)
}
Repr::V6(ref a) => {
(a as *const _ as *const _, mem::size_of_val(a) as socklen_t)
}
}
}
}
impl fmt::Debug for SocketAddr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, fmt)
}
}
impl Clone for Repr {
fn clone(&self) -> Repr { *self }
}
impl PartialEq for Repr {
fn eq(&self, other: &Repr) -> bool {
match (*self, *other) {
(Repr::V4(ref a), Repr::V4(ref b)) => {
a.sin_port == b.sin_port &&
a.sin_addr.s_addr == b.sin_addr.s_addr
}
(Repr::V6(ref a), Repr::V6(ref b)) => {
a.sin6_port == b.sin6_port &&
a.sin6_addr.s6_addr == b.sin6_addr.s6_addr &&
a.sin6_flowinfo == b.sin6_flowinfo &&
a.sin6_scope_id == b.sin6_scope_id
}
_ => false,
}
}
}
impl Eq for Repr {}
impl<S: hash::Hasher + hash::Writer> hash::Hash<S> for Repr {
fn hash(&self, s: &mut S) {
match *self {
Repr::V4(ref a) => {
(a.sin_family, a.sin_port, a.sin_addr.s_addr).hash(s)
}
Repr::V6(ref a) => {
(a.sin6_family, a.sin6_port, &a.sin6_addr.s6_addr,
a.sin6_flowinfo, a.sin6_scope_id).hash(s)
}
}
}
}
/// A trait for objects which can be converted or resolved to one or more
/// `SocketAddr` values.
///
/// This trait is used for generic address resolution when constructing network
/// objects. By default it is implemented for the following types:
///
/// * `SocketAddr` - `to_socket_addrs` is identity function.
///
/// * `(IpAddr, u16)` - `to_socket_addrs` constructs `SocketAddr` trivially.
///
/// * `(&str, u16)` - the string should be either a string representation of an
/// IP address expected by `FromStr` implementation for `IpAddr` or a host
/// name.
///
/// * `&str` - the string should be either a string representation of a
/// `SocketAddr` as expected by its `FromStr` implementation or a string like
/// `<host_name>:<port>` pair where `<port>` is a `u16` value.
///
/// This trait allows constructing network objects like `TcpStream` or
/// `UdpSocket` easily with values of various types for the bind/connection
/// address. It is needed because sometimes one type is more appropriate than
/// the other: for simple uses a string like `"localhost:12345"` is much nicer
/// than manual construction of the corresponding `SocketAddr`, but sometimes
/// `SocketAddr` value is *the* main source of the address, and converting it to
/// some other type (e.g. a string) just for it to be converted back to
/// `SocketAddr` in constructor methods is pointless.
///
/// Some examples:
///
/// ```no_run
/// use std::net::{IpAddr, SocketAddr, TcpStream, UdpSocket, TcpListener};
///
/// fn main() {
/// let ip = IpAddr::new_v4(127, 0, 0, 1);
/// let port = 12345;
///
/// // The following lines are equivalent modulo possible "localhost" name
/// // resolution differences
/// let tcp_s = TcpStream::connect(&SocketAddr::new(ip, port));
/// let tcp_s = TcpStream::connect(&(ip, port));
/// let tcp_s = TcpStream::connect(&("127.0.0.1", port));
/// let tcp_s = TcpStream::connect(&("localhost", port));
/// let tcp_s = TcpStream::connect("127.0.0.1:12345");
/// let tcp_s = TcpStream::connect("localhost:12345");
///
/// // TcpListener::bind(), UdpSocket::bind() and UdpSocket::send_to()
/// // behave similarly
/// let tcp_l = TcpListener::bind("localhost:12345");
///
/// let mut udp_s = UdpSocket::bind(&("127.0.0.1", port)).unwrap();
/// udp_s.send_to(&[7], &(ip, 23451));
/// }
/// ```
pub trait ToSocketAddrs {
/// Returned iterator over socket addresses which this type may correspond
/// to.
type Iter: Iterator<Item=SocketAddr>;
/// Converts this object to an iterator of resolved `SocketAddr`s.
///
/// The returned iterator may not actually yield any values depending on the
/// outcome of any resolution performed.
///
/// Note that this function may block the current thread while resolution is
/// performed.
///
/// # Errors
///
/// Any errors encountered during resolution will be returned as an `Err`.
fn to_socket_addrs(&self) -> io::Result<Self::Iter>;
}
impl ToSocketAddrs for SocketAddr {
type Iter = option::IntoIter<SocketAddr>;
fn to_socket_addrs(&self) -> io::Result<option::IntoIter<SocketAddr>> {
Ok(Some(*self).into_iter())
}
}
impl ToSocketAddrs for (IpAddr, u16) {
type Iter = option::IntoIter<SocketAddr>;
fn to_socket_addrs(&self) -> io::Result<option::IntoIter<SocketAddr>> {
let (ip, port) = *self;
Ok(Some(SocketAddr::new(ip, port)).into_iter())
}
}
fn resolve_socket_addr(s: &str, p: u16) -> io::Result<vec::IntoIter<SocketAddr>> {
let ips = try!(lookup_host(s));
let v: Vec<_> = try!(ips.map(|a| {
a.map(|mut a| { a.set_port(p); a })
}).collect());
Ok(v.into_iter())
}
impl<'a> ToSocketAddrs for (&'a str, u16) {
type Iter = vec::IntoIter<SocketAddr>;
fn to_socket_addrs(&self) -> io::Result<vec::IntoIter<SocketAddr>> {
let (host, port) = *self;
// try to parse the host as a regular IpAddr first
match host.parse().ok() {
Some(addr) => return Ok(vec![SocketAddr::new(addr, port)].into_iter()),
None => {}
}
resolve_socket_addr(host, port)
}
}
// accepts strings like 'localhost:12345'
impl ToSocketAddrs for str {
type Iter = vec::IntoIter<SocketAddr>;
fn to_socket_addrs(&self) -> io::Result<vec::IntoIter<SocketAddr>> {
// try to parse as a regular SocketAddr first
match self.parse().ok() {
Some(addr) => return Ok(vec![addr].into_iter()),
None => {}
}
macro_rules! try_opt {
($e:expr, $msg:expr) => (
match $e {
Some(r) => r,
None => return Err(io::Error::new(io::ErrorKind::InvalidInput,
$msg, None)),
}
)
}
// split the string by ':' and convert the second part to u16
let mut parts_iter = self.rsplitn(2, ':');
let port_str = try_opt!(parts_iter.next(), "invalid socket address");
let host = try_opt!(parts_iter.next(), "invalid socket address");
let port: u16 = try_opt!(port_str.parse().ok(), "invalid port value");
resolve_socket_addr(host, port)
}
}
impl<'a, T: ToSocketAddrs + ?Sized> ToSocketAddrs for &'a T {
type Iter = T::Iter;
fn to_socket_addrs(&self) -> io::Result<T::Iter> {
(**self).to_socket_addrs()
}
}
#[cfg(test)]
mod tests {
use prelude::v1::*;
use io;
use net::*;
use net::Ipv6MulticastScope::*;
#[test]
fn test_from_str_ipv4() {
assert_eq!(Ok(Ipv4Addr::new(127, 0, 0, 1)), "127.0.0.1".parse());
assert_eq!(Ok(Ipv4Addr::new(255, 255, 255, 255)), "255.255.255.255".parse());
assert_eq!(Ok(Ipv4Addr::new(0, 0, 0, 0)), "0.0.0.0".parse());
// out of range
let none: Option<IpAddr> = "256.0.0.1".parse().ok();
assert_eq!(None, none);
// too short
let none: Option<IpAddr> = "255.0.0".parse().ok();
assert_eq!(None, none);
// too long
let none: Option<IpAddr> = "255.0.0.1.2".parse().ok();
assert_eq!(None, none);
// no number between dots
let none: Option<IpAddr> = "255.0..1".parse().ok();
assert_eq!(None, none);
}
#[test]
fn test_from_str_ipv6() {
assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)), "0:0:0:0:0:0:0:0".parse());
assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)), "0:0:0:0:0:0:0:1".parse());
assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)), "::1".parse());
assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)), "::".parse());
assert_eq!(Ok(Ipv6Addr::new(0x2a02, 0x6b8, 0, 0, 0, 0, 0x11, 0x11)),
"2a02:6b8::11:11".parse());
// too long group
let none: Option<IpAddr> = "::00000".parse().ok();
assert_eq!(None, none);
// too short
let none: Option<IpAddr> = "1:2:3:4:5:6:7".parse().ok();
assert_eq!(None, none);
// too long
let none: Option<IpAddr> = "1:2:3:4:5:6:7:8:9".parse().ok();
assert_eq!(None, none);
// triple colon
let none: Option<IpAddr> = "1:2:::6:7:8".parse().ok();
assert_eq!(None, none);
// two double colons
let none: Option<IpAddr> = "1:2::6::8".parse().ok();
assert_eq!(None, none);
}
#[test]
fn test_from_str_ipv4_in_ipv6() {
assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 49152, 545)),
"::192.0.2.33".parse());
assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0xFFFF, 49152, 545)),
"::FFFF:192.0.2.33".parse());
assert_eq!(Ok(Ipv6Addr::new(0x64, 0xff9b, 0, 0, 0, 0, 49152, 545)),
"64:ff9b::192.0.2.33".parse());
assert_eq!(Ok(Ipv6Addr::new(0x2001, 0xdb8, 0x122, 0xc000, 0x2, 0x2100, 49152, 545)),
"2001:db8:122:c000:2:2100:192.0.2.33".parse());
// colon after v4
let none: Option<IpAddr> = "::127.0.0.1:".parse().ok();
assert_eq!(None, none);
// not enough groups
let none: Option<IpAddr> = "1.2.3.4.5:127.0.0.1".parse().ok();
assert_eq!(None, none);
// too many groups
let none: Option<IpAddr> = "1.2.3.4.5:6:7:127.0.0.1".parse().ok();
assert_eq!(None, none);
}
#[test]
fn test_from_str_socket_addr() {
assert_eq!(Ok(SocketAddr::new(IpAddr::new_v4(77, 88, 21, 11), 80)),
"77.88.21.11:80".parse());
assert_eq!(Ok(SocketAddr::new(IpAddr::new_v6(0x2a02, 0x6b8, 0, 1, 0, 0, 0, 1), 53)),
"[2a02:6b8:0:1::1]:53".parse());
assert_eq!(Ok(SocketAddr::new(IpAddr::new_v6(0, 0, 0, 0, 0, 0, 0x7F00, 1), 22)),
"[::127.0.0.1]:22".parse());
// without port
let none: Option<SocketAddr> = "127.0.0.1".parse().ok();
assert_eq!(None, none);
// without port
let none: Option<SocketAddr> = "127.0.0.1:".parse().ok();
assert_eq!(None, none);
// wrong brackets around v4
let none: Option<SocketAddr> = "[127.0.0.1]:22".parse().ok();
assert_eq!(None, none);
// port out of range
let none: Option<SocketAddr> = "127.0.0.1:123456".parse().ok();
assert_eq!(None, none);
}
#[test]
fn ipv6_addr_to_string() {
// ipv4-mapped address
let a1 = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x280);
assert_eq!(a1.to_string(), "::ffff:192.0.2.128");
// ipv4-compatible address
let a1 = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc000, 0x280);
assert_eq!(a1.to_string(), "::192.0.2.128");
// v6 address with no zero segments
assert_eq!(Ipv6Addr::new(8, 9, 10, 11, 12, 13, 14, 15).to_string(),
"8:9:a:b:c:d:e:f");
// reduce a single run of zeros
assert_eq!("ae::ffff:102:304",
Ipv6Addr::new(0xae, 0, 0, 0, 0, 0xffff, 0x0102, 0x0304).to_string());
// don't reduce just a single zero segment
assert_eq!("1:2:3:4:5:6:0:8",
Ipv6Addr::new(1, 2, 3, 4, 5, 6, 0, 8).to_string());
// 'any' address
assert_eq!("::", Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).to_string());
// loopback address
assert_eq!("::1", Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_string());
// ends in zeros
assert_eq!("1::", Ipv6Addr::new(1, 0, 0, 0, 0, 0, 0, 0).to_string());
// two runs of zeros, second one is longer
assert_eq!("1:0:0:4::8", Ipv6Addr::new(1, 0, 0, 4, 0, 0, 0, 8).to_string());
// two runs of zeros, equal length
assert_eq!("1::4:5:0:0:8", Ipv6Addr::new(1, 0, 0, 4, 5, 0, 0, 8).to_string());
}
#[test]
fn ipv4_to_ipv6() {
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x1234, 0x5678),
Ipv4Addr::new(0x12, 0x34, 0x56, 0x78).to_ipv6_mapped());
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0x1234, 0x5678),
Ipv4Addr::new(0x12, 0x34, 0x56, 0x78).to_ipv6_compatible());
}
#[test]
fn ipv6_to_ipv4() {
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x1234, 0x5678).to_ipv4(),
Some(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78)));
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0x1234, 0x5678).to_ipv4(),
Some(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78)));
assert_eq!(Ipv6Addr::new(0, 0, 1, 0, 0, 0, 0x1234, 0x5678).to_ipv4(),
None);
}
#[test]
fn ipv4_properties() {
fn check(octets: &[u8; 4], unspec: bool, loopback: bool,
private: bool, link_local: bool, global: bool,
multicast: bool) {
let ip = Ipv4Addr::new(octets[0], octets[1], octets[2], octets[3]);
assert_eq!(octets, &ip.octets());
assert_eq!(ip.is_unspecified(), unspec);
assert_eq!(ip.is_loopback(), loopback);
assert_eq!(ip.is_private(), private);
assert_eq!(ip.is_link_local(), link_local);
assert_eq!(ip.is_global(), global);
assert_eq!(ip.is_multicast(), multicast);
}
// address unspec loopbk privt linloc global multicast
check(&[0, 0, 0, 0], true, false, false, false, true, false);
check(&[0, 0, 0, 1], false, false, false, false, true, false);
check(&[1, 0, 0, 0], false, false, false, false, true, false);
check(&[10, 9, 8, 7], false, false, true, false, false, false);
check(&[127, 1, 2, 3], false, true, false, false, false, false);
check(&[172, 31, 254, 253], false, false, true, false, false, false);
check(&[169, 254, 253, 242], false, false, false, true, false, false);
check(&[192, 168, 254, 253], false, false, true, false, false, false);
check(&[224, 0, 0, 0], false, false, false, false, true, true);
check(&[239, 255, 255, 255], false, false, false, false, true, true);
check(&[255, 255, 255, 255], false, false, false, false, true, false);
}
#[test]
fn ipv6_properties() {
fn check(str_addr: &str, unspec: bool, loopback: bool,
unique_local: bool, global: bool,
u_link_local: bool, u_site_local: bool, u_global: bool,
m_scope: Option<Ipv6MulticastScope>) {
let ip: Ipv6Addr = str_addr.parse().ok().unwrap();
assert_eq!(str_addr, ip.to_string());
assert_eq!(ip.is_unspecified(), unspec);
assert_eq!(ip.is_loopback(), loopback);
assert_eq!(ip.is_unique_local(), unique_local);
assert_eq!(ip.is_global(), global);
assert_eq!(ip.is_unicast_link_local(), u_link_local);
assert_eq!(ip.is_unicast_site_local(), u_site_local);
assert_eq!(ip.is_unicast_global(), u_global);
assert_eq!(ip.multicast_scope(), m_scope);
assert_eq!(ip.is_multicast(), m_scope.is_some());
}
// unspec loopbk uniqlo global unill unisl uniglo mscope
check("::",
true, false, false, true, false, false, true, None);
check("::1",
false, true, false, false, false, false, false, None);
check("::0.0.0.2",
false, false, false, true, false, false, true, None);
check("1::",
false, false, false, true, false, false, true, None);
check("fc00::",
false, false, true, false, false, false, false, None);
check("fdff:ffff::",
false, false, true, false, false, false, false, None);
check("fe80:ffff::",
false, false, false, false, true, false, false, None);
check("febf:ffff::",
false, false, false, false, true, false, false, None);
check("fec0::",
false, false, false, false, false, true, false, None);
check("ff01::",
false, false, false, false, false, false, false, Some(InterfaceLocal));
check("ff02::",
false, false, false, false, false, false, false, Some(LinkLocal));
check("ff03::",
false, false, false, false, false, false, false, Some(RealmLocal));
check("ff04::",
false, false, false, false, false, false, false, Some(AdminLocal));
check("ff05::",
false, false, false, false, false, false, false, Some(SiteLocal));
check("ff08::",
false, false, false, false, false, false, false, Some(OrganizationLocal));
check("ff0e::",
false, false, false, true, false, false, false, Some(Global));
}
fn tsa<A: ToSocketAddrs>(a: A) -> io::Result<Vec<SocketAddr>> {
Ok(try!(a.to_socket_addrs()).collect())
}
#[test]
fn to_socket_addr_socketaddr() {
let a = SocketAddr::new(IpAddr::new_v4(77, 88, 21, 11), 12345);
assert_eq!(Ok(vec![a]), tsa(a));
}
#[test]
fn to_socket_addr_ipaddr_u16() {
let a = IpAddr::new_v4(77, 88, 21, 11);
let p = 12345u16;
let e = SocketAddr::new(a, p);
assert_eq!(Ok(vec![e]), tsa((a, p)));
}
#[test]
fn to_socket_addr_str_u16() {
let a = SocketAddr::new(IpAddr::new_v4(77, 88, 21, 11), 24352);
assert_eq!(Ok(vec![a]), tsa(("77.88.21.11", 24352u16)));
let a = SocketAddr::new(IpAddr::new_v6(0x2a02, 0x6b8, 0, 1, 0, 0, 0, 1), 53);
assert_eq!(Ok(vec![a]), tsa(("2a02:6b8:0:1::1", 53)));
let a = SocketAddr::new(IpAddr::new_v4(127, 0, 0, 1), 23924);
assert!(tsa(("localhost", 23924u16)).unwrap().contains(&a));
}
#[test]
fn to_socket_addr_str() {
let a = SocketAddr::new(IpAddr::new_v4(77, 88, 21, 11), 24352);
assert_eq!(Ok(vec![a]), tsa("77.88.21.11:24352"));
let a = SocketAddr::new(IpAddr::new_v6(0x2a02, 0x6b8, 0, 1, 0, 0, 0, 1), 53);
assert_eq!(Ok(vec![a]), tsa("[2a02:6b8:0:1::1]:53"));
let a = SocketAddr::new(IpAddr::new_v4(127, 0, 0, 1), 23924);
assert!(tsa("localhost:23924").unwrap().contains(&a));
}
}

449
src/libstd/net/ip.rs Normal file
View File

@ -0,0 +1,449 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::v1::*;
use cmp::Ordering;
use hash;
use fmt;
use libc;
use sys_common::{AsInner, FromInner};
use net::{hton, ntoh};
/// Representation of an IPv4 address.
#[derive(Copy)]
pub struct Ipv4Addr {
inner: libc::in_addr,
}
/// Representation of an IPv6 address.
#[derive(Copy)]
pub struct Ipv6Addr {
inner: libc::in6_addr,
}
#[allow(missing_docs)]
#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
pub enum Ipv6MulticastScope {
InterfaceLocal,
LinkLocal,
RealmLocal,
AdminLocal,
SiteLocal,
OrganizationLocal,
Global
}
/// Enumeration of possible IP addresses
#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
pub enum IpAddr {
/// An IPv4 address.
V4(Ipv4Addr),
/// An IPv6 address.
V6(Ipv6Addr)
}
impl IpAddr {
/// Create a new IpAddr that contains an IPv4 address.
///
/// The result will represent the IP address a.b.c.d
pub fn new_v4(a: u8, b: u8, c: u8, d: u8) -> IpAddr {
IpAddr::V4(Ipv4Addr::new(a, b, c, d))
}
/// Create a new IpAddr that contains an IPv6 address.
///
/// The result will represent the IP address a:b:c:d:e:f
pub fn new_v6(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16,
h: u16) -> IpAddr {
IpAddr::V6(Ipv6Addr::new(a, b, c, d, e, f, g, h))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for IpAddr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
IpAddr::V4(v4) => v4.fmt(f),
IpAddr::V6(v6) => v6.fmt(f)
}
}
}
impl Ipv4Addr {
/// Create a new IPv4 address from four eight-bit octets.
///
/// The result will represent the IP address a.b.c.d
pub fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr {
Ipv4Addr {
inner: libc::in_addr {
s_addr: hton(((a as u32) << 24) |
((b as u32) << 16) |
((c as u32) << 8) |
(d as u32)),
}
}
}
/// Returns the four eight-bit integers that make up this address
pub fn octets(&self) -> [u8; 4] {
let bits = ntoh(self.inner.s_addr);
[(bits >> 24) as u8, (bits >> 16) as u8, (bits >> 8) as u8, bits as u8]
}
/// Returns true for the special 'unspecified' address 0.0.0.0
pub fn is_unspecified(&self) -> bool {
self.inner.s_addr == 0
}
/// Returns true if this is a loopback address (127.0.0.0/8)
pub fn is_loopback(&self) -> bool {
self.octets()[0] == 127
}
/// Returns true if this is a private address.
///
/// The private address ranges are defined in RFC1918 and include:
///
/// - 10.0.0.0/8
/// - 172.16.0.0/12
/// - 192.168.0.0/16
pub fn is_private(&self) -> bool {
match (self.octets()[0], self.octets()[1]) {
(10, _) => true,
(172, b) if b >= 16 && b <= 31 => true,
(192, 168) => true,
_ => false
}
}
/// Returns true if the address is link-local (169.254.0.0/16)
pub fn is_link_local(&self) -> bool {
self.octets()[0] == 169 && self.octets()[1] == 254
}
/// Returns true if the address appears to be globally routable.
///
/// Non-globally-routable networks include the private networks (10.0.0.0/8,
/// 172.16.0.0/12 and 192.168.0.0/16), the loopback network (127.0.0.0/8),
/// and the link-local network (169.254.0.0/16).
pub fn is_global(&self) -> bool {
!self.is_private() && !self.is_loopback() && !self.is_link_local()
}
/// Returns true if this is a multicast address.
///
/// Multicast addresses have a most significant octet between 224 and 239.
pub fn is_multicast(&self) -> bool {
self.octets()[0] >= 224 && self.octets()[0] <= 239
}
/// Convert this address to an IPv4-compatible IPv6 address
///
/// a.b.c.d becomes ::a.b.c.d
pub fn to_ipv6_compatible(&self) -> Ipv6Addr {
Ipv6Addr::new(0, 0, 0, 0, 0, 0,
((self.octets()[0] as u16) << 8) | self.octets()[1] as u16,
((self.octets()[2] as u16) << 8) | self.octets()[3] as u16)
}
/// Convert this address to an IPv4-mapped IPv6 address
///
/// a.b.c.d becomes ::ffff:a.b.c.d
pub fn to_ipv6_mapped(&self) -> Ipv6Addr {
Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff,
((self.octets()[0] as u16) << 8) | self.octets()[1] as u16,
((self.octets()[2] as u16) << 8) | self.octets()[3] as u16)
}
}
impl fmt::Display for Ipv4Addr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let octets = self.octets();
write!(fmt, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3])
}
}
impl fmt::Debug for Ipv4Addr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, fmt)
}
}
impl Clone for Ipv4Addr {
fn clone(&self) -> Ipv4Addr { *self }
}
impl PartialEq for Ipv4Addr {
fn eq(&self, other: &Ipv4Addr) -> bool {
self.inner.s_addr == other.inner.s_addr
}
}
impl Eq for Ipv4Addr {}
impl<S: hash::Hasher + hash::Writer> hash::Hash<S> for Ipv4Addr {
fn hash(&self, s: &mut S) {
self.inner.s_addr.hash(s)
}
}
impl PartialOrd for Ipv4Addr {
fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Ipv4Addr {
fn cmp(&self, other: &Ipv4Addr) -> Ordering {
self.inner.s_addr.cmp(&other.inner.s_addr)
}
}
impl AsInner<libc::in_addr> for Ipv4Addr {
fn as_inner(&self) -> &libc::in_addr { &self.inner }
}
impl FromInner<libc::in_addr> for Ipv4Addr {
fn from_inner(addr: libc::in_addr) -> Ipv4Addr {
Ipv4Addr { inner: addr }
}
}
impl Ipv6Addr {
/// Create a new IPv6 address from eight 16-bit segments.
///
/// The result will represent the IP address a:b:c:d:e:f
pub fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16,
h: u16) -> Ipv6Addr {
Ipv6Addr {
inner: libc::in6_addr {
s6_addr: [hton(a), hton(b), hton(c), hton(d),
hton(e), hton(f), hton(g), hton(h)]
}
}
}
/// Return the eight 16-bit segments that make up this address
pub fn segments(&self) -> [u16; 8] {
[ntoh(self.inner.s6_addr[0]),
ntoh(self.inner.s6_addr[1]),
ntoh(self.inner.s6_addr[2]),
ntoh(self.inner.s6_addr[3]),
ntoh(self.inner.s6_addr[4]),
ntoh(self.inner.s6_addr[5]),
ntoh(self.inner.s6_addr[6]),
ntoh(self.inner.s6_addr[7])]
}
/// Returns true for the special 'unspecified' address ::
pub fn is_unspecified(&self) -> bool {
self.segments() == [0, 0, 0, 0, 0, 0, 0, 0]
}
/// Returns true if this is a loopback address (::1)
pub fn is_loopback(&self) -> bool {
self.segments() == [0, 0, 0, 0, 0, 0, 0, 1]
}
/// Returns true if the address appears to be globally routable.
///
/// Non-globally-routable networks include the loopback address; the
/// link-local, site-local, and unique local unicast addresses; and the
/// interface-, link-, realm-, admin- and site-local multicast addresses.
pub fn is_global(&self) -> bool {
match self.multicast_scope() {
Some(Ipv6MulticastScope::Global) => true,
None => self.is_unicast_global(),
_ => false
}
}
/// Returns true if this is a unique local address (IPv6)
///
/// Unique local addresses are defined in RFC4193 and have the form fc00::/7
pub fn is_unique_local(&self) -> bool {
(self.segments()[0] & 0xfe00) == 0xfc00
}
/// Returns true if the address is unicast and link-local (fe80::/10)
pub fn is_unicast_link_local(&self) -> bool {
(self.segments()[0] & 0xffc0) == 0xfe80
}
/// Returns true if this is a deprecated unicast site-local address (IPv6
/// fec0::/10)
pub fn is_unicast_site_local(&self) -> bool {
(self.segments()[0] & 0xffc0) == 0xfec0
}
/// Returns true if the address is a globally routable unicast address
///
/// Non-globally-routable unicast addresses include the loopback address,
/// the link-local addresses, the deprecated site-local addresses and the
/// unique local addresses.
pub fn is_unicast_global(&self) -> bool {
!self.is_multicast()
&& !self.is_loopback() && !self.is_unicast_link_local()
&& !self.is_unicast_site_local() && !self.is_unique_local()
}
/// Returns the address's multicast scope if the address is multicast.
pub fn multicast_scope(&self) -> Option<Ipv6MulticastScope> {
if self.is_multicast() {
match self.segments()[0] & 0x000f {
1 => Some(Ipv6MulticastScope::InterfaceLocal),
2 => Some(Ipv6MulticastScope::LinkLocal),
3 => Some(Ipv6MulticastScope::RealmLocal),
4 => Some(Ipv6MulticastScope::AdminLocal),
5 => Some(Ipv6MulticastScope::SiteLocal),
8 => Some(Ipv6MulticastScope::OrganizationLocal),
14 => Some(Ipv6MulticastScope::Global),
_ => None
}
} else {
None
}
}
/// Returns true if this is a multicast address.
///
/// Multicast addresses have the form ff00::/8.
pub fn is_multicast(&self) -> bool {
(self.segments()[0] & 0xff00) == 0xff00
}
/// Convert this address to an IPv4 address. Returns None if this address is
/// neither IPv4-compatible or IPv4-mapped.
///
/// ::a.b.c.d and ::ffff:a.b.c.d become a.b.c.d
pub fn to_ipv4(&self) -> Option<Ipv4Addr> {
match self.segments() {
[0, 0, 0, 0, 0, f, g, h] if f == 0 || f == 0xffff => {
Some(Ipv4Addr::new((g >> 8) as u8, g as u8,
(h >> 8) as u8, h as u8))
},
_ => None
}
}
}
impl fmt::Display for Ipv6Addr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match self.segments() {
// We need special cases for :: and ::1, otherwise they're formatted
// as ::0.0.0.[01]
[0, 0, 0, 0, 0, 0, 0, 0] => write!(fmt, "::"),
[0, 0, 0, 0, 0, 0, 0, 1] => write!(fmt, "::1"),
// Ipv4 Compatible address
[0, 0, 0, 0, 0, 0, g, h] => {
write!(fmt, "::{}.{}.{}.{}", (g >> 8) as u8, g as u8,
(h >> 8) as u8, h as u8)
}
// Ipv4-Mapped address
[0, 0, 0, 0, 0, 0xffff, g, h] => {
write!(fmt, "::ffff:{}.{}.{}.{}", (g >> 8) as u8, g as u8,
(h >> 8) as u8, h as u8)
},
_ => {
fn find_zero_slice(segments: &[u16; 8]) -> (usize, usize) {
let mut longest_span_len = 0;
let mut longest_span_at = 0;
let mut cur_span_len = 0;
let mut cur_span_at = 0;
for i in range(0, 8) {
if segments[i] == 0 {
if cur_span_len == 0 {
cur_span_at = i;
}
cur_span_len += 1;
if cur_span_len > longest_span_len {
longest_span_len = cur_span_len;
longest_span_at = cur_span_at;
}
} else {
cur_span_len = 0;
cur_span_at = 0;
}
}
(longest_span_at, longest_span_len)
}
let (zeros_at, zeros_len) = find_zero_slice(&self.segments());
if zeros_len > 1 {
fn fmt_subslice(segments: &[u16]) -> String {
segments
.iter()
.map(|&seg| format!("{:x}", seg))
.collect::<Vec<String>>()
.as_slice()
.connect(":")
}
write!(fmt, "{}::{}",
fmt_subslice(&self.segments()[..zeros_at]),
fmt_subslice(&self.segments()[zeros_at + zeros_len..]))
} else {
let &[a, b, c, d, e, f, g, h] = &self.segments();
write!(fmt, "{:x}:{:x}:{:x}:{:x}:{:x}:{:x}:{:x}:{:x}",
a, b, c, d, e, f, g, h)
}
}
}
}
}
impl fmt::Debug for Ipv6Addr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, fmt)
}
}
impl Clone for Ipv6Addr {
fn clone(&self) -> Ipv6Addr { *self }
}
impl PartialEq for Ipv6Addr {
fn eq(&self, other: &Ipv6Addr) -> bool {
self.inner.s6_addr == other.inner.s6_addr
}
}
impl Eq for Ipv6Addr {}
impl<S: hash::Hasher + hash::Writer> hash::Hash<S> for Ipv6Addr {
fn hash(&self, s: &mut S) {
self.inner.s6_addr.hash(s)
}
}
impl PartialOrd for Ipv6Addr {
fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Ipv6Addr {
fn cmp(&self, other: &Ipv6Addr) -> Ordering {
self.inner.s6_addr.cmp(&other.inner.s6_addr)
}
}
impl AsInner<libc::in6_addr> for Ipv6Addr {
fn as_inner(&self) -> &libc::in6_addr { &self.inner }
}
impl FromInner<libc::in6_addr> for Ipv6Addr {
fn from_inner(addr: libc::in6_addr) -> Ipv6Addr {
Ipv6Addr { inner: addr }
}
}

99
src/libstd/net/mod.rs Normal file
View File

@ -0,0 +1,99 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Networking primitives for TCP/UDP communication
//!
//! > **NOTE**: This module is very much a work in progress and is under active
//! > development. At this time it is still recommended to use the `old_io`
//! > module while the details of this module shake out.
#![unstable(feature = "net")]
use prelude::v1::*;
use io::{self, Error, ErrorKind};
use num::Int;
use sys_common::net2 as net_imp;
pub use self::ip::{IpAddr, Ipv4Addr, Ipv6Addr, Ipv6MulticastScope};
pub use self::addr::{SocketAddr, ToSocketAddrs};
pub use self::tcp::{TcpStream, TcpListener};
pub use self::udp::UdpSocket;
mod ip;
mod addr;
mod tcp;
mod udp;
mod parser;
#[cfg(test)] mod test;
/// Possible values which can be passed to the `shutdown` method of `TcpStream`
/// and `UdpSocket`.
#[derive(Copy, Clone, PartialEq)]
pub enum Shutdown {
/// Indicates that the reading portion of this stream/socket should be shut
/// down. All currently blocked and future reads will return `Ok(0)`.
Read,
/// Indicates that the writing portion of this stream/socket should be shut
/// down. All currently blocked and future writes will return an error.
Write,
/// Shut down both the reading and writing portions of this stream.
///
/// See `Shutdown::Read` and `Shutdown::Write` for more information.
Both
}
fn hton<I: Int>(i: I) -> I { i.to_be() }
fn ntoh<I: Int>(i: I) -> I { Int::from_be(i) }
fn each_addr<A: ToSocketAddrs + ?Sized, F, T>(addr: &A, mut f: F) -> io::Result<T>
where F: FnMut(&SocketAddr) -> io::Result<T>
{
let mut last_err = None;
for addr in try!(addr.to_socket_addrs()) {
match f(&addr) {
Ok(l) => return Ok(l),
Err(e) => last_err = Some(e),
}
}
Err(last_err.unwrap_or_else(|| {
Error::new(ErrorKind::InvalidInput,
"could not resolve to any addresses", None)
}))
}
/// An iterator over `SocketAddr` values returned from a host lookup operation.
pub struct LookupHost(net_imp::LookupHost);
impl Iterator for LookupHost {
type Item = io::Result<SocketAddr>;
fn next(&mut self) -> Option<io::Result<SocketAddr>> { self.0.next() }
}
/// Resolve the host specified by `host` as a number of `SocketAddr` instances.
///
/// This method may perform a DNS query to resolve `host` and may also inspect
/// system configuration to resolve the specified hostname.
///
/// # Example
///
/// ```no_run
/// use std::net;
///
/// # fn foo() -> std::io::Result<()> {
/// for host in try!(net::lookup_host("rust-lang.org")) {
/// println!("found address: {}", try!(host));
/// }
/// # Ok(())
/// # }
/// ```
pub fn lookup_host(host: &str) -> io::Result<LookupHost> {
net_imp::lookup_host(host).map(LookupHost)
}

330
src/libstd/net/parser.rs Normal file
View File

@ -0,0 +1,330 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A private parser implementation of IPv4, IPv6, and socket addresses.
//!
//! This module is "publicly exported" through the `FromStr` implementations
//! below.
use prelude::v1::*;
use str::FromStr;
use net::{Ipv4Addr, Ipv6Addr, IpAddr, SocketAddr};
struct Parser<'a> {
// parsing as ASCII, so can use byte array
s: &'a [u8],
pos: usize,
}
impl<'a> Parser<'a> {
fn new(s: &'a str) -> Parser<'a> {
Parser {
s: s.as_bytes(),
pos: 0,
}
}
fn is_eof(&self) -> bool {
self.pos == self.s.len()
}
// Commit only if parser returns Some
fn read_atomically<T, F>(&mut self, cb: F) -> Option<T> where
F: FnOnce(&mut Parser) -> Option<T>,
{
let pos = self.pos;
let r = cb(self);
if r.is_none() {
self.pos = pos;
}
r
}
// Commit only if parser read till EOF
fn read_till_eof<T, F>(&mut self, cb: F) -> Option<T> where
F: FnOnce(&mut Parser) -> Option<T>,
{
self.read_atomically(move |p| {
match cb(p) {
Some(x) => if p.is_eof() {Some(x)} else {None},
None => None,
}
})
}
// Return result of first successful parser
fn read_or<T>(&mut self, parsers: &mut [Box<FnMut(&mut Parser) -> Option<T>>])
-> Option<T> {
for pf in parsers.iter_mut() {
match self.read_atomically(|p: &mut Parser| pf(p)) {
Some(r) => return Some(r),
None => {}
}
}
None
}
// Apply 3 parsers sequentially
fn read_seq_3<A, B, C, PA, PB, PC>(&mut self,
pa: PA,
pb: PB,
pc: PC)
-> Option<(A, B, C)> where
PA: FnOnce(&mut Parser) -> Option<A>,
PB: FnOnce(&mut Parser) -> Option<B>,
PC: FnOnce(&mut Parser) -> Option<C>,
{
self.read_atomically(move |p| {
let a = pa(p);
let b = if a.is_some() { pb(p) } else { None };
let c = if b.is_some() { pc(p) } else { None };
match (a, b, c) {
(Some(a), Some(b), Some(c)) => Some((a, b, c)),
_ => None
}
})
}
// Read next char
fn read_char(&mut self) -> Option<char> {
if self.is_eof() {
None
} else {
let r = self.s[self.pos] as char;
self.pos += 1;
Some(r)
}
}
// Return char and advance iff next char is equal to requested
fn read_given_char(&mut self, c: char) -> Option<char> {
self.read_atomically(|p| {
match p.read_char() {
Some(next) if next == c => Some(next),
_ => None,
}
})
}
// Read digit
fn read_digit(&mut self, radix: u8) -> Option<u8> {
fn parse_digit(c: char, radix: u8) -> Option<u8> {
let c = c as u8;
// assuming radix is either 10 or 16
if c >= b'0' && c <= b'9' {
Some(c - b'0')
} else if radix > 10 && c >= b'a' && c < b'a' + (radix - 10) {
Some(c - b'a' + 10)
} else if radix > 10 && c >= b'A' && c < b'A' + (radix - 10) {
Some(c - b'A' + 10)
} else {
None
}
}
self.read_atomically(|p| {
p.read_char().and_then(|c| parse_digit(c, radix))
})
}
fn read_number_impl(&mut self, radix: u8, max_digits: u32, upto: u32) -> Option<u32> {
let mut r = 0u32;
let mut digit_count = 0;
loop {
match self.read_digit(radix) {
Some(d) => {
r = r * (radix as u32) + (d as u32);
digit_count += 1;
if digit_count > max_digits || r >= upto {
return None
}
}
None => {
if digit_count == 0 {
return None
} else {
return Some(r)
}
}
};
}
}
// Read number, failing if max_digits of number value exceeded
fn read_number(&mut self, radix: u8, max_digits: u32, upto: u32) -> Option<u32> {
self.read_atomically(|p| p.read_number_impl(radix, max_digits, upto))
}
fn read_ipv4_addr_impl(&mut self) -> Option<Ipv4Addr> {
let mut bs = [0u8; 4];
let mut i = 0;
while i < 4 {
if i != 0 && self.read_given_char('.').is_none() {
return None;
}
let octet = self.read_number(10, 3, 0x100).map(|n| n as u8);
match octet {
Some(d) => bs[i] = d,
None => return None,
};
i += 1;
}
Some(Ipv4Addr::new(bs[0], bs[1], bs[2], bs[3]))
}
// Read IPv4 address
fn read_ipv4_addr(&mut self) -> Option<Ipv4Addr> {
self.read_atomically(|p| p.read_ipv4_addr_impl())
}
fn read_ipv6_addr_impl(&mut self) -> Option<Ipv6Addr> {
fn ipv6_addr_from_head_tail(head: &[u16], tail: &[u16]) -> Ipv6Addr {
assert!(head.len() + tail.len() <= 8);
let mut gs = [0u16; 8];
gs.clone_from_slice(head);
gs[(8 - tail.len()) .. 8].clone_from_slice(tail);
Ipv6Addr::new(gs[0], gs[1], gs[2], gs[3], gs[4], gs[5], gs[6], gs[7])
}
fn read_groups(p: &mut Parser, groups: &mut [u16; 8], limit: usize)
-> (usize, bool) {
let mut i = 0;
while i < limit {
if i < limit - 1 {
let ipv4 = p.read_atomically(|p| {
if i == 0 || p.read_given_char(':').is_some() {
p.read_ipv4_addr()
} else {
None
}
});
if let Some(v4_addr) = ipv4 {
let octets = v4_addr.octets();
groups[i + 0] = ((octets[0] as u16) << 8) | (octets[1] as u16);
groups[i + 1] = ((octets[2] as u16) << 8) | (octets[3] as u16);
return (i + 2, true);
}
}
let group = p.read_atomically(|p| {
if i == 0 || p.read_given_char(':').is_some() {
p.read_number(16, 4, 0x10000).map(|n| n as u16)
} else {
None
}
});
match group {
Some(g) => groups[i] = g,
None => return (i, false)
}
i += 1;
}
(i, false)
}
let mut head = [0u16; 8];
let (head_size, head_ipv4) = read_groups(self, &mut head, 8);
if head_size == 8 {
return Some(Ipv6Addr::new(
head[0], head[1], head[2], head[3],
head[4], head[5], head[6], head[7]))
}
// IPv4 part is not allowed before `::`
if head_ipv4 {
return None
}
// read `::` if previous code parsed less than 8 groups
if !self.read_given_char(':').is_some() || !self.read_given_char(':').is_some() {
return None;
}
let mut tail = [0u16; 8];
let (tail_size, _) = read_groups(self, &mut tail, 8 - head_size);
Some(ipv6_addr_from_head_tail(&head[..head_size], &tail[..tail_size]))
}
fn read_ipv6_addr(&mut self) -> Option<Ipv6Addr> {
self.read_atomically(|p| p.read_ipv6_addr_impl())
}
fn read_ip_addr(&mut self) -> Option<IpAddr> {
let ipv4_addr = |p: &mut Parser| p.read_ipv4_addr().map(|v4| IpAddr::V4(v4));
let ipv6_addr = |p: &mut Parser| p.read_ipv6_addr().map(|v6| IpAddr::V6(v6));
self.read_or(&mut [Box::new(ipv4_addr), Box::new(ipv6_addr)])
}
fn read_socket_addr(&mut self) -> Option<SocketAddr> {
let ip_addr = |p: &mut Parser| {
let ipv4_p = |p: &mut Parser| p.read_ip_addr();
let ipv6_p = |p: &mut Parser| {
let open_br = |p: &mut Parser| p.read_given_char('[');
let ip_addr = |p: &mut Parser| p.read_ipv6_addr();
let clos_br = |p: &mut Parser| p.read_given_char(']');
p.read_seq_3::<char, Ipv6Addr, char, _, _, _>(open_br, ip_addr, clos_br)
.map(|t| match t { (_, ip, _) => IpAddr::V6(ip) })
};
p.read_or(&mut [Box::new(ipv4_p), Box::new(ipv6_p)])
};
let colon = |p: &mut Parser| p.read_given_char(':');
let port = |p: &mut Parser| p.read_number(10, 5, 0x10000).map(|n| n as u16);
// host, colon, port
self.read_seq_3::<IpAddr, char, u16, _, _, _>(ip_addr, colon, port)
.map(|t| match t { (ip, _, port) => SocketAddr::new(ip, port) })
}
}
impl FromStr for IpAddr {
type Err = ParseError;
fn from_str(s: &str) -> Result<IpAddr, ParseError> {
match Parser::new(s).read_till_eof(|p| p.read_ip_addr()) {
Some(s) => Ok(s),
None => Err(ParseError),
}
}
}
impl FromStr for Ipv4Addr {
type Err = ParseError;
fn from_str(s: &str) -> Result<Ipv4Addr, ParseError> {
match Parser::new(s).read_till_eof(|p| p.read_ipv4_addr()) {
Some(s) => Ok(s),
None => Err(ParseError)
}
}
}
impl FromStr for Ipv6Addr {
type Err = ParseError;
fn from_str(s: &str) -> Result<Ipv6Addr, ParseError> {
match Parser::new(s).read_till_eof(|p| p.read_ipv6_addr()) {
Some(s) => Ok(s),
None => Err(ParseError)
}
}
}
impl FromStr for SocketAddr {
type Err = ParseError;
fn from_str(s: &str) -> Result<SocketAddr, ParseError> {
match Parser::new(s).read_till_eof(|p| p.read_socket_addr()) {
Some(s) => Ok(s),
None => Err(ParseError),
}
}
}
#[derive(Debug, Clone, PartialEq, Copy)]
pub struct ParseError;

792
src/libstd/net/tcp.rs Normal file
View File

@ -0,0 +1,792 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::v1::*;
use io::prelude::*;
use io;
use net::{ToSocketAddrs, SocketAddr, Shutdown};
use sys_common::net2 as net_imp;
use sys_common::AsInner;
/// A structure which represents a TCP stream between a local socket and a
/// remote socket.
///
/// The socket will be closed when the value is dropped.
///
/// # Example
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::net::TcpStream;
///
/// {
/// let mut stream = TcpStream::connect("127.0.0.1:34254").unwrap();
///
/// // ignore the Result
/// let _ = stream.write(&[1]);
/// let _ = stream.read(&mut [0; 128]); // ignore here too
/// } // the stream is closed here
/// ```
pub struct TcpStream(net_imp::TcpStream);
/// A structure representing a socket server.
///
/// # Examples
///
/// ```no_run
/// use std::net::{TcpListener, TcpStream};
/// use std::thread::Thread;
///
/// let listener = TcpListener::bind("127.0.0.1:80").unwrap();
///
/// fn handle_client(stream: TcpStream) {
/// // ...
/// }
///
/// // accept connections and process them, spawning a new thread for each one
/// for stream in listener.incoming() {
/// match stream {
/// Ok(stream) => {
/// Thread::spawn(move|| {
/// // connection succeeded
/// handle_client(stream)
/// });
/// }
/// Err(e) => { /* connection failed */ }
/// }
/// }
///
/// // close the socket server
/// drop(listener);
/// ```
pub struct TcpListener(net_imp::TcpListener);
/// An infinite iterator over the connections from a `TcpListener`.
///
/// This iterator will infinitely yield `Some` of the accepted connections. It
/// is equivalent to calling `accept` in a loop.
pub struct Incoming<'a> { listener: &'a TcpListener }
impl TcpStream {
/// Open a TCP connection to a remote host.
///
/// `addr` is an address of the remote host. Anything which implements
/// `ToSocketAddrs` trait can be supplied for the address; see this trait
/// documentation for concrete examples.
pub fn connect<A: ToSocketAddrs + ?Sized>(addr: &A) -> io::Result<TcpStream> {
super::each_addr(addr, net_imp::TcpStream::connect).map(TcpStream)
}
/// Returns the socket address of the remote peer of this TCP connection.
pub fn peer_addr(&self) -> io::Result<SocketAddr> {
self.0.peer_addr()
}
/// Returns the socket address of the local half of this TCP connection.
pub fn socket_addr(&self) -> io::Result<SocketAddr> {
self.0.socket_addr()
}
/// Shut down the read, write, or both halves of this connection.
///
/// This function will cause all pending and future I/O on the specified
/// portions to return immediately with an appropriate value (see the
/// documentation of `Shutdown`).
pub fn shutdown(&self, how: Shutdown) -> io::Result<()> {
self.0.shutdown(how)
}
/// Create a new independently owned handle to the underlying socket.
///
/// The returned `TcpStream` is a reference to the same stream that this
/// object references. Both handles will read and write the same stream of
/// data, and options set on one stream will be propagated to the other
/// stream.
pub fn try_clone(&self) -> io::Result<TcpStream> {
self.0.duplicate().map(TcpStream)
}
/// Sets the nodelay flag on this connection to the boolean specified
pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> {
self.0.set_nodelay(nodelay)
}
/// Sets the keepalive timeout to the timeout specified.
///
/// If the value specified is `None`, then the keepalive flag is cleared on
/// this connection. Otherwise, the keepalive timeout will be set to the
/// specified time, in seconds.
pub fn set_keepalive(&self, seconds: Option<u32>) -> io::Result<()> {
self.0.set_keepalive(seconds)
}
}
impl Read for TcpStream {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { self.0.read(buf) }
}
impl Write for TcpStream {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { self.0.write(buf) }
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl<'a> Read for &'a TcpStream {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { self.0.read(buf) }
}
impl<'a> Write for &'a TcpStream {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> { self.0.write(buf) }
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl AsInner<net_imp::TcpStream> for TcpStream {
fn as_inner(&self) -> &net_imp::TcpStream { &self.0 }
}
impl TcpListener {
/// Creates a new `TcpListener` which will be bound to the specified
/// address.
///
/// The returned listener is ready for accepting connections.
///
/// Binding with a port number of 0 will request that the OS assigns a port
/// to this listener. The port allocated can be queried via the
/// `socket_addr` function.
///
/// The address type can be any implementer of `ToSocketAddrs` trait. See
/// its documentation for concrete examples.
pub fn bind<A: ToSocketAddrs + ?Sized>(addr: &A) -> io::Result<TcpListener> {
super::each_addr(addr, net_imp::TcpListener::bind).map(TcpListener)
}
/// Returns the local socket address of this listener.
pub fn socket_addr(&self) -> io::Result<SocketAddr> {
self.0.socket_addr()
}
/// Create a new independently owned handle to the underlying socket.
///
/// The returned `TcpListener` is a reference to the same socket that this
/// object references. Both handles can be used to accept incoming
/// connections and options set on one listener will affect the other.
pub fn try_clone(&self) -> io::Result<TcpListener> {
self.0.duplicate().map(TcpListener)
}
/// Accept a new incoming connection from this listener.
///
/// This function will block the calling thread until a new TCP connection
/// is established. When established, the corresponding `TcpStream` and the
/// remote peer's address will be returned.
pub fn accept(&self) -> io::Result<(TcpStream, SocketAddr)> {
self.0.accept().map(|(a, b)| (TcpStream(a), b))
}
/// Returns an iterator over the connections being received on this
/// listener.
///
/// The returned iterator will never returned `None` and will also not yield
/// the peer's `SocketAddr` structure.
pub fn incoming(&self) -> Incoming {
Incoming { listener: self }
}
}
impl<'a> Iterator for Incoming<'a> {
type Item = io::Result<TcpStream>;
fn next(&mut self) -> Option<io::Result<TcpStream>> {
Some(self.listener.accept().map(|p| p.0))
}
}
impl AsInner<net_imp::TcpListener> for TcpListener {
fn as_inner(&self) -> &net_imp::TcpListener { &self.0 }
}
#[cfg(test)]
mod tests {
use prelude::v1::*;
use io::ErrorKind;
use io::prelude::*;
use net::*;
use net::test::{next_test_ip4, next_test_ip6};
use sync::mpsc::channel;
use thread::Thread;
fn each_ip(f: &mut FnMut(SocketAddr)) {
f(next_test_ip4());
f(next_test_ip6());
}
macro_rules! t {
($e:expr) => {
match $e {
Ok(t) => t,
Err(e) => panic!("received error for `{}`: {}", stringify!($e), e),
}
}
}
// FIXME #11530 this fails on android because tests are run as root
#[cfg_attr(any(windows, target_os = "android"), ignore)]
#[test]
fn bind_error() {
match TcpListener::bind("0.0.0.0:1") {
Ok(..) => panic!(),
Err(e) => assert_eq!(e.kind(), ErrorKind::PermissionDenied),
}
}
#[test]
fn connect_error() {
match TcpStream::connect("0.0.0.0:1") {
Ok(..) => panic!(),
Err(e) => assert_eq!(e.kind(), ErrorKind::ConnectionRefused),
}
}
#[test]
fn listen_localhost() {
let socket_addr = next_test_ip4();
let listener = t!(TcpListener::bind(&socket_addr));
let _t = Thread::scoped(move || {
let mut stream = t!(TcpStream::connect(&("localhost",
socket_addr.port())));
t!(stream.write(&[144]));
});
let mut stream = t!(listener.accept()).0;
let mut buf = [0];
t!(stream.read(&mut buf));
assert!(buf[0] == 144);
}
#[test]
fn connect_ip4_loopback() {
let addr = next_test_ip4();
let acceptor = t!(TcpListener::bind(&addr));
let _t = Thread::scoped(move|| {
let mut stream = t!(TcpStream::connect(&("127.0.0.1", addr.port())));
t!(stream.write(&[44]));
});
let mut stream = t!(acceptor.accept()).0;
let mut buf = [0];
t!(stream.read(&mut buf));
assert!(buf[0] == 44);
}
#[test]
fn connect_ip6_loopback() {
let addr = next_test_ip6();
let acceptor = t!(TcpListener::bind(&addr));
let _t = Thread::scoped(move|| {
let mut stream = t!(TcpStream::connect(&("::1", addr.port())));
t!(stream.write(&[66]));
});
let mut stream = t!(acceptor.accept()).0;
let mut buf = [0];
t!(stream.read(&mut buf));
assert!(buf[0] == 66);
}
#[test]
fn smoke_test_ip6() {
each_ip(&mut |addr| {
let acceptor = t!(TcpListener::bind(&addr));
let (tx, rx) = channel();
let _t = Thread::scoped(move|| {
let mut stream = t!(TcpStream::connect(&addr));
t!(stream.write(&[99]));
tx.send(t!(stream.socket_addr())).unwrap();
});
let (mut stream, addr) = t!(acceptor.accept());
let mut buf = [0];
t!(stream.read(&mut buf));
assert!(buf[0] == 99);
assert_eq!(addr, t!(rx.recv()));
})
}
#[test]
fn read_eof_ip4() {
each_ip(&mut |addr| {
let acceptor = t!(TcpListener::bind(&addr));
let _t = Thread::scoped(move|| {
let _stream = t!(TcpStream::connect(&addr));
// Close
});
let mut stream = t!(acceptor.accept()).0;
let mut buf = [0];
let nread = t!(stream.read(&mut buf));
assert_eq!(nread, 0);
let nread = t!(stream.read(&mut buf));
assert_eq!(nread, 0);
})
}
#[test]
fn write_close() {
each_ip(&mut |addr| {
let acceptor = t!(TcpListener::bind(&addr));
let (tx, rx) = channel();
let _t = Thread::scoped(move|| {
drop(t!(TcpStream::connect(&addr)));
tx.send(()).unwrap();
});
let mut stream = t!(acceptor.accept()).0;
rx.recv().unwrap();
let buf = [0];
match stream.write(&buf) {
Ok(..) => {}
Err(e) => {
assert!(e.kind() == ErrorKind::ConnectionReset ||
e.kind() == ErrorKind::BrokenPipe ||
e.kind() == ErrorKind::ConnectionAborted,
"unknown error: {}", e);
}
}
})
}
#[test]
fn multiple_connect_serial_ip4() {
each_ip(&mut |addr| {
let max = 10;
let acceptor = t!(TcpListener::bind(&addr));
let _t = Thread::scoped(move|| {
for _ in 0..max {
let mut stream = t!(TcpStream::connect(&addr));
t!(stream.write(&[99]));
}
});
for stream in acceptor.incoming().take(max) {
let mut stream = t!(stream);
let mut buf = [0];
t!(stream.read(&mut buf));
assert_eq!(buf[0], 99);
}
})
}
#[test]
fn multiple_connect_interleaved_greedy_schedule() {
static MAX: usize = 10;
each_ip(&mut |addr| {
let acceptor = t!(TcpListener::bind(&addr));
let _t = Thread::scoped(move|| {
let acceptor = acceptor;
for (i, stream) in acceptor.incoming().enumerate().take(MAX) {
// Start another task to handle the connection
let _t = Thread::scoped(move|| {
let mut stream = t!(stream);
let mut buf = [0];
t!(stream.read(&mut buf));
assert!(buf[0] == i as u8);
});
}
});
connect(0, addr);
});
fn connect(i: usize, addr: SocketAddr) {
if i == MAX { return }
let t = Thread::scoped(move|| {
let mut stream = t!(TcpStream::connect(&addr));
// Connect again before writing
connect(i + 1, addr);
t!(stream.write(&[i as u8]));
});
t.join().ok().unwrap();
}
}
#[test]
fn multiple_connect_interleaved_lazy_schedule_ip4() {
static MAX: usize = 10;
each_ip(&mut |addr| {
let acceptor = t!(TcpListener::bind(&addr));
let _t = Thread::scoped(move|| {
for stream in acceptor.incoming().take(MAX) {
// Start another task to handle the connection
let _t = Thread::scoped(move|| {
let mut stream = t!(stream);
let mut buf = [0];
t!(stream.read(&mut buf));
assert!(buf[0] == 99);
});
}
});
connect(0, addr);
});
fn connect(i: usize, addr: SocketAddr) {
if i == MAX { return }
let t = Thread::scoped(move|| {
let mut stream = t!(TcpStream::connect(&addr));
connect(i + 1, addr);
t!(stream.write(&[99]));
});
t.join().ok().unwrap();
}
}
pub fn socket_name(addr: SocketAddr) {
}
pub fn peer_name(addr: SocketAddr) {
}
#[test]
fn socket_and_peer_name_ip4() {
each_ip(&mut |addr| {
let listener = t!(TcpListener::bind(&addr));
let so_name = t!(listener.socket_addr());
assert_eq!(addr, so_name);
let _t = Thread::scoped(move|| {
t!(listener.accept());
});
let stream = t!(TcpStream::connect(&addr));
assert_eq!(addr, t!(stream.peer_addr()));
})
}
#[test]
fn partial_read() {
each_ip(&mut |addr| {
let (tx, rx) = channel();
let srv = t!(TcpListener::bind(&addr));
let _t = Thread::scoped(move|| {
let mut cl = t!(srv.accept()).0;
cl.write(&[10]).unwrap();
let mut b = [0];
t!(cl.read(&mut b));
tx.send(()).unwrap();
});
let mut c = t!(TcpStream::connect(&addr));
let mut b = [0; 10];
assert_eq!(c.read(&mut b), Ok(1));
t!(c.write(&[1]));
rx.recv().unwrap();
})
}
#[test]
fn double_bind() {
each_ip(&mut |addr| {
let _listener = t!(TcpListener::bind(&addr));
match TcpListener::bind(&addr) {
Ok(..) => panic!(),
Err(e) => {
assert!(e.kind() == ErrorKind::ConnectionRefused ||
e.kind() == ErrorKind::Other,
"unknown error: {} {:?}", e, e.kind());
}
}
})
}
#[test]
fn fast_rebind() {
each_ip(&mut |addr| {
let acceptor = t!(TcpListener::bind(&addr));
let _t = Thread::scoped(move|| {
t!(TcpStream::connect(&addr));
});
t!(acceptor.accept());
drop(acceptor);
t!(TcpListener::bind(&addr));
});
}
#[test]
fn tcp_clone_smoke() {
each_ip(&mut |addr| {
let acceptor = t!(TcpListener::bind(&addr));
let _t = Thread::scoped(move|| {
let mut s = t!(TcpStream::connect(&addr));
let mut buf = [0, 0];
assert_eq!(s.read(&mut buf), Ok(1));
assert_eq!(buf[0], 1);
t!(s.write(&[2]));
});
let mut s1 = t!(acceptor.accept()).0;
let s2 = t!(s1.try_clone());
let (tx1, rx1) = channel();
let (tx2, rx2) = channel();
let _t = Thread::scoped(move|| {
let mut s2 = s2;
rx1.recv().unwrap();
t!(s2.write(&[1]));
tx2.send(()).unwrap();
});
tx1.send(()).unwrap();
let mut buf = [0, 0];
assert_eq!(s1.read(&mut buf), Ok(1));
rx2.recv().unwrap();
})
}
#[test]
fn tcp_clone_two_read() {
each_ip(&mut |addr| {
let acceptor = t!(TcpListener::bind(&addr));
let (tx1, rx) = channel();
let tx2 = tx1.clone();
let _t = Thread::scoped(move|| {
let mut s = t!(TcpStream::connect(&addr));
t!(s.write(&[1]));
rx.recv().unwrap();
t!(s.write(&[2]));
rx.recv().unwrap();
});
let mut s1 = t!(acceptor.accept()).0;
let s2 = t!(s1.try_clone());
let (done, rx) = channel();
let _t = Thread::scoped(move|| {
let mut s2 = s2;
let mut buf = [0, 0];
t!(s2.read(&mut buf));
tx2.send(()).unwrap();
done.send(()).unwrap();
});
let mut buf = [0, 0];
t!(s1.read(&mut buf));
tx1.send(()).unwrap();
rx.recv().unwrap();
})
}
#[test]
fn tcp_clone_two_write() {
each_ip(&mut |addr| {
let acceptor = t!(TcpListener::bind(&addr));
let _t = Thread::scoped(move|| {
let mut s = t!(TcpStream::connect(&addr));
let mut buf = [0, 1];
t!(s.read(&mut buf));
t!(s.read(&mut buf));
});
let mut s1 = t!(acceptor.accept()).0;
let s2 = t!(s1.try_clone());
let (done, rx) = channel();
let _t = Thread::scoped(move|| {
let mut s2 = s2;
t!(s2.write(&[1]));
done.send(()).unwrap();
});
t!(s1.write(&[2]));
rx.recv().unwrap();
})
}
#[test]
fn shutdown_smoke() {
each_ip(&mut |addr| {
let a = t!(TcpListener::bind(&addr));
let _t = Thread::scoped(move|| {
let mut c = t!(a.accept()).0;
let mut b = [0];
assert_eq!(c.read(&mut b), Ok(0));
t!(c.write(&[1]));
});
let mut s = t!(TcpStream::connect(&addr));
t!(s.shutdown(Shutdown::Write));
assert!(s.write(&[1]).is_err());
let mut b = [0, 0];
assert_eq!(t!(s.read(&mut b)), 1);
assert_eq!(b[0], 1);
})
}
#[test]
fn close_readwrite_smoke() {
each_ip(&mut |addr| {
let a = t!(TcpListener::bind(&addr));
let (tx, rx) = channel::<()>();
let _t = Thread::scoped(move|| {
let _s = t!(a.accept());
let _ = rx.recv();
});
let mut b = [0];
let mut s = t!(TcpStream::connect(&addr));
let mut s2 = t!(s.try_clone());
// closing should prevent reads/writes
t!(s.shutdown(Shutdown::Write));
assert!(s.write(&[0]).is_err());
t!(s.shutdown(Shutdown::Read));
assert_eq!(s.read(&mut b), Ok(0));
// closing should affect previous handles
assert!(s2.write(&[0]).is_err());
assert_eq!(s2.read(&mut b), Ok(0));
// closing should affect new handles
let mut s3 = t!(s.try_clone());
assert!(s3.write(&[0]).is_err());
assert_eq!(s3.read(&mut b), Ok(0));
// make sure these don't die
let _ = s2.shutdown(Shutdown::Read);
let _ = s2.shutdown(Shutdown::Write);
let _ = s3.shutdown(Shutdown::Read);
let _ = s3.shutdown(Shutdown::Write);
drop(tx);
})
}
#[test]
fn close_read_wakes_up() {
each_ip(&mut |addr| {
let a = t!(TcpListener::bind(&addr));
let (tx1, rx) = channel::<()>();
let _t = Thread::scoped(move|| {
let _s = t!(a.accept());
let _ = rx.recv();
});
let s = t!(TcpStream::connect(&addr));
let s2 = t!(s.try_clone());
let (tx, rx) = channel();
let _t = Thread::scoped(move|| {
let mut s2 = s2;
assert_eq!(t!(s2.read(&mut [0])), 0);
tx.send(()).unwrap();
});
// this should wake up the child task
t!(s.shutdown(Shutdown::Read));
// this test will never finish if the child doesn't wake up
rx.recv().unwrap();
drop(tx1);
})
}
#[test]
fn clone_while_reading() {
each_ip(&mut |addr| {
let accept = t!(TcpListener::bind(&addr));
// Enqueue a task to write to a socket
let (tx, rx) = channel();
let (txdone, rxdone) = channel();
let txdone2 = txdone.clone();
let _t = Thread::scoped(move|| {
let mut tcp = t!(TcpStream::connect(&addr));
rx.recv().unwrap();
t!(tcp.write(&[0]));
txdone2.send(()).unwrap();
});
// Spawn off a reading clone
let tcp = t!(accept.accept()).0;
let tcp2 = t!(tcp.try_clone());
let txdone3 = txdone.clone();
let _t = Thread::scoped(move|| {
let mut tcp2 = tcp2;
t!(tcp2.read(&mut [0]));
txdone3.send(()).unwrap();
});
// Try to ensure that the reading clone is indeed reading
for _ in 0..50 {
Thread::yield_now();
}
// clone the handle again while it's reading, then let it finish the
// read.
let _ = t!(tcp.try_clone());
tx.send(()).unwrap();
rxdone.recv().unwrap();
rxdone.recv().unwrap();
})
}
#[test]
fn clone_accept_smoke() {
each_ip(&mut |addr| {
let a = t!(TcpListener::bind(&addr));
let a2 = t!(a.try_clone());
let _t = Thread::scoped(move|| {
let _ = TcpStream::connect(&addr);
});
let _t = Thread::scoped(move|| {
let _ = TcpStream::connect(&addr);
});
t!(a.accept());
t!(a2.accept());
})
}
#[test]
fn clone_accept_concurrent() {
each_ip(&mut |addr| {
let a = t!(TcpListener::bind(&addr));
let a2 = t!(a.try_clone());
let (tx, rx) = channel();
let tx2 = tx.clone();
let _t = Thread::scoped(move|| {
tx.send(t!(a.accept())).unwrap();
});
let _t = Thread::scoped(move|| {
tx2.send(t!(a2.accept())).unwrap();
});
let _t = Thread::scoped(move|| {
let _ = TcpStream::connect(&addr);
});
let _t = Thread::scoped(move|| {
let _ = TcpStream::connect(&addr);
});
rx.recv().unwrap();
rx.recv().unwrap();
})
}
}

39
src/libstd/net/test.rs Normal file
View File

@ -0,0 +1,39 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::v1::*;
use env;
use net::{SocketAddr, IpAddr};
use sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT, Ordering};
pub fn next_test_ip4() -> SocketAddr {
static PORT: AtomicUsize = ATOMIC_USIZE_INIT;
SocketAddr::new(IpAddr::new_v4(127, 0, 0, 1),
PORT.fetch_add(1, Ordering::SeqCst) as u16 + base_port())
}
pub fn next_test_ip6() -> SocketAddr {
static PORT: AtomicUsize = ATOMIC_USIZE_INIT;
SocketAddr::new(IpAddr::new_v6(0, 0, 0, 0, 0, 0, 0, 1),
PORT.fetch_add(1, Ordering::SeqCst) as u16 + base_port())
}
// The bots run multiple builds at the same time, and these builds
// all want to use ports. This function figures out which workspace
// it is running in and assigns a port range based on it.
fn base_port() -> u16 {
let cwd = env::current_dir().unwrap();
let dirs = ["32-opt", "32-nopt", "64-opt", "64-nopt", "64-opt-vg",
"all-opt", "snap3", "dist"];
dirs.iter().enumerate().find(|&(i, dir)| {
cwd.as_str().unwrap().contains(dir)
}).map(|p| p.0).unwrap_or(0) as u16 * 1000 + 19600
}

291
src/libstd/net/udp.rs Normal file
View File

@ -0,0 +1,291 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::v1::*;
use io::{self, Error, ErrorKind};
use net::{ToSocketAddrs, SocketAddr, IpAddr};
use sys_common::net2 as net_imp;
use sys_common::AsInner;
/// A User Datagram Protocol socket.
///
/// This is an implementation of a bound UDP socket. This supports both IPv4 and
/// IPv6 addresses, and there is no corresponding notion of a server because UDP
/// is a datagram protocol.
///
/// # Example
///
/// ```no_run
/// use std::net::UdpSocket;
///
/// # fn foo() -> std::io::Result<()> {
/// let mut socket = try!(UdpSocket::bind("127.0.0.1:34254"));
///
/// let mut buf = [0; 10];
/// let (amt, src) = try!(socket.recv_from(&mut buf));
///
/// // Send a reply to the socket we received data from
/// let buf = &mut buf[..amt];
/// buf.reverse();
/// try!(socket.send_to(buf, &src));
///
/// drop(socket); // close the socket
/// # Ok(())
/// # }
/// ```
pub struct UdpSocket(net_imp::UdpSocket);
impl UdpSocket {
/// Creates a UDP socket from the given address.
///
/// Address type can be any implementor of `ToSocketAddr` trait. See its
/// documentation for concrete examples.
pub fn bind<A: ToSocketAddrs + ?Sized>(addr: &A) -> io::Result<UdpSocket> {
super::each_addr(addr, net_imp::UdpSocket::bind).map(UdpSocket)
}
/// Receives data from the socket. On success, returns the number of bytes
/// read and the address from whence the data came.
pub fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
self.0.recv_from(buf)
}
/// Sends data on the socket to the given address. Returns nothing on
/// success.
///
/// Address type can be any implementor of `ToSocketAddrs` trait. See its
/// documentation for concrete examples.
pub fn send_to<A: ToSocketAddrs + ?Sized>(&self, buf: &[u8], addr: &A)
-> io::Result<usize> {
match try!(addr.to_socket_addrs()).next() {
Some(addr) => self.0.send_to(buf, &addr),
None => Err(Error::new(ErrorKind::InvalidInput,
"no addresses to send data to", None)),
}
}
/// Returns the socket address that this socket was created from.
pub fn socket_addr(&self) -> io::Result<SocketAddr> {
self.0.socket_addr()
}
/// Create a new independently owned handle to the underlying socket.
///
/// The returned `UdpSocket` is a reference to the same socket that this
/// object references. Both handles will read and write the same port, and
/// options set on one socket will be propagated to the other.
pub fn try_clone(&self) -> io::Result<UdpSocket> {
self.0.duplicate().map(UdpSocket)
}
/// Sets the broadcast flag on or off
pub fn set_broadcast(&self, on: bool) -> io::Result<()> {
self.0.set_broadcast(on)
}
/// Set the multicast loop flag to the specified value
///
/// This lets multicast packets loop back to local sockets (if enabled)
pub fn set_multicast_loop(&self, on: bool) -> io::Result<()> {
self.0.set_multicast_loop(on)
}
/// Joins a multicast IP address (becomes a member of it)
pub fn join_multicast(&self, multi: &IpAddr) -> io::Result<()> {
self.0.join_multicast(multi)
}
/// Leaves a multicast IP address (drops membership from it)
pub fn leave_multicast(&self, multi: &IpAddr) -> io::Result<()> {
self.0.leave_multicast(multi)
}
/// Sets the multicast TTL
pub fn set_multicast_time_to_live(&self, ttl: i32) -> io::Result<()> {
self.0.multicast_time_to_live(ttl)
}
/// Sets this socket's TTL
pub fn set_time_to_live(&self, ttl: i32) -> io::Result<()> {
self.0.time_to_live(ttl)
}
}
impl AsInner<net_imp::UdpSocket> for UdpSocket {
fn as_inner(&self) -> &net_imp::UdpSocket { &self.0 }
}
#[cfg(test)]
mod tests {
use prelude::v1::*;
use io::ErrorKind;
use net::*;
use net::test::{next_test_ip4, next_test_ip6};
use sync::mpsc::channel;
use thread::Thread;
fn each_ip(f: &mut FnMut(SocketAddr, SocketAddr)) {
f(next_test_ip4(), next_test_ip4());
f(next_test_ip6(), next_test_ip6());
}
macro_rules! t {
($e:expr) => {
match $e {
Ok(t) => t,
Err(e) => panic!("received error for `{}`: {}", stringify!($e), e),
}
}
}
// FIXME #11530 this fails on android because tests are run as root
#[cfg_attr(any(windows, target_os = "android"), ignore)]
#[test]
fn bind_error() {
let addr = SocketAddr::new(IpAddr::new_v4(0, 0, 0, 0), 1);
match UdpSocket::bind(&addr) {
Ok(..) => panic!(),
Err(e) => assert_eq!(e.kind(), ErrorKind::PermissionDenied),
}
}
#[test]
fn socket_smoke_test_ip4() {
each_ip(&mut |server_ip, client_ip| {
let (tx1, rx1) = channel();
let (tx2, rx2) = channel();
let _t = Thread::spawn(move|| {
let client = t!(UdpSocket::bind(&client_ip));
rx1.recv().unwrap();
t!(client.send_to(&[99], &server_ip));
tx2.send(()).unwrap();
});
let server = t!(UdpSocket::bind(&server_ip));
tx1.send(()).unwrap();
let mut buf = [0];
let (nread, src) = t!(server.recv_from(&mut buf));
assert_eq!(nread, 1);
assert_eq!(buf[0], 99);
assert_eq!(src, client_ip);
rx2.recv().unwrap();
})
}
#[test]
fn socket_name_ip4() {
each_ip(&mut |addr, _| {
let server = t!(UdpSocket::bind(&addr));
assert_eq!(addr, t!(server.socket_addr()));
})
}
#[test]
fn udp_clone_smoke() {
each_ip(&mut |addr1, addr2| {
let sock1 = t!(UdpSocket::bind(&addr1));
let sock2 = t!(UdpSocket::bind(&addr2));
let _t = Thread::spawn(move|| {
let mut buf = [0, 0];
assert_eq!(sock2.recv_from(&mut buf), Ok((1, addr1)));
assert_eq!(buf[0], 1);
t!(sock2.send_to(&[2], &addr1));
});
let sock3 = t!(sock1.try_clone());
let (tx1, rx1) = channel();
let (tx2, rx2) = channel();
let _t = Thread::spawn(move|| {
rx1.recv().unwrap();
t!(sock3.send_to(&[1], &addr2));
tx2.send(()).unwrap();
});
tx1.send(()).unwrap();
let mut buf = [0, 0];
assert_eq!(sock1.recv_from(&mut buf), Ok((1, addr2)));
rx2.recv().unwrap();
})
}
#[test]
fn udp_clone_two_read() {
each_ip(&mut |addr1, addr2| {
let sock1 = t!(UdpSocket::bind(&addr1));
let sock2 = t!(UdpSocket::bind(&addr2));
let (tx1, rx) = channel();
let tx2 = tx1.clone();
let _t = Thread::spawn(move|| {
t!(sock2.send_to(&[1], &addr1));
rx.recv().unwrap();
t!(sock2.send_to(&[2], &addr1));
rx.recv().unwrap();
});
let sock3 = t!(sock1.try_clone());
let (done, rx) = channel();
let _t = Thread::spawn(move|| {
let mut buf = [0, 0];
t!(sock3.recv_from(&mut buf));
tx2.send(()).unwrap();
done.send(()).unwrap();
});
let mut buf = [0, 0];
t!(sock1.recv_from(&mut buf));
tx1.send(()).unwrap();
rx.recv().unwrap();
})
}
#[test]
fn udp_clone_two_write() {
each_ip(&mut |addr1, addr2| {
let sock1 = t!(UdpSocket::bind(&addr1));
let sock2 = t!(UdpSocket::bind(&addr2));
let (tx, rx) = channel();
let (serv_tx, serv_rx) = channel();
let _t = Thread::spawn(move|| {
let mut buf = [0, 1];
rx.recv().unwrap();
t!(sock2.recv_from(&mut buf));
serv_tx.send(()).unwrap();
});
let sock3 = t!(sock1.try_clone());
let (done, rx) = channel();
let tx2 = tx.clone();
let _t = Thread::spawn(move|| {
match sock3.send_to(&[1], &addr2) {
Ok(..) => { let _ = tx2.send(()); }
Err(..) => {}
}
done.send(()).unwrap();
});
match sock1.send_to(&[2], &addr2) {
Ok(..) => { let _ = tx.send(()); }
Err(..) => {}
}
drop(tx);
rx.recv().unwrap();
serv_rx.recv().unwrap();
})
}
}

View File

@ -24,6 +24,7 @@ pub mod condvar;
pub mod helper_thread; pub mod helper_thread;
pub mod mutex; pub mod mutex;
pub mod net; pub mod net;
pub mod net2;
pub mod rwlock; pub mod rwlock;
pub mod stack; pub mod stack;
pub mod thread; pub mod thread;

View File

@ -0,0 +1,393 @@
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::v1::*;
use ffi::CString;
use io::{self, Error, ErrorKind};
use libc::{self, c_int, c_char, c_void, socklen_t};
use mem;
use net::{IpAddr, SocketAddr, Shutdown};
use num::Int;
use sys::c;
use sys::net::{cvt, cvt_r, cvt_gai, Socket, init, wrlen_t};
use sys_common::{AsInner, FromInner, IntoInner};
////////////////////////////////////////////////////////////////////////////////
// sockaddr and misc bindings
////////////////////////////////////////////////////////////////////////////////
fn hton<I: Int>(i: I) -> I { i.to_be() }
fn ntoh<I: Int>(i: I) -> I { Int::from_be(i) }
fn setsockopt<T>(sock: &Socket, opt: c_int, val: c_int,
payload: T) -> io::Result<()> {
unsafe {
let payload = &payload as *const T as *const c_void;
try!(cvt(libc::setsockopt(*sock.as_inner(), opt, val, payload,
mem::size_of::<T>() as socklen_t)));
Ok(())
}
}
#[allow(dead_code)]
fn getsockopt<T: Copy>(sock: &Socket, opt: c_int,
val: c_int) -> io::Result<T> {
unsafe {
let mut slot: T = mem::zeroed();
let mut len = mem::size_of::<T>() as socklen_t;
let ret = try!(cvt(c::getsockopt(*sock.as_inner(), opt, val,
&mut slot as *mut _ as *mut _,
&mut len)));
assert_eq!(ret as usize, mem::size_of::<T>());
Ok(slot)
}
}
fn sockname<F>(f: F) -> io::Result<SocketAddr>
where F: FnOnce(*mut libc::sockaddr, *mut socklen_t) -> c_int
{
unsafe {
let mut storage: libc::sockaddr_storage = mem::zeroed();
let mut len = mem::size_of_val(&storage) as socklen_t;
try!(cvt(f(&mut storage as *mut _ as *mut _, &mut len)));
sockaddr_to_addr(&storage, len as usize)
}
}
fn sockaddr_to_addr(storage: &libc::sockaddr_storage,
len: usize) -> io::Result<SocketAddr> {
match storage.ss_family as libc::c_int {
libc::AF_INET => {
assert!(len as usize >= mem::size_of::<libc::sockaddr_in>());
Ok(FromInner::from_inner(unsafe {
*(storage as *const _ as *const libc::sockaddr_in)
}))
}
libc::AF_INET6 => {
assert!(len as usize >= mem::size_of::<libc::sockaddr_in6>());
Ok(FromInner::from_inner(unsafe {
*(storage as *const _ as *const libc::sockaddr_in6)
}))
}
_ => {
Err(Error::new(ErrorKind::InvalidInput, "invalid argument", None))
}
}
}
////////////////////////////////////////////////////////////////////////////////
// get_host_addresses
////////////////////////////////////////////////////////////////////////////////
extern "system" {
fn getaddrinfo(node: *const c_char, service: *const c_char,
hints: *const libc::addrinfo,
res: *mut *mut libc::addrinfo) -> c_int;
fn freeaddrinfo(res: *mut libc::addrinfo);
}
pub struct LookupHost {
original: *mut libc::addrinfo,
cur: *mut libc::addrinfo,
}
impl Iterator for LookupHost {
type Item = io::Result<SocketAddr>;
fn next(&mut self) -> Option<io::Result<SocketAddr>> {
unsafe {
if self.cur.is_null() { return None }
let ret = sockaddr_to_addr(mem::transmute((*self.cur).ai_addr),
(*self.cur).ai_addrlen as usize);
self.cur = (*self.cur).ai_next as *mut libc::addrinfo;
Some(ret)
}
}
}
impl Drop for LookupHost {
fn drop(&mut self) {
unsafe { freeaddrinfo(self.original) }
}
}
pub fn lookup_host(host: &str) -> io::Result<LookupHost> {
init();
let c_host = CString::from_slice(host.as_bytes());
let mut res = 0 as *mut _;
unsafe {
try!(cvt_gai(getaddrinfo(c_host.as_ptr(), 0 as *const _, 0 as *const _,
&mut res)));
Ok(LookupHost { original: res, cur: res })
}
}
////////////////////////////////////////////////////////////////////////////////
// TCP streams
////////////////////////////////////////////////////////////////////////////////
pub struct TcpStream {
inner: Socket,
}
impl TcpStream {
pub fn connect(addr: &SocketAddr) -> io::Result<TcpStream> {
init();
let sock = try!(Socket::new(addr, libc::SOCK_STREAM));
let (addrp, len) = addr.into_inner();
try!(cvt_r(|| unsafe { libc::connect(*sock.as_inner(), addrp, len) }));
Ok(TcpStream { inner: sock })
}
pub fn socket(&self) -> &Socket { &self.inner }
pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> {
setsockopt(&self.inner, libc::IPPROTO_TCP, libc::TCP_NODELAY,
nodelay as c_int)
}
pub fn set_keepalive(&self, seconds: Option<u32>) -> io::Result<()> {
let ret = setsockopt(&self.inner, libc::SOL_SOCKET, libc::SO_KEEPALIVE,
seconds.is_some() as c_int);
match seconds {
Some(n) => ret.and_then(|()| self.set_tcp_keepalive(n)),
None => ret,
}
}
#[cfg(any(target_os = "macos", target_os = "ios"))]
fn set_tcp_keepalive(&self, seconds: u32) -> io::Result<()> {
setsockopt(&self.inner, libc::IPPROTO_TCP, libc::TCP_KEEPALIVE,
seconds as c_int)
}
#[cfg(any(target_os = "freebsd", target_os = "dragonfly"))]
fn set_tcp_keepalive(&self, seconds: u32) -> io::Result<()> {
setsockopt(&self.inner, libc::IPPROTO_TCP, libc::TCP_KEEPIDLE,
seconds as c_int)
}
#[cfg(not(any(target_os = "macos",
target_os = "ios",
target_os = "freebsd",
target_os = "dragonfly")))]
fn set_tcp_keepalive(&self, _seconds: u32) -> io::Result<()> {
Ok(())
}
pub fn read(&self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.read(buf)
}
pub fn write(&self, buf: &[u8]) -> io::Result<usize> {
let ret = try!(cvt(unsafe {
libc::send(*self.inner.as_inner(),
buf.as_ptr() as *const c_void,
buf.len() as wrlen_t,
0)
}));
Ok(ret as usize)
}
pub fn peer_addr(&self) -> io::Result<SocketAddr> {
sockname(|buf, len| unsafe {
libc::getpeername(*self.inner.as_inner(), buf, len)
})
}
pub fn socket_addr(&self) -> io::Result<SocketAddr> {
sockname(|buf, len| unsafe {
libc::getsockname(*self.inner.as_inner(), buf, len)
})
}
pub fn shutdown(&self, how: Shutdown) -> io::Result<()> {
use libc::consts::os::bsd44::SHUT_RDWR;
let how = match how {
Shutdown::Write => libc::SHUT_WR,
Shutdown::Read => libc::SHUT_RD,
Shutdown::Both => SHUT_RDWR,
};
try!(cvt(unsafe { libc::shutdown(*self.inner.as_inner(), how) }));
Ok(())
}
pub fn duplicate(&self) -> io::Result<TcpStream> {
self.inner.duplicate().map(|s| TcpStream { inner: s })
}
}
////////////////////////////////////////////////////////////////////////////////
// TCP listeners
////////////////////////////////////////////////////////////////////////////////
pub struct TcpListener {
inner: Socket,
}
impl TcpListener {
pub fn bind(addr: &SocketAddr) -> io::Result<TcpListener> {
init();
let sock = try!(Socket::new(addr, libc::SOCK_STREAM));
// On platforms with Berkeley-derived sockets, this allows
// to quickly rebind a socket, without needing to wait for
// the OS to clean up the previous one.
if !cfg!(windows) {
try!(setsockopt(&sock, libc::SOL_SOCKET, libc::SO_REUSEADDR,
1 as c_int));
}
// Bind our new socket
let (addrp, len) = addr.into_inner();
try!(cvt(unsafe { libc::bind(*sock.as_inner(), addrp, len) }));
// Start listening
try!(cvt(unsafe { libc::listen(*sock.as_inner(), 128) }));
Ok(TcpListener { inner: sock })
}
pub fn socket(&self) -> &Socket { &self.inner }
pub fn socket_addr(&self) -> io::Result<SocketAddr> {
sockname(|buf, len| unsafe {
libc::getsockname(*self.inner.as_inner(), buf, len)
})
}
pub fn accept(&self) -> io::Result<(TcpStream, SocketAddr)> {
let mut storage: libc::sockaddr_storage = unsafe { mem::zeroed() };
let mut len = mem::size_of_val(&storage) as socklen_t;
let sock = try!(self.inner.accept(&mut storage as *mut _ as *mut _,
&mut len));
let addr = try!(sockaddr_to_addr(&storage, len as usize));
Ok((TcpStream { inner: sock, }, addr))
}
pub fn duplicate(&self) -> io::Result<TcpListener> {
self.inner.duplicate().map(|s| TcpListener { inner: s })
}
}
////////////////////////////////////////////////////////////////////////////////
// UDP
////////////////////////////////////////////////////////////////////////////////
pub struct UdpSocket {
inner: Socket,
}
impl UdpSocket {
pub fn bind(addr: &SocketAddr) -> io::Result<UdpSocket> {
init();
let sock = try!(Socket::new(addr, libc::SOCK_DGRAM));
let (addrp, len) = addr.into_inner();
try!(cvt(unsafe { libc::bind(*sock.as_inner(), addrp, len) }));
Ok(UdpSocket { inner: sock })
}
pub fn socket(&self) -> &Socket { &self.inner }
pub fn socket_addr(&self) -> io::Result<SocketAddr> {
sockname(|buf, len| unsafe {
libc::getsockname(*self.inner.as_inner(), buf, len)
})
}
pub fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
let mut storage: libc::sockaddr_storage = unsafe { mem::zeroed() };
let mut addrlen = mem::size_of_val(&storage) as socklen_t;
let n = try!(cvt(unsafe {
libc::recvfrom(*self.inner.as_inner(),
buf.as_mut_ptr() as *mut c_void,
buf.len() as wrlen_t, 0,
&mut storage as *mut _ as *mut _, &mut addrlen)
}));
Ok((n as usize, try!(sockaddr_to_addr(&storage, addrlen as usize))))
}
pub fn send_to(&self, buf: &[u8], dst: &SocketAddr) -> io::Result<usize> {
let (dstp, dstlen) = dst.into_inner();
let ret = try!(cvt(unsafe {
libc::sendto(*self.inner.as_inner(),
buf.as_ptr() as *const c_void, buf.len() as wrlen_t,
0, dstp, dstlen)
}));
Ok(ret as usize)
}
pub fn set_broadcast(&self, on: bool) -> io::Result<()> {
setsockopt(&self.inner, libc::SOL_SOCKET, libc::SO_BROADCAST,
on as c_int)
}
pub fn set_multicast_loop(&self, on: bool) -> io::Result<()> {
setsockopt(&self.inner, libc::IPPROTO_IP,
libc::IP_MULTICAST_LOOP, on as c_int)
}
pub fn join_multicast(&self, multi: &IpAddr) -> io::Result<()> {
match *multi {
IpAddr::V4(..) => {
self.set_membership(multi, libc::IP_ADD_MEMBERSHIP)
}
IpAddr::V6(..) => {
self.set_membership(multi, libc::IPV6_ADD_MEMBERSHIP)
}
}
}
pub fn leave_multicast(&self, multi: &IpAddr) -> io::Result<()> {
match *multi {
IpAddr::V4(..) => {
self.set_membership(multi, libc::IP_DROP_MEMBERSHIP)
}
IpAddr::V6(..) => {
self.set_membership(multi, libc::IPV6_DROP_MEMBERSHIP)
}
}
}
fn set_membership(&self, addr: &IpAddr, opt: c_int) -> io::Result<()> {
match *addr {
IpAddr::V4(ref addr) => {
let mreq = libc::ip_mreq {
imr_multiaddr: *addr.as_inner(),
// interface == INADDR_ANY
imr_interface: libc::in_addr { s_addr: 0x0 },
};
setsockopt(&self.inner, libc::IPPROTO_IP, opt, mreq)
}
IpAddr::V6(ref addr) => {
let mreq = libc::ip6_mreq {
ipv6mr_multiaddr: *addr.as_inner(),
ipv6mr_interface: 0,
};
setsockopt(&self.inner, libc::IPPROTO_IPV6, opt, mreq)
}
}
}
pub fn multicast_time_to_live(&self, ttl: i32) -> io::Result<()> {
setsockopt(&self.inner, libc::IPPROTO_IP, libc::IP_MULTICAST_TTL,
ttl as c_int)
}
pub fn time_to_live(&self, ttl: i32) -> io::Result<()> {
setsockopt(&self.inner, libc::IPPROTO_IP, libc::IP_TTL, ttl as c_int)
}
pub fn duplicate(&self) -> io::Result<UdpSocket> {
self.inner.duplicate().map(|s| UdpSocket { inner: s })
}
}

View File

@ -157,6 +157,7 @@ extern {
pub fn utimes(filename: *const libc::c_char, pub fn utimes(filename: *const libc::c_char,
times: *const libc::timeval) -> libc::c_int; times: *const libc::timeval) -> libc::c_int;
pub fn gai_strerror(errcode: libc::c_int) -> *const libc::c_char;
} }
#[cfg(any(target_os = "macos", target_os = "ios"))] #[cfg(any(target_os = "macos", target_os = "ios"))]

View File

@ -32,8 +32,8 @@
#![unstable(feature = "std_misc")] #![unstable(feature = "std_misc")]
use ffi::{OsStr, OsString}; use ffi::{OsStr, OsString};
use fs::{Permissions, OpenOptions}; use fs::{self, Permissions, OpenOptions};
use fs; use net;
use libc; use libc;
use mem; use mem;
use sys::os_str::Buf; use sys::os_str::Buf;
@ -111,6 +111,16 @@ impl AsRawFd for old_io::net::udp::UdpSocket {
} }
} }
impl AsRawFd for net::TcpStream {
fn as_raw_fd(&self) -> Fd { *self.as_inner().socket().as_inner() }
}
impl AsRawFd for net::TcpListener {
fn as_raw_fd(&self) -> Fd { *self.as_inner().socket().as_inner() }
}
impl AsRawFd for net::UdpSocket {
fn as_raw_fd(&self) -> Fd { *self.as_inner().socket().as_inner() }
}
// Unix-specific extensions to `OsString`. // Unix-specific extensions to `OsString`.
pub trait OsStringExt { pub trait OsStringExt {
/// Create an `OsString` from a byte vector. /// Create an `OsString` from a byte vector.

View File

@ -15,8 +15,7 @@ use io;
use libc::{self, c_int, size_t, c_void}; use libc::{self, c_int, size_t, c_void};
use mem; use mem;
use sys::cvt; use sys::cvt;
use sys_common::AsInner;
pub type fd_t = c_int;
pub struct FileDesc { pub struct FileDesc {
fd: c_int, fd: c_int,
@ -55,6 +54,10 @@ impl FileDesc {
} }
} }
impl AsInner<c_int> for FileDesc {
fn as_inner(&self) -> &c_int { &self.fd }
}
impl Drop for FileDesc { impl Drop for FileDesc {
fn drop(&mut self) { fn drop(&mut self) {
// closing stdio file handles makes no sense, so never do it. Also, note // closing stdio file handles makes no sense, so never do it. Also, note

View File

@ -18,12 +18,11 @@
use prelude::v1::*; use prelude::v1::*;
use ffi; use ffi;
use io::ErrorKind; use io::{self, ErrorKind};
use libc; use libc;
use num::{Int, SignedInt}; use num::{Int, SignedInt};
use num; use num;
use old_io::{self, IoResult, IoError}; use old_io::{self, IoResult, IoError};
use io;
use str; use str;
use sys_common::mkerr_libc; use sys_common::mkerr_libc;
@ -47,6 +46,7 @@ pub mod fs; // support for std::old_io
pub mod fs2; // support for std::fs pub mod fs2; // support for std::fs
pub mod helper_signal; pub mod helper_signal;
pub mod mutex; pub mod mutex;
pub mod net;
pub mod os; pub mod os;
pub mod os_str; pub mod os_str;
pub mod pipe; pub mod pipe;

View File

@ -0,0 +1,74 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::v1::*;
use ffi;
use io;
use libc::{self, c_int, size_t};
use str;
use sys::c;
use net::{SocketAddr, IpAddr};
use sys::fd::FileDesc;
use sys_common::AsInner;
pub use sys::{cvt, cvt_r};
pub type wrlen_t = size_t;
pub struct Socket(FileDesc);
pub fn init() {}
pub fn cvt_gai(err: c_int) -> io::Result<()> {
if err == 0 { return Ok(()) }
let detail = unsafe {
str::from_utf8(ffi::c_str_to_bytes(&c::gai_strerror(err))).unwrap()
.to_string()
};
Err(io::Error::new(io::ErrorKind::Other,
"failed to lookup address information", Some(detail)))
}
impl Socket {
pub fn new(addr: &SocketAddr, ty: c_int) -> io::Result<Socket> {
let fam = match addr.ip() {
IpAddr::V4(..) => libc::AF_INET,
IpAddr::V6(..) => libc::AF_INET6,
};
unsafe {
let fd = try!(cvt(libc::socket(fam, ty, 0)));
Ok(Socket(FileDesc::new(fd)))
}
}
pub fn accept(&self, storage: *mut libc::sockaddr,
len: *mut libc::socklen_t) -> io::Result<Socket> {
let fd = try!(cvt_r(|| unsafe {
libc::accept(self.0.raw(), storage, len)
}));
Ok(Socket(FileDesc::new(fd)))
}
pub fn duplicate(&self) -> io::Result<Socket> {
cvt(unsafe { libc::dup(self.0.raw()) }).map(|fd| {
Socket(FileDesc::new(fd))
})
}
pub fn read(&self, buf: &mut [u8]) -> io::Result<usize> {
self.0.read(buf)
}
}
impl AsInner<c_int> for Socket {
fn as_inner(&self) -> &c_int { self.0.as_inner() }
}

View File

@ -21,6 +21,7 @@ pub use sys_common::wtf8::{Wtf8Buf, EncodeWide};
use ffi::{OsStr, OsString}; use ffi::{OsStr, OsString};
use fs::{self, OpenOptions}; use fs::{self, OpenOptions};
use libc; use libc;
use net;
use sys::os_str::Buf; use sys::os_str::Buf;
use sys_common::{AsInner, FromInner, AsInnerMut}; use sys_common::{AsInner, FromInner, AsInnerMut};
@ -103,6 +104,16 @@ impl AsRawSocket for old_io::net::udp::UdpSocket {
} }
} }
impl AsRawSocket for net::TcpStream {
fn as_raw_socket(&self) -> Socket { *self.as_inner().socket().as_inner() }
}
impl AsRawSocket for net::TcpListener {
fn as_raw_socket(&self) -> Socket { *self.as_inner().socket().as_inner() }
}
impl AsRawSocket for net::UdpSocket {
fn as_raw_socket(&self) -> Socket { *self.as_inner().socket().as_inner() }
}
// Windows-specific extensions to `OsString`. // Windows-specific extensions to `OsString`.
pub trait OsStringExt { pub trait OsStringExt {
/// Create an `OsString` from a potentially ill-formed UTF-16 slice of 16-bit code units. /// Create an `OsString` from a potentially ill-formed UTF-16 slice of 16-bit code units.

View File

@ -43,6 +43,7 @@ pub mod fs2;
pub mod handle; pub mod handle;
pub mod helper_signal; pub mod helper_signal;
pub mod mutex; pub mod mutex;
pub mod net;
pub mod os; pub mod os;
pub mod os_str; pub mod os_str;
pub mod pipe; pub mod pipe;

View File

@ -0,0 +1,121 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::v1::*;
use io;
use libc::consts::os::extra::INVALID_SOCKET;
use libc::{self, c_int, c_void};
use mem;
use net::{SocketAddr, IpAddr};
use num::{SignedInt, Int};
use rt;
use sync::{Once, ONCE_INIT};
use sys::c;
use sys_common::AsInner;
pub type wrlen_t = i32;
pub struct Socket(libc::SOCKET);
pub fn init() {
static START: Once = ONCE_INIT;
START.call_once(|| unsafe {
let mut data: c::WSADATA = mem::zeroed();
let ret = c::WSAStartup(0x202, // version 2.2
&mut data);
assert_eq!(ret, 0);
rt::at_exit(|| { c::WSACleanup(); })
});
}
fn last_error() -> io::Error {
io::Error::from_os_error(unsafe { c::WSAGetLastError() })
}
pub fn cvt<T: SignedInt>(t: T) -> io::Result<T> {
let one: T = Int::one();
if t == -one {
Err(last_error())
} else {
Ok(t)
}
}
pub fn cvt_gai(err: c_int) -> io::Result<()> {
if err == 0 { return Ok(()) }
cvt(err).map(|_| ())
}
pub fn cvt_r<T: SignedInt, F>(mut f: F) -> io::Result<T> where F: FnMut() -> T {
cvt(f())
}
impl Socket {
pub fn new(addr: &SocketAddr, ty: c_int) -> io::Result<Socket> {
let fam = match addr.ip {
IpAddr::V4(..) => libc::AF_INET,
IpAddr::V6(..) => libc::AF_INET6,
};
match unsafe { libc::socket(fam, ty, 0) } {
INVALID_SOCKET => Err(last_error()),
n => Ok(Socket(n)),
}
}
pub fn accept(&self, storage: *mut libc::sockaddr,
len: *mut libc::socklen_t) -> io::Result<Socket> {
match unsafe { libc::accept(self.0, storage, len) } {
INVALID_SOCKET => Err(last_error()),
n => Ok(Socket(n)),
}
}
pub fn duplicate(&self) -> io::Result<Socket> {
unsafe {
let mut info: c::WSAPROTOCOL_INFO = mem::zeroed();
try!(cvt(c::WSADuplicateSocketW(self.0,
c::GetCurrentProcessId(),
&mut info)));
match c::WSASocketW(info.iAddressFamily,
info.iSocketType,
info.iProtocol,
&mut info, 0, 0) {
INVALID_SOCKET => Err(last_error()),
n => Ok(Socket(n)),
}
}
}
pub fn read(&self, buf: &mut [u8]) -> io::Result<usize> {
// On unix when a socket is shut down all further reads return 0, so we
// do the same on windows to map a shut down socket to returning EOF.
unsafe {
match libc::recv(self.0, buf.as_mut_ptr() as *mut c_void,
buf.len() as i32, 0) {
-1 if c::WSAGetLastError() == c::WSAESHUTDOWN => Ok(0),
-1 => Err(last_error()),
n => Ok(n as usize)
}
}
}
}
impl Drop for Socket {
fn drop(&mut self) {
unsafe { let _ = libc::closesocket(self.0); }
}
}
impl AsInner<libc::SOCKET> for Socket {
fn as_inner(&self) -> &libc::SOCKET { &self.0 }
}