Rollup merge of #70111 - Mark-Simulacrum:btree-no-shared, r=cuviper

BTreeMap: remove shared root

This replaces the shared root with `Option`s in the BTreeMap code, and then slightly cleans up the node manipulation code taking advantage of the removal of the shared root. I expect that further simplification is possible, but wanted to get this posted for initial review.

Note that `BTreeMap::new()` continues to not allocate.

Benchmarks seem within the margin of error/unaffected, as expected for an entirely predictable branch.

```
 name                                 alloc-bench-a ns/iter  alloc-bench-b ns/iter  diff ns/iter  diff %  speedup
 btree::map::iter_mut_20              20                     21                                1   5.00%   x 0.95
 btree::set::clone_100                1,360                  1,439                            79   5.81%   x 0.95
 btree::set::clone_100_and_into_iter  1,319                  1,434                           115   8.72%   x 0.92
 btree::set::clone_10k                143,515                150,991                       7,476   5.21%   x 0.95
 btree::set::clone_10k_and_clear      142,792                152,916                      10,124   7.09%   x 0.93
 btree::set::clone_10k_and_into_iter  146,019                154,561                       8,542   5.85%   x 0.94
```
This commit is contained in:
Mazdak Farrokhzad 2020-03-21 05:33:21 +01:00 committed by GitHub
commit 9d9e3813b2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 223 additions and 266 deletions

View File

@ -370,12 +370,17 @@ class RustStdBTreeSetPrinter(object):
("(len: %i)" % self.__val.get_wrapped_value()['map']['length']))
def children(self):
root = self.__val.get_wrapped_value()['map']['root']
node_ptr = root['node']
i = 0
for child in children_of_node(node_ptr, root['height'], False):
yield (str(i), child)
i = i + 1
prev_idx = None
innermap = GdbValue(self.__val.get_wrapped_value()['map'])
if innermap.get_wrapped_value()['length'] > 0:
root = GdbValue(innermap.get_wrapped_value()['root'])
type_name = str(root.type.ty.name).replace('core::option::Option<', '')[:-1]
root = root.get_wrapped_value().cast(gdb.lookup_type(type_name))
node_ptr = root['node']
i = 0
for child in children_of_node(node_ptr, root['height'], False):
yield (str(i), child)
i = i + 1
class RustStdBTreeMapPrinter(object):
@ -391,13 +396,16 @@ class RustStdBTreeMapPrinter(object):
("(len: %i)" % self.__val.get_wrapped_value()['length']))
def children(self):
root = self.__val.get_wrapped_value()['root']
node_ptr = root['node']
i = 0
for child in children_of_node(node_ptr, root['height'], True):
yield (str(i), child[0])
yield (str(i), child[1])
i = i + 1
if self.__val.get_wrapped_value()['length'] > 0:
root = GdbValue(self.__val.get_wrapped_value()['root'])
type_name = str(root.type.ty.name).replace('core::option::Option<', '')[:-1]
root = root.get_wrapped_value().cast(gdb.lookup_type(type_name))
node_ptr = root['node']
i = 0
for child in children_of_node(node_ptr, root['height'], True):
yield (str(i), child[0])
yield (str(i), child[1])
i = i + 1
class RustStdStringPrinter(object):

View File

@ -122,7 +122,7 @@ use UnderflowResult::*;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub struct BTreeMap<K, V> {
root: node::Root<K, V>,
root: Option<node::Root<K, V>>,
length: usize,
}
@ -147,10 +147,11 @@ impl<K: Clone, V: Clone> Clone for BTreeMap<K, V> {
{
match node.force() {
Leaf(leaf) => {
let mut out_tree = BTreeMap { root: node::Root::new_leaf(), length: 0 };
let mut out_tree = BTreeMap { root: Some(node::Root::new_leaf()), length: 0 };
{
let mut out_node = match out_tree.root.as_mut().force() {
let root = out_tree.root.as_mut().unwrap();
let mut out_node = match root.as_mut().force() {
Leaf(leaf) => leaf,
Internal(_) => unreachable!(),
};
@ -169,9 +170,14 @@ impl<K: Clone, V: Clone> Clone for BTreeMap<K, V> {
}
Internal(internal) => {
let mut out_tree = clone_subtree(internal.first_edge().descend());
out_tree.ensure_root_is_owned();
{
let mut out_node = out_tree.root.push_level();
// Ideally we'd use the return of ensure_root_is_owned
// instead of re-unwrapping here but unfortunately that
// borrows all of out_tree and we need access to the
// length below.
let mut out_node = out_tree.root.as_mut().unwrap().push_level();
let mut in_edge = internal.first_edge();
while let Ok(kv) = in_edge.right_kv() {
let (k, v) = kv.into_kv();
@ -190,7 +196,7 @@ impl<K: Clone, V: Clone> Clone for BTreeMap<K, V> {
(root, length)
};
out_node.push(k, v, subroot);
out_node.push(k, v, subroot.unwrap_or_else(|| node::Root::new_leaf()));
out_tree.length += 1 + sublength;
}
}
@ -203,9 +209,9 @@ impl<K: Clone, V: Clone> Clone for BTreeMap<K, V> {
if self.is_empty() {
// Ideally we'd call `BTreeMap::new` here, but that has the `K:
// Ord` constraint, which this method lacks.
BTreeMap { root: node::Root::shared_empty_root(), length: 0 }
BTreeMap { root: None, length: 0 }
} else {
clone_subtree(self.root.as_ref())
clone_subtree(self.root.as_ref().unwrap().as_ref())
}
}
@ -271,14 +277,14 @@ where
type Key = K;
fn get(&self, key: &Q) -> Option<&K> {
match search::search_tree(self.root.as_ref(), key) {
match search::search_tree(self.root.as_ref()?.as_ref(), key) {
Found(handle) => Some(handle.into_kv().0),
GoDown(_) => None,
}
}
fn take(&mut self, key: &Q) -> Option<K> {
match search::search_tree(self.root.as_mut(), key) {
match search::search_tree(self.root.as_mut()?.as_mut(), key) {
Found(handle) => Some(
OccupiedEntry { handle, length: &mut self.length, _marker: PhantomData }
.remove_kv()
@ -290,7 +296,7 @@ where
fn replace(&mut self, key: K) -> Option<K> {
self.ensure_root_is_owned();
match search::search_tree::<marker::Mut<'_>, K, (), K>(self.root.as_mut(), &key) {
match search::search_tree::<marker::Mut<'_>, K, (), K>(self.root.as_mut()?.as_mut(), &key) {
Found(handle) => Some(mem::replace(handle.into_kv_mut().0, key)),
GoDown(handle) => {
VacantEntry { key, handle, length: &mut self.length, _marker: PhantomData }
@ -344,15 +350,18 @@ pub struct IterMut<'a, K: 'a, V: 'a> {
/// [`BTreeMap`]: struct.BTreeMap.html
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IntoIter<K, V> {
front: Handle<NodeRef<marker::Owned, K, V, marker::Leaf>, marker::Edge>,
back: Handle<NodeRef<marker::Owned, K, V, marker::Leaf>, marker::Edge>,
front: Option<Handle<NodeRef<marker::Owned, K, V, marker::Leaf>, marker::Edge>>,
back: Option<Handle<NodeRef<marker::Owned, K, V, marker::Leaf>, marker::Edge>>,
length: usize,
}
#[stable(feature = "collection_debug", since = "1.17.0")]
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for IntoIter<K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let range = Range { front: self.front.reborrow(), back: self.back.reborrow() };
let range = Range {
front: self.front.as_ref().map(|f| f.reborrow()),
back: self.back.as_ref().map(|b| b.reborrow()),
};
f.debug_list().entries(range).finish()
}
}
@ -417,8 +426,8 @@ pub struct ValuesMut<'a, K: 'a, V: 'a> {
/// [`BTreeMap`]: struct.BTreeMap.html
#[stable(feature = "btree_range", since = "1.17.0")]
pub struct Range<'a, K: 'a, V: 'a> {
front: Handle<NodeRef<marker::Immut<'a>, K, V, marker::Leaf>, marker::Edge>,
back: Handle<NodeRef<marker::Immut<'a>, K, V, marker::Leaf>, marker::Edge>,
front: Option<Handle<NodeRef<marker::Immut<'a>, K, V, marker::Leaf>, marker::Edge>>,
back: Option<Handle<NodeRef<marker::Immut<'a>, K, V, marker::Leaf>, marker::Edge>>,
}
#[stable(feature = "collection_debug", since = "1.17.0")]
@ -437,8 +446,8 @@ impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Range<'_, K, V> {
/// [`BTreeMap`]: struct.BTreeMap.html
#[stable(feature = "btree_range", since = "1.17.0")]
pub struct RangeMut<'a, K: 'a, V: 'a> {
front: Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>,
back: Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>,
front: Option<Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>>,
back: Option<Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>>,
// Be invariant in `K` and `V`
_marker: PhantomData<&'a mut (K, V)>,
@ -447,7 +456,10 @@ pub struct RangeMut<'a, K: 'a, V: 'a> {
#[stable(feature = "collection_debug", since = "1.17.0")]
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for RangeMut<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let range = Range { front: self.front.reborrow(), back: self.back.reborrow() };
let range = Range {
front: self.front.as_ref().map(|f| f.reborrow()),
back: self.back.as_ref().map(|b| b.reborrow()),
};
f.debug_list().entries(range).finish()
}
}
@ -544,7 +556,7 @@ impl<K: Ord, V> BTreeMap<K, V> {
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new() -> BTreeMap<K, V> {
BTreeMap { root: node::Root::shared_empty_root(), length: 0 }
BTreeMap { root: None, length: 0 }
}
/// Clears the map, removing all elements.
@ -589,7 +601,7 @@ impl<K: Ord, V> BTreeMap<K, V> {
K: Borrow<Q>,
Q: Ord,
{
match search::search_tree(self.root.as_ref(), key) {
match search::search_tree(self.root.as_ref()?.as_ref(), key) {
Found(handle) => Some(handle.into_kv().1),
GoDown(_) => None,
}
@ -616,7 +628,7 @@ impl<K: Ord, V> BTreeMap<K, V> {
K: Borrow<Q>,
Q: Ord,
{
match search::search_tree(self.root.as_ref(), k) {
match search::search_tree(self.root.as_ref()?.as_ref(), k) {
Found(handle) => Some(handle.into_kv()),
GoDown(_) => None,
}
@ -645,7 +657,7 @@ impl<K: Ord, V> BTreeMap<K, V> {
T: Ord,
K: Borrow<T>,
{
let front = self.root.as_ref().first_leaf_edge();
let front = self.root.as_ref()?.as_ref().first_leaf_edge();
front.right_kv().ok().map(Handle::into_kv)
}
@ -674,7 +686,7 @@ impl<K: Ord, V> BTreeMap<K, V> {
T: Ord,
K: Borrow<T>,
{
let front = self.root.as_mut().first_leaf_edge();
let front = self.root.as_mut()?.as_mut().first_leaf_edge();
if let Ok(kv) = front.right_kv() {
Some(OccupiedEntry {
handle: kv.forget_node_type(),
@ -708,7 +720,7 @@ impl<K: Ord, V> BTreeMap<K, V> {
T: Ord,
K: Borrow<T>,
{
let back = self.root.as_ref().last_leaf_edge();
let back = self.root.as_ref()?.as_ref().last_leaf_edge();
back.left_kv().ok().map(Handle::into_kv)
}
@ -737,7 +749,7 @@ impl<K: Ord, V> BTreeMap<K, V> {
T: Ord,
K: Borrow<T>,
{
let back = self.root.as_mut().last_leaf_edge();
let back = self.root.as_mut()?.as_mut().last_leaf_edge();
if let Ok(kv) = back.left_kv() {
Some(OccupiedEntry {
handle: kv.forget_node_type(),
@ -801,7 +813,7 @@ impl<K: Ord, V> BTreeMap<K, V> {
K: Borrow<Q>,
Q: Ord,
{
match search::search_tree(self.root.as_mut(), key) {
match search::search_tree(self.root.as_mut()?.as_mut(), key) {
Found(handle) => Some(handle.into_kv_mut().1),
GoDown(_) => None,
}
@ -896,7 +908,7 @@ impl<K: Ord, V> BTreeMap<K, V> {
K: Borrow<Q>,
Q: Ord,
{
match search::search_tree(self.root.as_mut(), key) {
match search::search_tree(self.root.as_mut()?.as_mut(), key) {
Found(handle) => Some(
OccupiedEntry { handle, length: &mut self.length, _marker: PhantomData }
.remove_entry(),
@ -992,11 +1004,15 @@ impl<K: Ord, V> BTreeMap<K, V> {
K: Borrow<T>,
R: RangeBounds<T>,
{
let root1 = self.root.as_ref();
let root2 = self.root.as_ref();
let (f, b) = range_search(root1, root2, range);
if let Some(root) = &self.root {
let root1 = root.as_ref();
let root2 = root.as_ref();
let (f, b) = range_search(root1, root2, range);
Range { front: f, back: b }
Range { front: Some(f), back: Some(b) }
} else {
Range { front: None, back: None }
}
}
/// Constructs a mutable double-ended iterator over a sub-range of elements in the map.
@ -1036,11 +1052,15 @@ impl<K: Ord, V> BTreeMap<K, V> {
K: Borrow<T>,
R: RangeBounds<T>,
{
let root1 = self.root.as_mut();
let root2 = unsafe { ptr::read(&root1) };
let (f, b) = range_search(root1, root2, range);
if let Some(root) = &mut self.root {
let root1 = root.as_mut();
let root2 = unsafe { ptr::read(&root1) };
let (f, b) = range_search(root1, root2, range);
RangeMut { front: f, back: b, _marker: PhantomData }
RangeMut { front: Some(f), back: Some(b), _marker: PhantomData }
} else {
RangeMut { front: None, back: None, _marker: PhantomData }
}
}
/// Gets the given key's corresponding entry in the map for in-place manipulation.
@ -1065,7 +1085,7 @@ impl<K: Ord, V> BTreeMap<K, V> {
pub fn entry(&mut self, key: K) -> Entry<'_, K, V> {
// FIXME(@porglezomp) Avoid allocating if we don't insert
self.ensure_root_is_owned();
match search::search_tree(self.root.as_mut(), &key) {
match search::search_tree(self.root.as_mut().unwrap().as_mut(), &key) {
Found(handle) => {
Occupied(OccupiedEntry { handle, length: &mut self.length, _marker: PhantomData })
}
@ -1077,7 +1097,7 @@ impl<K: Ord, V> BTreeMap<K, V> {
fn from_sorted_iter<I: Iterator<Item = (K, V)>>(&mut self, iter: I) {
self.ensure_root_is_owned();
let mut cur_node = self.root.as_mut().last_leaf_edge().into_node();
let mut cur_node = self.root.as_mut().unwrap().as_mut().last_leaf_edge().into_node();
// Iterate through all key-value pairs, pushing them into nodes at the right level.
for (key, value) in iter {
// Try to push key-value pair into the current leaf node.
@ -1126,7 +1146,7 @@ impl<K: Ord, V> BTreeMap<K, V> {
fn fix_right_edge(&mut self) {
// Handle underfull nodes, start from the top.
let mut cur_node = self.root.as_mut();
let mut cur_node = self.root.as_mut().unwrap().as_mut();
while let Internal(internal) = cur_node.force() {
// Check if right-most child is underfull.
let mut last_edge = internal.last_edge();
@ -1187,14 +1207,14 @@ impl<K: Ord, V> BTreeMap<K, V> {
let total_num = self.len();
let mut right = Self::new();
right.root = node::Root::new_leaf();
for _ in 0..(self.root.as_ref().height()) {
right.root.push_level();
let right_root = right.ensure_root_is_owned();
for _ in 0..(self.root.as_ref().unwrap().as_ref().height()) {
right_root.push_level();
}
{
let mut left_node = self.root.as_mut();
let mut right_node = right.root.as_mut();
let mut left_node = self.root.as_mut().unwrap().as_mut();
let mut right_node = right.root.as_mut().unwrap().as_mut();
loop {
let mut split_edge = match search::search_node(left_node, key) {
@ -1223,7 +1243,9 @@ impl<K: Ord, V> BTreeMap<K, V> {
self.fix_right_border();
right.fix_left_border();
if self.root.as_ref().height() < right.root.as_ref().height() {
if self.root.as_ref().unwrap().as_ref().height()
< right.root.as_ref().unwrap().as_ref().height()
{
self.recalc_length();
right.length = total_num - self.len();
} else {
@ -1261,19 +1283,19 @@ impl<K: Ord, V> BTreeMap<K, V> {
res
}
self.length = dfs(self.root.as_ref());
self.length = dfs(self.root.as_ref().unwrap().as_ref());
}
/// Removes empty levels on the top.
fn fix_top(&mut self) {
loop {
{
let node = self.root.as_ref();
let node = self.root.as_ref().unwrap().as_ref();
if node.height() == 0 || node.len() > 0 {
break;
}
}
self.root.pop_level();
self.root.as_mut().unwrap().pop_level();
}
}
@ -1281,7 +1303,7 @@ impl<K: Ord, V> BTreeMap<K, V> {
self.fix_top();
{
let mut cur_node = self.root.as_mut();
let mut cur_node = self.root.as_mut().unwrap().as_mut();
while let Internal(node) = cur_node.force() {
let mut last_kv = node.last_kv();
@ -1307,7 +1329,7 @@ impl<K: Ord, V> BTreeMap<K, V> {
self.fix_top();
{
let mut cur_node = self.root.as_mut();
let mut cur_node = self.root.as_mut().unwrap().as_mut();
while let Internal(node) = cur_node.force() {
let mut first_kv = node.first_kv();
@ -1326,13 +1348,6 @@ impl<K: Ord, V> BTreeMap<K, V> {
self.fix_top();
}
/// If the root node is the shared root node, allocate our own node.
fn ensure_root_is_owned(&mut self) {
if self.root.is_shared_root() {
self.root = node::Root::new_leaf();
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
@ -1458,12 +1473,21 @@ impl<K, V> IntoIterator for BTreeMap<K, V> {
type IntoIter = IntoIter<K, V>;
fn into_iter(self) -> IntoIter<K, V> {
let root1 = unsafe { ptr::read(&self.root).into_ref() };
let root2 = unsafe { ptr::read(&self.root).into_ref() };
if self.root.is_none() {
mem::forget(self);
return IntoIter { front: None, back: None, length: 0 };
}
let root1 = unsafe { unwrap_unchecked(ptr::read(&self.root)).into_ref() };
let root2 = unsafe { unwrap_unchecked(ptr::read(&self.root)).into_ref() };
let len = self.length;
mem::forget(self);
IntoIter { front: root1.first_leaf_edge(), back: root2.last_leaf_edge(), length: len }
IntoIter {
front: Some(root1.first_leaf_edge()),
back: Some(root2.last_leaf_edge()),
length: len,
}
}
}
@ -1478,9 +1502,9 @@ impl<K, V> Drop for IntoIter<K, V> {
// don't have to care about panics this time (they'll abort).
while let Some(_) = self.0.next() {}
// No need to avoid the shared root, because the tree was definitely not empty.
unsafe {
let mut node = ptr::read(&self.0.front).into_node().forget_type();
let mut node =
unwrap_unchecked(ptr::read(&self.0.front)).into_node().forget_type();
while let Some(parent) = node.deallocate_and_ascend() {
node = parent.into_node().forget_type();
}
@ -1495,14 +1519,13 @@ impl<K, V> Drop for IntoIter<K, V> {
}
unsafe {
let mut node = ptr::read(&self.front).into_node().forget_type();
if node.is_shared_root() {
return;
}
// Most of the nodes have been deallocated while traversing
// but one pile from a leaf up to the root is left standing.
while let Some(parent) = node.deallocate_and_ascend() {
node = parent.into_node().forget_type();
if let Some(front) = ptr::read(&self.front) {
let mut node = front.into_node().forget_type();
// Most of the nodes have been deallocated while traversing
// but one pile from a leaf up to the root is left standing.
while let Some(parent) = node.deallocate_and_ascend() {
node = parent.into_node().forget_type();
}
}
}
}
@ -1517,7 +1540,7 @@ impl<K, V> Iterator for IntoIter<K, V> {
None
} else {
self.length -= 1;
Some(unsafe { self.front.next_unchecked() })
Some(unsafe { self.front.as_mut().unwrap().next_unchecked() })
}
}
@ -1533,7 +1556,7 @@ impl<K, V> DoubleEndedIterator for IntoIter<K, V> {
None
} else {
self.length -= 1;
Some(unsafe { self.back.next_back_unchecked() })
Some(unsafe { self.back.as_mut().unwrap().next_back_unchecked() })
}
}
}
@ -1683,7 +1706,7 @@ impl<'a, K, V> Range<'a, K, V> {
}
unsafe fn next_unchecked(&mut self) -> (&'a K, &'a V) {
self.front.next_unchecked()
unwrap_unchecked(self.front.as_mut()).next_unchecked()
}
}
@ -1696,7 +1719,7 @@ impl<'a, K, V> DoubleEndedIterator for Range<'a, K, V> {
impl<'a, K, V> Range<'a, K, V> {
unsafe fn next_back_unchecked(&mut self) -> (&'a K, &'a V) {
self.back.next_back_unchecked()
unwrap_unchecked(self.back.as_mut()).next_back_unchecked()
}
}
@ -1734,7 +1757,7 @@ impl<'a, K, V> RangeMut<'a, K, V> {
}
unsafe fn next_unchecked(&mut self) -> (&'a mut K, &'a mut V) {
self.front.next_unchecked()
unwrap_unchecked(self.front.as_mut()).next_unchecked()
}
}
@ -1755,7 +1778,7 @@ impl<K, V> FusedIterator for RangeMut<'_, K, V> {}
impl<'a, K, V> RangeMut<'a, K, V> {
unsafe fn next_back_unchecked(&mut self) -> (&'a mut K, &'a mut V) {
self.back.next_back_unchecked()
unwrap_unchecked(self.back.as_mut()).next_back_unchecked()
}
}
@ -1969,8 +1992,8 @@ impl<K, V> BTreeMap<K, V> {
pub fn iter(&self) -> Iter<'_, K, V> {
Iter {
range: Range {
front: self.root.as_ref().first_leaf_edge(),
back: self.root.as_ref().last_leaf_edge(),
front: self.root.as_ref().map(|r| r.as_ref().first_leaf_edge()),
back: self.root.as_ref().map(|r| r.as_ref().last_leaf_edge()),
},
length: self.length,
}
@ -1999,13 +2022,17 @@ impl<K, V> BTreeMap<K, V> {
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
let root1 = self.root.as_mut();
let root2 = unsafe { ptr::read(&root1) };
IterMut {
range: RangeMut {
front: root1.first_leaf_edge(),
back: root2.last_leaf_edge(),
_marker: PhantomData,
range: if let Some(root) = &mut self.root {
let root1 = root.as_mut();
let root2 = unsafe { ptr::read(&root1) };
RangeMut {
front: Some(root1.first_leaf_edge()),
back: Some(root2.last_leaf_edge()),
_marker: PhantomData,
}
} else {
RangeMut { front: None, back: None, _marker: PhantomData }
},
length: self.length,
}
@ -2116,6 +2143,12 @@ impl<K, V> BTreeMap<K, V> {
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// If the root node is the empty (non-allocated) root node, allocate our
/// own node.
fn ensure_root_is_owned(&mut self) -> &mut node::Root<K, V> {
self.root.get_or_insert_with(|| node::Root::new_leaf())
}
}
impl<'a, K: Ord, V> Entry<'a, K, V> {

View File

@ -44,34 +44,7 @@ const B: usize = 6;
pub const MIN_LEN: usize = B - 1;
pub const CAPACITY: usize = 2 * B - 1;
/// The underlying representation of leaf nodes. Note that it is often unsafe to actually store
/// these, since only the first `len` keys and values are assumed to be initialized. As such,
/// these should always be put behind pointers, and specifically behind `BoxedNode` in the owned
/// case.
///
/// We have a separate type for the header and rely on it matching the prefix of `LeafNode`, in
/// order to statically allocate a single dummy node to avoid allocations. This struct is
/// `repr(C)` to prevent them from being reordered. `LeafNode` does not just contain a
/// `NodeHeader` because we do not want unnecessary padding between `len` and the keys.
/// Crucially, `NodeHeader` can be safely transmuted to different K and V. (This is exploited
/// by `as_header`.)
#[repr(C)]
struct NodeHeader<K, V> {
/// We use `*const` as opposed to `*mut` so as to be covariant in `K` and `V`.
/// This either points to an actual node or is null.
parent: *const InternalNode<K, V>,
/// This node's index into the parent node's `edges` array.
/// `*node.parent.edges[node.parent_idx]` should be the same thing as `node`.
/// This is only guaranteed to be initialized when `parent` is non-null.
parent_idx: MaybeUninit<u16>,
/// The number of keys and values this node stores.
///
/// This next to `parent_idx` to encourage the compiler to join `len` and
/// `parent_idx` into the same 32-bit word, reducing space overhead.
len: u16,
}
/// The underlying representation of leaf nodes.
#[repr(C)]
struct LeafNode<K, V> {
/// We use `*const` as opposed to `*mut` so as to be covariant in `K` and `V`.
@ -111,21 +84,6 @@ impl<K, V> LeafNode<K, V> {
}
}
impl<K, V> NodeHeader<K, V> {
fn is_shared_root(&self) -> bool {
ptr::eq(self, &EMPTY_ROOT_NODE as *const _ as *const _)
}
}
// We need to implement Sync here in order to make a static instance.
unsafe impl Sync for NodeHeader<(), ()> {}
// An empty node used as a placeholder for the root node, to avoid allocations.
// We use just a header in order to save space, since no operation on an empty tree will
// ever take a pointer past the first key.
static EMPTY_ROOT_NODE: NodeHeader<(), ()> =
NodeHeader { parent: ptr::null(), parent_idx: MaybeUninit::uninit(), len: 0 };
/// The underlying representation of internal nodes. As with `LeafNode`s, these should be hidden
/// behind `BoxedNode`s to prevent dropping uninitialized keys and values. Any pointer to an
/// `InternalNode` can be directly casted to a pointer to the underlying `LeafNode` portion of the
@ -154,12 +112,9 @@ impl<K, V> InternalNode<K, V> {
}
/// A managed, non-null pointer to a node. This is either an owned pointer to
/// `LeafNode<K, V>`, an owned pointer to `InternalNode<K, V>`, or a (not owned)
/// pointer to `NodeHeader<(), ()` (more specifically, the pointer to EMPTY_ROOT_NODE).
/// All of these types have a `NodeHeader<K, V>` prefix, meaning that they have at
/// least the same size as `NodeHeader<K, V>` and store the same kinds of data at the same
/// offsets; and they have a pointer alignment at least as large as `NodeHeader<K, V>`'s.
/// However, `BoxedNode` contains no information as to which of the three types
/// `LeafNode<K, V>` or an owned pointer to `InternalNode<K, V>`.
///
/// However, `BoxedNode` contains no information as to which of the two types
/// of nodes it actually contains, and, partially due to this lack of information,
/// has no destructor.
struct BoxedNode<K, V> {
@ -184,8 +139,9 @@ impl<K, V> BoxedNode<K, V> {
}
}
/// Either an owned tree or a shared, empty tree. Note that this does not have a destructor,
/// and must be cleaned up manually if it is an owned tree.
/// An owned tree.
///
/// Note that this does not have a destructor, and must be cleaned up manually.
pub struct Root<K, V> {
node: BoxedNode<K, V>,
/// The number of levels below the root node.
@ -196,20 +152,6 @@ unsafe impl<K: Sync, V: Sync> Sync for Root<K, V> {}
unsafe impl<K: Send, V: Send> Send for Root<K, V> {}
impl<K, V> Root<K, V> {
/// Whether the instance of `Root` wraps a shared, empty root node. If not,
/// the entire tree is uniquely owned by the owner of the `Root` instance.
pub fn is_shared_root(&self) -> bool {
self.as_ref().is_shared_root()
}
/// Returns a shared tree, wrapping a shared root node that is eternally empty.
pub fn shared_empty_root() -> Self {
Root {
node: unsafe { BoxedNode::from_ptr(NonNull::from(&EMPTY_ROOT_NODE).cast()) },
height: 0,
}
}
/// Returns a new owned tree, with its own root node that is initially empty.
pub fn new_leaf() -> Self {
Root { node: BoxedNode::from_leaf(Box::new(unsafe { LeafNode::new() })), height: 0 }
@ -245,7 +187,6 @@ impl<K, V> Root<K, V> {
/// Adds a new internal node with a single edge, pointing to the previous root, and make that
/// new node the root. This increases the height by 1 and is the opposite of `pop_level`.
pub fn push_level(&mut self) -> NodeRef<marker::Mut<'_>, K, V, marker::Internal> {
debug_assert!(!self.is_shared_root());
let mut new_node = Box::new(unsafe { InternalNode::new() });
new_node.edges[0].write(unsafe { BoxedNode::from_ptr(self.node.as_ptr()) });
@ -308,11 +249,6 @@ impl<K, V> Root<K, V> {
/// `Leaf`, the `NodeRef` points to a leaf node, when this is `Internal` the
/// `NodeRef` points to an internal node, and when this is `LeafOrInternal` the
/// `NodeRef` could be pointing to either type of node.
/// Note that in case of a leaf node, this might still be the shared root!
/// Only turn this into a `LeafNode` reference if you know it is not the shared root!
/// Shared references must be dereferenceable *for the entire size of their pointee*,
/// so '&LeafNode` or `&InternalNode` pointing to the shared root is undefined behavior.
/// Turning this into a `NodeHeader` reference is always safe.
pub struct NodeRef<BorrowType, K, V, Type> {
/// The number of levels below the node.
height: usize,
@ -354,7 +290,7 @@ impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
/// Note that, despite being safe, calling this function can have the side effect
/// of invalidating mutable references that unsafe code has created.
pub fn len(&self) -> usize {
self.as_header().len as usize
self.as_leaf().len as usize
}
/// Returns the height of this node in the whole tree. Zero height denotes the
@ -374,35 +310,24 @@ impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
NodeRef { height: self.height, node: self.node, root: self.root, _marker: PhantomData }
}
/// Exposes the leaf "portion" of any leaf or internal node that is not the shared root.
/// Exposes the leaf "portion" of any leaf or internal node.
/// If the node is a leaf, this function simply opens up its data.
/// If the node is an internal node, so not a leaf, it does have all the data a leaf has
/// (header, keys and values), and this function exposes that.
/// Unsafe because the node must not be the shared root. For more information,
/// see the `NodeRef` comments.
unsafe fn as_leaf(&self) -> &LeafNode<K, V> {
debug_assert!(!self.is_shared_root());
self.node.as_ref()
}
fn as_header(&self) -> &NodeHeader<K, V> {
unsafe { &*(self.node.as_ptr() as *const NodeHeader<K, V>) }
}
/// Returns whether the node is the shared, empty root.
pub fn is_shared_root(&self) -> bool {
self.as_header().is_shared_root()
fn as_leaf(&self) -> &LeafNode<K, V> {
// The node must be valid for at least the LeafNode portion.
// This is not a reference in the NodeRef type because we don't know if
// it should be unique or shared.
unsafe { self.node.as_ref() }
}
/// Borrows a view into the keys stored in the node.
/// Unsafe because the caller must ensure that the node is not the shared root.
pub unsafe fn keys(&self) -> &[K] {
pub fn keys(&self) -> &[K] {
self.reborrow().into_key_slice()
}
/// Borrows a view into the values stored in the node.
/// Unsafe because the caller must ensure that the node is not the shared root.
unsafe fn vals(&self) -> &[V] {
fn vals(&self) -> &[V] {
self.reborrow().into_val_slice()
}
@ -416,7 +341,7 @@ impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
pub fn ascend(
self,
) -> Result<Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge>, Self> {
let parent_as_leaf = self.as_header().parent as *const LeafNode<K, V>;
let parent_as_leaf = self.as_leaf().parent as *const LeafNode<K, V>;
if let Some(non_zero) = NonNull::new(parent_as_leaf as *mut _) {
Ok(Handle {
node: NodeRef {
@ -425,7 +350,7 @@ impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
root: self.root,
_marker: PhantomData,
},
idx: unsafe { usize::from(*self.as_header().parent_idx.as_ptr()) },
idx: unsafe { usize::from(*self.as_leaf().parent_idx.as_ptr()) },
_marker: PhantomData,
})
} else {
@ -464,7 +389,6 @@ impl<K, V> NodeRef<marker::Owned, K, V, marker::LeafOrInternal> {
pub unsafe fn deallocate_and_ascend(
self,
) -> Option<Handle<NodeRef<marker::Owned, K, V, marker::Internal>, marker::Edge>> {
assert!(!self.is_shared_root());
let height = self.height;
let node = self.node;
let ret = self.ascend().ok();
@ -507,41 +431,37 @@ impl<'a, K, V, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
/// (header, keys and values), and this function exposes that.
///
/// Returns a raw ptr to avoid asserting exclusive access to the entire node.
/// This also implies you can invoke this member on the shared root, but the resulting pointer
/// might not be properly aligned and definitely would not allow accessing keys and values.
fn as_leaf_mut(&mut self) -> *mut LeafNode<K, V> {
self.node.as_ptr()
}
/// Unsafe because the caller must ensure that the node is not the shared root.
unsafe fn keys_mut(&mut self) -> &mut [K] {
self.reborrow_mut().into_key_slice_mut()
fn keys_mut(&mut self) -> &mut [K] {
// SAFETY: the caller will not be able to call further methods on self
// until the key slice reference is dropped, as we have unique access
// for the lifetime of the borrow.
unsafe { self.reborrow_mut().into_key_slice_mut() }
}
/// Unsafe because the caller must ensure that the node is not the shared root.
unsafe fn vals_mut(&mut self) -> &mut [V] {
self.reborrow_mut().into_val_slice_mut()
fn vals_mut(&mut self) -> &mut [V] {
// SAFETY: the caller will not be able to call further methods on self
// until the value slice reference is dropped, as we have unique access
// for the lifetime of the borrow.
unsafe { self.reborrow_mut().into_val_slice_mut() }
}
}
impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Immut<'a>, K, V, Type> {
/// Unsafe because the caller must ensure that the node is not the shared root.
unsafe fn into_key_slice(self) -> &'a [K] {
debug_assert!(!self.is_shared_root());
// We cannot be the shared root, so `as_leaf` is okay.
slice::from_raw_parts(MaybeUninit::first_ptr(&self.as_leaf().keys), self.len())
fn into_key_slice(self) -> &'a [K] {
unsafe { slice::from_raw_parts(MaybeUninit::first_ptr(&self.as_leaf().keys), self.len()) }
}
/// Unsafe because the caller must ensure that the node is not the shared root.
unsafe fn into_val_slice(self) -> &'a [V] {
debug_assert!(!self.is_shared_root());
// We cannot be the shared root, so `as_leaf` is okay.
slice::from_raw_parts(MaybeUninit::first_ptr(&self.as_leaf().vals), self.len())
fn into_val_slice(self) -> &'a [V] {
unsafe { slice::from_raw_parts(MaybeUninit::first_ptr(&self.as_leaf().vals), self.len()) }
}
/// Unsafe because the caller must ensure that the node is not the shared root.
unsafe fn into_slices(self) -> (&'a [K], &'a [V]) {
let k = ptr::read(&self);
fn into_slices(self) -> (&'a [K], &'a [V]) {
// SAFETY: equivalent to reborrow() except not requiring Type: 'a
let k = unsafe { ptr::read(&self) };
(k.into_key_slice(), self.into_val_slice())
}
}
@ -553,28 +473,27 @@ impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
unsafe { &mut *(self.root as *mut Root<K, V>) }
}
/// Unsafe because the caller must ensure that the node is not the shared root.
unsafe fn into_key_slice_mut(mut self) -> &'a mut [K] {
debug_assert!(!self.is_shared_root());
// We cannot be the shared root, so `as_leaf_mut` is okay.
slice::from_raw_parts_mut(
MaybeUninit::first_ptr_mut(&mut (*self.as_leaf_mut()).keys),
self.len(),
)
fn into_key_slice_mut(mut self) -> &'a mut [K] {
// SAFETY: The keys of a node must always be initialized up to length.
unsafe {
slice::from_raw_parts_mut(
MaybeUninit::first_ptr_mut(&mut (*self.as_leaf_mut()).keys),
self.len(),
)
}
}
/// Unsafe because the caller must ensure that the node is not the shared root.
unsafe fn into_val_slice_mut(mut self) -> &'a mut [V] {
debug_assert!(!self.is_shared_root());
slice::from_raw_parts_mut(
MaybeUninit::first_ptr_mut(&mut (*self.as_leaf_mut()).vals),
self.len(),
)
fn into_val_slice_mut(mut self) -> &'a mut [V] {
// SAFETY: The values of a node must always be initialized up to length.
unsafe {
slice::from_raw_parts_mut(
MaybeUninit::first_ptr_mut(&mut (*self.as_leaf_mut()).vals),
self.len(),
)
}
}
/// Unsafe because the caller must ensure that the node is not the shared root.
unsafe fn into_slices_mut(mut self) -> (&'a mut [K], &'a mut [V]) {
debug_assert!(!self.is_shared_root());
fn into_slices_mut(mut self) -> (&'a mut [K], &'a mut [V]) {
// We cannot use the getters here, because calling the second one
// invalidates the reference returned by the first.
// More precisely, it is the call to `len` that is the culprit,
@ -582,8 +501,13 @@ impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
// overlap with the keys (and even the values, for ZST keys).
let len = self.len();
let leaf = self.as_leaf_mut();
let keys = slice::from_raw_parts_mut(MaybeUninit::first_ptr_mut(&mut (*leaf).keys), len);
let vals = slice::from_raw_parts_mut(MaybeUninit::first_ptr_mut(&mut (*leaf).vals), len);
// SAFETY: The keys and values of a node must always be initialized up to length.
let keys = unsafe {
slice::from_raw_parts_mut(MaybeUninit::first_ptr_mut(&mut (*leaf).keys), len)
};
let vals = unsafe {
slice::from_raw_parts_mut(MaybeUninit::first_ptr_mut(&mut (*leaf).vals), len)
};
(keys, vals)
}
}
@ -592,7 +516,6 @@ impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Leaf> {
/// Adds a key/value pair the end of the node.
pub fn push(&mut self, key: K, val: V) {
assert!(self.len() < CAPACITY);
debug_assert!(!self.is_shared_root());
let idx = self.len();
@ -607,7 +530,6 @@ impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Leaf> {
/// Adds a key/value pair to the beginning of the node.
pub fn push_front(&mut self, key: K, val: V) {
assert!(self.len() < CAPACITY);
debug_assert!(!self.is_shared_root());
unsafe {
slice_insert(self.keys_mut(), 0, key);
@ -624,7 +546,6 @@ impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
pub fn push(&mut self, key: K, val: V, edge: Root<K, V>) {
assert!(edge.height == self.height - 1);
assert!(self.len() < CAPACITY);
debug_assert!(!self.is_shared_root());
let idx = self.len();
@ -658,7 +579,6 @@ impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
pub fn push_front(&mut self, key: K, val: V, edge: Root<K, V>) {
assert!(edge.height == self.height - 1);
assert!(self.len() < CAPACITY);
debug_assert!(!self.is_shared_root());
unsafe {
slice_insert(self.keys_mut(), 0, key);
@ -744,8 +664,7 @@ impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
}
}
/// Unsafe because the caller must ensure that the node is not the shared root.
unsafe fn into_kv_pointers_mut(mut self) -> (*mut K, *mut V) {
fn into_kv_pointers_mut(mut self) -> (*mut K, *mut V) {
(self.keys_mut().as_mut_ptr(), self.vals_mut().as_mut_ptr())
}
}
@ -904,7 +823,6 @@ impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge
fn insert_fit(&mut self, key: K, val: V) -> *mut V {
// Necessary for correctness, but in a private module
debug_assert!(self.node.len() < CAPACITY);
debug_assert!(!self.node.is_shared_root());
unsafe {
slice_insert(self.node.keys_mut(), self.idx, key);
@ -1081,7 +999,6 @@ impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::KV>
/// - All the key/value pairs to the right of this handle are put into a newly
/// allocated node.
pub fn split(mut self) -> (NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, K, V, Root<K, V>) {
assert!(!self.node.is_shared_root());
unsafe {
let mut new_node = Box::new(LeafNode::new());
@ -1113,7 +1030,6 @@ impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::KV>
pub fn remove(
mut self,
) -> (Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>, K, V) {
assert!(!self.node.is_shared_root());
unsafe {
let k = slice_remove(self.node.keys_mut(), self.idx);
let v = slice_remove(self.node.vals_mut(), self.idx);

View File

@ -67,19 +67,16 @@ where
Q: Ord,
K: Borrow<Q>,
{
// This function is defined over all borrow types (immutable, mutable, owned),
// and may be called on the shared root in each case.
// This function is defined over all borrow types (immutable, mutable, owned).
// Using `keys()` is fine here even if BorrowType is mutable, as all we return
// is an index -- not a reference.
let len = node.len();
if len > 0 {
let keys = unsafe { node.keys() }; // safe because a non-empty node cannot be the shared root
for (i, k) in keys.iter().enumerate() {
match key.cmp(k.borrow()) {
Ordering::Greater => {}
Ordering::Equal => return (i, true),
Ordering::Less => return (i, false),
}
let keys = node.keys();
for (i, k) in keys.iter().enumerate() {
match key.cmp(k.borrow()) {
Ordering::Greater => {}
Ordering::Equal => return (i, true),
Ordering::Less => return (i, false),
}
}
(len, false)

View File

@ -67,7 +67,7 @@ fn test_basic_large() {
#[test]
fn test_basic_small() {
let mut map = BTreeMap::new();
// Empty, shared root:
// Empty, root is absent (None):
assert_eq!(map.remove(&1), None);
assert_eq!(map.len(), 0);
assert_eq!(map.get(&1), None);
@ -123,7 +123,7 @@ fn test_basic_small() {
assert_eq!(map.values().collect::<Vec<_>>(), vec![&4]);
assert_eq!(map.remove(&2), Some(4));
// Empty but private root:
// Empty but root is owned (Some(...)):
assert_eq!(map.len(), 0);
assert_eq!(map.get(&1), None);
assert_eq!(map.get_mut(&1), None);
@ -263,13 +263,6 @@ fn test_iter_mut_mutation() {
do_test_iter_mut_mutation::<Align32>(144);
}
#[test]
fn test_into_key_slice_with_shared_root_past_bounds() {
let mut map: BTreeMap<Align32, ()> = BTreeMap::new();
assert_eq!(map.get(&Align32(1)), None);
assert_eq!(map.get_mut(&Align32(1)), None);
}
#[test]
fn test_values_mut() {
let mut a = BTreeMap::new();

View File

@ -17,35 +17,43 @@
// gdb-command: print btree_set
// gdb-check:$1 = BTreeSet<i32>(len: 15) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
// gdb-command: print empty_btree_set
// gdb-check:$2 = BTreeSet<i32>(len: 0)
// gdb-command: print btree_map
// gdb-check:$2 = BTreeMap<i32, i32>(len: 15) = {[0] = 0, [1] = 1, [2] = 2, [3] = 3, [4] = 4, [5] = 5, [6] = 6, [7] = 7, [8] = 8, [9] = 9, [10] = 10, [11] = 11, [12] = 12, [13] = 13, [14] = 14}
// gdb-check:$3 = BTreeMap<i32, i32>(len: 15) = {[0] = 0, [1] = 1, [2] = 2, [3] = 3, [4] = 4, [5] = 5, [6] = 6, [7] = 7, [8] = 8, [9] = 9, [10] = 10, [11] = 11, [12] = 12, [13] = 13, [14] = 14}
// gdb-command: print empty_btree_map
// gdb-check:$4 = BTreeMap<i32, u32>(len: 0)
// gdb-command: print vec_deque
// gdb-check:$3 = VecDeque<i32>(len: 3, cap: 8) = {5, 3, 7}
// gdb-check:$5 = VecDeque<i32>(len: 3, cap: 8) = {5, 3, 7}
// gdb-command: print vec_deque2
// gdb-check:$4 = VecDeque<i32>(len: 7, cap: 8) = {2, 3, 4, 5, 6, 7, 8}
// gdb-check:$6 = VecDeque<i32>(len: 7, cap: 8) = {2, 3, 4, 5, 6, 7, 8}
#![allow(unused_variables)]
use std::collections::BTreeSet;
use std::collections::BTreeMap;
use std::collections::BTreeSet;
use std::collections::VecDeque;
fn main() {
// BTreeSet
let mut btree_set = BTreeSet::new();
for i in 0..15 {
btree_set.insert(i);
}
let mut empty_btree_set: BTreeSet<i32> = BTreeSet::new();
// BTreeMap
let mut btree_map = BTreeMap::new();
for i in 0..15 {
btree_map.insert(i, i);
}
let mut empty_btree_map: BTreeMap<i32, u32> = BTreeMap::new();
// VecDeque
let mut vec_deque = VecDeque::new();
vec_deque.push_back(5);
@ -63,4 +71,6 @@ fn main() {
zzz(); // #break
}
fn zzz() { () }
fn zzz() {
()
}