Auto merge of #116751 - Nadrieril:lint-overlap-per-column, r=davidtwco

Lint overlapping ranges as a separate pass

This reworks the [`overlapping_range_endpoints`](https://doc.rust-lang.org/beta/nightly-rustc/rustc_lint_defs/builtin/static.OVERLAPPING_RANGE_ENDPOINTS.html) lint. My motivations are:

- It was annoying to have this lint entangled with the exhaustiveness algorithm, especially wrt librarification;
- This makes the lint behave consistently.

Here's the consistency story. Take the following matches:
```rust
match (0u8, true) {
    (0..=10, true) => {}
    (10..20, true) => {}
    (10..20, false) => {}
    _ => {}
}
match (true, 0u8) {
    (true, 0..=10) => {}
    (true, 10..20) => {}
    (false, 10..20) => {}
    _ => {}
}
```
There are two semantically consistent options: option 1 we lint all overlaps between the ranges, option 2 we only lint the overlaps that could actually occur (i.e. the ones with `true`). Option 1 is what this PR does. Option 2 is possible but would require the exhaustiveness algorithm to track more things for the sake of the lint. The status quo is that we're inconsistent between the two.

Option 1 generates more false postives, but I prefer it from a maintainer's perspective. I do think the difference is minimal; cases where the difference is observable seem rare.

This PR adds a separate pass, so this will have a perf impact. Let's see how bad, it looked ok locally.
This commit is contained in:
bors 2023-10-27 14:10:42 +00:00
commit 9d6d5d4894
6 changed files with 257 additions and 148 deletions

View File

@ -53,14 +53,13 @@ use smallvec::{smallvec, SmallVec};
use rustc_apfloat::ieee::{DoubleS, IeeeFloat, SingleS}; use rustc_apfloat::ieee::{DoubleS, IeeeFloat, SingleS};
use rustc_data_structures::captures::Captures; use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::FxHashSet; use rustc_data_structures::fx::FxHashSet;
use rustc_hir::{HirId, RangeEnd}; use rustc_hir::RangeEnd;
use rustc_index::Idx; use rustc_index::Idx;
use rustc_middle::middle::stability::EvalResult; use rustc_middle::middle::stability::EvalResult;
use rustc_middle::mir; use rustc_middle::mir;
use rustc_middle::thir::{FieldPat, Pat, PatKind, PatRange}; use rustc_middle::thir::{FieldPat, Pat, PatKind, PatRange};
use rustc_middle::ty::layout::IntegerExt; use rustc_middle::ty::layout::IntegerExt;
use rustc_middle::ty::{self, Ty, TyCtxt, VariantDef}; use rustc_middle::ty::{self, Ty, TyCtxt, VariantDef};
use rustc_session::lint;
use rustc_span::{Span, DUMMY_SP}; use rustc_span::{Span, DUMMY_SP};
use rustc_target::abi::{FieldIdx, Integer, VariantIdx, FIRST_VARIANT}; use rustc_target::abi::{FieldIdx, Integer, VariantIdx, FIRST_VARIANT};
@ -68,7 +67,6 @@ use self::Constructor::*;
use self::SliceKind::*; use self::SliceKind::*;
use super::usefulness::{MatchCheckCtxt, PatCtxt}; use super::usefulness::{MatchCheckCtxt, PatCtxt};
use crate::errors::{Overlap, OverlappingRangeEndpoints};
/// Recursively expand this pattern into its subpatterns. Only useful for or-patterns. /// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> { fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> {
@ -111,15 +109,15 @@ pub(crate) struct IntRange {
impl IntRange { impl IntRange {
#[inline] #[inline]
fn is_integral(ty: Ty<'_>) -> bool { pub(super) fn is_integral(ty: Ty<'_>) -> bool {
matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_) | ty::Bool) matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_) | ty::Bool)
} }
fn is_singleton(&self) -> bool { pub(super) fn is_singleton(&self) -> bool {
self.range.start() == self.range.end() self.range.start() == self.range.end()
} }
fn boundaries(&self) -> (u128, u128) { pub(super) fn boundaries(&self) -> (u128, u128) {
(*self.range.start(), *self.range.end()) (*self.range.start(), *self.range.end())
} }
@ -177,23 +175,6 @@ impl IntRange {
} }
} }
fn suspicious_intersection(&self, other: &Self) -> bool {
// `false` in the following cases:
// 1 ---- // 1 ---------- // 1 ---- // 1 ----
// 2 ---------- // 2 ---- // 2 ---- // 2 ----
//
// The following are currently `false`, but could be `true` in the future (#64007):
// 1 --------- // 1 ---------
// 2 ---------- // 2 ----------
//
// `true` in the following cases:
// 1 ------- // 1 -------
// 2 -------- // 2 -------
let (lo, hi) = self.boundaries();
let (other_lo, other_hi) = other.boundaries();
(lo == other_hi || hi == other_lo) && !self.is_singleton() && !other.is_singleton()
}
/// Partition a range of integers into disjoint subranges. This does constructor splitting for /// Partition a range of integers into disjoint subranges. This does constructor splitting for
/// integer ranges as explained at the top of the file. /// integer ranges as explained at the top of the file.
/// ///
@ -293,7 +274,7 @@ impl IntRange {
} }
/// Only used for displaying the range. /// Only used for displaying the range.
fn to_pat<'tcx>(&self, tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Pat<'tcx> { pub(super) fn to_pat<'tcx>(&self, tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Pat<'tcx> {
let (lo, hi) = self.boundaries(); let (lo, hi) = self.boundaries();
let bias = IntRange::signed_bias(tcx, ty); let bias = IntRange::signed_bias(tcx, ty);
@ -315,51 +296,6 @@ impl IntRange {
Pat { ty, span: DUMMY_SP, kind } Pat { ty, span: DUMMY_SP, kind }
} }
/// Lint on likely incorrect range patterns (#63987)
pub(super) fn lint_overlapping_range_endpoints<'a, 'p: 'a, 'tcx: 'a>(
&self,
pcx: &PatCtxt<'_, 'p, 'tcx>,
pats: impl Iterator<Item = &'a DeconstructedPat<'p, 'tcx>>,
column_count: usize,
lint_root: HirId,
) {
if self.is_singleton() {
return;
}
if column_count != 1 {
// FIXME: for now, only check for overlapping ranges on simple range
// patterns. Otherwise with the current logic the following is detected
// as overlapping:
// ```
// match (0u8, true) {
// (0 ..= 125, false) => {}
// (125 ..= 255, true) => {}
// _ => {}
// }
// ```
return;
}
let overlap: Vec<_> = pats
.filter_map(|pat| Some((pat.ctor().as_int_range()?, pat.span())))
.filter(|(range, _)| self.suspicious_intersection(range))
.map(|(range, span)| Overlap {
range: self.intersection(&range).unwrap().to_pat(pcx.cx.tcx, pcx.ty),
span,
})
.collect();
if !overlap.is_empty() {
pcx.cx.tcx.emit_spanned_lint(
lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
lint_root,
pcx.span,
OverlappingRangeEndpoints { overlap, range: pcx.span },
);
}
}
} }
/// Note: this is often not what we want: e.g. `false` is converted into the range `0..=0` and /// Note: this is often not what we want: e.g. `false` is converted into the range `0..=0` and
@ -644,7 +580,7 @@ impl<'tcx> Constructor<'tcx> {
_ => None, _ => None,
} }
} }
fn as_int_range(&self) -> Option<&IntRange> { pub(super) fn as_int_range(&self) -> Option<&IntRange> {
match self { match self {
IntRange(range) => Some(range), IntRange(range) => Some(range),
_ => None, _ => None,

View File

@ -307,8 +307,10 @@
use self::ArmType::*; use self::ArmType::*;
use self::Usefulness::*; use self::Usefulness::*;
use super::deconstruct_pat::{Constructor, ConstructorSet, DeconstructedPat, WitnessPat}; use super::deconstruct_pat::{
use crate::errors::{NonExhaustiveOmittedPattern, Uncovered}; Constructor, ConstructorSet, DeconstructedPat, IntRange, SplitConstructorSet, WitnessPat,
};
use crate::errors::{NonExhaustiveOmittedPattern, Overlap, OverlappingRangeEndpoints, Uncovered};
use rustc_data_structures::captures::Captures; use rustc_data_structures::captures::Captures;
@ -317,6 +319,7 @@ use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_hir::def_id::DefId; use rustc_hir::def_id::DefId;
use rustc_hir::HirId; use rustc_hir::HirId;
use rustc_middle::ty::{self, Ty, TyCtxt}; use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_session::lint;
use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS; use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS;
use rustc_span::{Span, DUMMY_SP}; use rustc_span::{Span, DUMMY_SP};
@ -473,11 +476,6 @@ impl<'p, 'tcx> Matrix<'p, 'tcx> {
Matrix { patterns: vec![] } Matrix { patterns: vec![] }
} }
/// Number of columns of this matrix. `None` is the matrix is empty.
pub(super) fn column_count(&self) -> Option<usize> {
self.patterns.get(0).map(|r| r.len())
}
/// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively /// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
/// expands it. /// expands it.
fn push(&mut self, row: PatStack<'p, 'tcx>) { fn push(&mut self, row: PatStack<'p, 'tcx>) {
@ -833,15 +831,6 @@ fn is_useful<'p, 'tcx>(
let v_ctor = v.head().ctor(); let v_ctor = v.head().ctor();
debug!(?v_ctor); debug!(?v_ctor);
if let Constructor::IntRange(ctor_range) = &v_ctor {
// Lint on likely incorrect range patterns (#63987)
ctor_range.lint_overlapping_range_endpoints(
pcx,
matrix.heads(),
matrix.column_count().unwrap_or(0),
lint_root,
)
}
// We split the head constructor of `v`. // We split the head constructor of `v`.
let split_ctors = v_ctor.split(pcx, matrix.heads().map(DeconstructedPat::ctor)); let split_ctors = v_ctor.split(pcx, matrix.heads().map(DeconstructedPat::ctor));
// For each constructor, we compute whether there's a value that starts with it that would // For each constructor, we compute whether there's a value that starts with it that would
@ -875,22 +864,102 @@ fn is_useful<'p, 'tcx>(
ret ret
} }
/// A column of patterns in the matrix, where a column is the intuitive notion of "subpatterns that
/// inspect the same subvalue".
/// This is used to traverse patterns column-by-column for lints. Despite similarities with
/// `is_useful`, this is a different traversal. Notably this is linear in the depth of patterns,
/// whereas `is_useful` is worst-case exponential (exhaustiveness is NP-complete).
#[derive(Debug)]
struct PatternColumn<'p, 'tcx> {
patterns: Vec<&'p DeconstructedPat<'p, 'tcx>>,
}
impl<'p, 'tcx> PatternColumn<'p, 'tcx> {
fn new(patterns: Vec<&'p DeconstructedPat<'p, 'tcx>>) -> Self {
Self { patterns }
}
fn is_empty(&self) -> bool {
self.patterns.is_empty()
}
fn head_ty(&self) -> Option<Ty<'tcx>> {
if self.patterns.len() == 0 {
return None;
}
// If the type is opaque and it is revealed anywhere in the column, we take the revealed
// version. Otherwise we could encounter constructors for the revealed type and crash.
let is_opaque = |ty: Ty<'tcx>| matches!(ty.kind(), ty::Alias(ty::Opaque, ..));
let first_ty = self.patterns[0].ty();
if is_opaque(first_ty) {
for pat in &self.patterns {
let ty = pat.ty();
if !is_opaque(ty) {
return Some(ty);
}
}
}
Some(first_ty)
}
fn analyze_ctors(&self, pcx: &PatCtxt<'_, 'p, 'tcx>) -> SplitConstructorSet<'tcx> {
let column_ctors = self.patterns.iter().map(|p| p.ctor());
ConstructorSet::for_ty(pcx.cx, pcx.ty).split(pcx, column_ctors)
}
fn iter<'a>(&'a self) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
self.patterns.iter().copied()
}
/// Does specialization: given a constructor, this takes the patterns from the column that match
/// the constructor, and outputs their fields.
/// This returns one column per field of the constructor. The normally all have the same length
/// (the number of patterns in `self` that matched `ctor`), except that we expand or-patterns
/// which may change the lengths.
fn specialize(&self, pcx: &PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>) -> Vec<Self> {
let arity = ctor.arity(pcx);
if arity == 0 {
return Vec::new();
}
// We specialize the column by `ctor`. This gives us `arity`-many columns of patterns. These
// columns may have different lengths in the presence of or-patterns (this is why we can't
// reuse `Matrix`).
let mut specialized_columns: Vec<_> =
(0..arity).map(|_| Self { patterns: Vec::new() }).collect();
let relevant_patterns =
self.patterns.iter().filter(|pat| ctor.is_covered_by(pcx, pat.ctor()));
for pat in relevant_patterns {
let specialized = pat.specialize(pcx, &ctor);
for (subpat, column) in specialized.iter().zip(&mut specialized_columns) {
if subpat.is_or_pat() {
column.patterns.extend(subpat.iter_fields())
} else {
column.patterns.push(subpat)
}
}
}
assert!(
!specialized_columns[0].is_empty(),
"ctor {ctor:?} was listed as present but isn't;
there is an inconsistency between `Constructor::is_covered_by` and `ConstructorSet::split`"
);
specialized_columns
}
}
/// Traverse the patterns to collect any variants of a non_exhaustive enum that fail to be mentioned /// Traverse the patterns to collect any variants of a non_exhaustive enum that fail to be mentioned
/// in a given column. This traverses patterns column-by-column, where a column is the intuitive /// in a given column.
/// notion of "subpatterns that inspect the same subvalue". #[instrument(level = "debug", skip(cx), ret)]
/// Despite similarities with `is_useful`, this traversal is different. Notably this is linear in the
/// depth of patterns, whereas `is_useful` is worst-case exponential (exhaustiveness is NP-complete).
fn collect_nonexhaustive_missing_variants<'p, 'tcx>( fn collect_nonexhaustive_missing_variants<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>, cx: &MatchCheckCtxt<'p, 'tcx>,
column: &[&DeconstructedPat<'p, 'tcx>], column: &PatternColumn<'p, 'tcx>,
) -> Vec<WitnessPat<'tcx>> { ) -> Vec<WitnessPat<'tcx>> {
if column.is_empty() { let Some(ty) = column.head_ty() else {
return Vec::new(); return Vec::new();
} };
let ty = column[0].ty();
let pcx = &PatCtxt { cx, ty, span: DUMMY_SP, is_top_level: false }; let pcx = &PatCtxt { cx, ty, span: DUMMY_SP, is_top_level: false };
let set = ConstructorSet::for_ty(pcx.cx, pcx.ty).split(pcx, column.iter().map(|p| p.ctor())); let set = column.analyze_ctors(pcx);
if set.present.is_empty() { if set.present.is_empty() {
// We can't consistently handle the case where no constructors are present (since this would // We can't consistently handle the case where no constructors are present (since this would
// require digging deep through any type in case there's a non_exhaustive enum somewhere), // require digging deep through any type in case there's a non_exhaustive enum somewhere),
@ -911,35 +980,11 @@ fn collect_nonexhaustive_missing_variants<'p, 'tcx>(
// Recurse into the fields. // Recurse into the fields.
for ctor in set.present { for ctor in set.present {
let arity = ctor.arity(pcx); let specialized_columns = column.specialize(pcx, &ctor);
if arity == 0 {
continue;
}
// We specialize the column by `ctor`. This gives us `arity`-many columns of patterns. These
// columns may have different lengths in the presence of or-patterns (this is why we can't
// reuse `Matrix`).
let mut specialized_columns: Vec<Vec<_>> = (0..arity).map(|_| Vec::new()).collect();
let relevant_patterns = column.iter().filter(|pat| ctor.is_covered_by(pcx, pat.ctor()));
for pat in relevant_patterns {
let specialized = pat.specialize(pcx, &ctor);
for (subpat, sub_column) in specialized.iter().zip(&mut specialized_columns) {
if subpat.is_or_pat() {
sub_column.extend(subpat.iter_fields())
} else {
sub_column.push(subpat)
}
}
}
debug_assert!(
!specialized_columns[0].is_empty(),
"ctor {ctor:?} was listed as present but isn't"
);
let wild_pat = WitnessPat::wild_from_ctor(pcx, ctor); let wild_pat = WitnessPat::wild_from_ctor(pcx, ctor);
for (i, col_i) in specialized_columns.iter().enumerate() { for (i, col_i) in specialized_columns.iter().enumerate() {
// Compute witnesses for each column. // Compute witnesses for each column.
let wits_for_col_i = collect_nonexhaustive_missing_variants(cx, col_i.as_slice()); let wits_for_col_i = collect_nonexhaustive_missing_variants(cx, col_i);
// For each witness, we build a new pattern in the shape of `ctor(_, _, wit, _, _)`, // For each witness, we build a new pattern in the shape of `ctor(_, _, wit, _, _)`,
// adding enough wildcards to match `arity`. // adding enough wildcards to match `arity`.
for wit in wits_for_col_i { for wit in wits_for_col_i {
@ -952,6 +997,81 @@ fn collect_nonexhaustive_missing_variants<'p, 'tcx>(
witnesses witnesses
} }
/// Traverse the patterns to warn the user about ranges that overlap on their endpoints.
#[instrument(level = "debug", skip(cx, lint_root))]
fn lint_overlapping_range_endpoints<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
column: &PatternColumn<'p, 'tcx>,
lint_root: HirId,
) {
let Some(ty) = column.head_ty() else {
return;
};
let pcx = &PatCtxt { cx, ty, span: DUMMY_SP, is_top_level: false };
let set = column.analyze_ctors(pcx);
if IntRange::is_integral(ty) {
let emit_lint = |overlap: &IntRange, this_span: Span, overlapped_spans: &[Span]| {
let overlap_as_pat = overlap.to_pat(cx.tcx, ty);
let overlaps: Vec<_> = overlapped_spans
.iter()
.copied()
.map(|span| Overlap { range: overlap_as_pat.clone(), span })
.collect();
cx.tcx.emit_spanned_lint(
lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
lint_root,
this_span,
OverlappingRangeEndpoints { overlap: overlaps, range: this_span },
);
};
// If two ranges overlapped, the split set will contain their intersection as a singleton.
let split_int_ranges = set.present.iter().filter_map(|c| c.as_int_range());
for overlap_range in split_int_ranges.clone() {
if overlap_range.is_singleton() {
let overlap: u128 = overlap_range.boundaries().0;
// Spans of ranges that start or end with the overlap.
let mut prefixes: SmallVec<[_; 1]> = Default::default();
let mut suffixes: SmallVec<[_; 1]> = Default::default();
// Iterate on patterns that contained `overlap`.
for pat in column.iter() {
let this_span = pat.span();
let Constructor::IntRange(this_range) = pat.ctor() else { continue };
if this_range.is_singleton() {
// Don't lint when one of the ranges is a singleton.
continue;
}
let (start, end) = this_range.boundaries();
if start == overlap {
// `this_range` looks like `overlap..=end`; it overlaps with any ranges that
// look like `start..=overlap`.
if !prefixes.is_empty() {
emit_lint(overlap_range, this_span, &prefixes);
}
suffixes.push(this_span)
} else if end == overlap {
// `this_range` looks like `start..=overlap`; it overlaps with any ranges
// that look like `overlap..=end`.
if !suffixes.is_empty() {
emit_lint(overlap_range, this_span, &suffixes);
}
prefixes.push(this_span)
}
}
}
}
} else {
// Recurse into the fields.
for ctor in set.present {
for col in column.specialize(pcx, &ctor) {
lint_overlapping_range_endpoints(cx, &col, lint_root);
}
}
}
}
/// The arm of a match expression. /// The arm of a match expression.
#[derive(Clone, Copy, Debug)] #[derive(Clone, Copy, Debug)]
pub(crate) struct MatchArm<'p, 'tcx> { pub(crate) struct MatchArm<'p, 'tcx> {
@ -1022,6 +1142,10 @@ pub(crate) fn compute_match_usefulness<'p, 'tcx>(
NoWitnesses { .. } => bug!(), NoWitnesses { .. } => bug!(),
}; };
let pat_column = arms.iter().flat_map(|arm| arm.pat.flatten_or_pat()).collect::<Vec<_>>();
let pat_column = PatternColumn::new(pat_column);
lint_overlapping_range_endpoints(cx, &pat_column, lint_root);
// Run the non_exhaustive_omitted_patterns lint. Only run on refutable patterns to avoid hitting // Run the non_exhaustive_omitted_patterns lint. Only run on refutable patterns to avoid hitting
// `if let`s. Only run if the match is exhaustive otherwise the error is redundant. // `if let`s. Only run if the match is exhaustive otherwise the error is redundant.
if cx.refutable if cx.refutable
@ -1031,9 +1155,7 @@ pub(crate) fn compute_match_usefulness<'p, 'tcx>(
rustc_session::lint::Level::Allow rustc_session::lint::Level::Allow
) )
{ {
let pat_column = arms.iter().flat_map(|arm| arm.pat.flatten_or_pat()).collect::<Vec<_>>();
let witnesses = collect_nonexhaustive_missing_variants(cx, &pat_column); let witnesses = collect_nonexhaustive_missing_variants(cx, &pat_column);
if !witnesses.is_empty() { if !witnesses.is_empty() {
// Report that a match of a `non_exhaustive` enum marked with `non_exhaustive_omitted_patterns` // Report that a match of a `non_exhaustive` enum marked with `non_exhaustive_omitted_patterns`
// is not exhaustive enough. // is not exhaustive enough.

View File

@ -1,4 +1,5 @@
#![feature(exclusive_range_pattern)] #![feature(exclusive_range_pattern)]
#![allow(overlapping_range_endpoints)]
// run-pass // run-pass

View File

@ -8,7 +8,7 @@ macro_rules! m {
$t2 => {} $t2 => {}
_ => {} _ => {}
} }
} };
} }
fn main() { fn main() {
@ -16,9 +16,9 @@ fn main() {
m!(0u8, 30..=40, 20..=30); //~ ERROR multiple patterns overlap on their endpoints m!(0u8, 30..=40, 20..=30); //~ ERROR multiple patterns overlap on their endpoints
m!(0u8, 20..=30, 31..=40); m!(0u8, 20..=30, 31..=40);
m!(0u8, 20..=30, 29..=40); m!(0u8, 20..=30, 29..=40);
m!(0u8, 20.. 30, 29..=40); //~ ERROR multiple patterns overlap on their endpoints m!(0u8, 20..30, 29..=40); //~ ERROR multiple patterns overlap on their endpoints
m!(0u8, 20.. 30, 28..=40); m!(0u8, 20..30, 28..=40);
m!(0u8, 20.. 30, 30..=40); m!(0u8, 20..30, 30..=40);
m!(0u8, 20..=30, 30..=30); m!(0u8, 20..=30, 30..=30);
m!(0u8, 20..=30, 30..=31); //~ ERROR multiple patterns overlap on their endpoints m!(0u8, 20..=30, 30..=31); //~ ERROR multiple patterns overlap on their endpoints
m!(0u8, 20..=30, 29..=30); m!(0u8, 20..=30, 29..=30);
@ -28,7 +28,7 @@ fn main() {
m!(0u8, 20..=30, 20); m!(0u8, 20..=30, 20);
m!(0u8, 20..=30, 25); m!(0u8, 20..=30, 25);
m!(0u8, 20..=30, 30); m!(0u8, 20..=30, 30);
m!(0u8, 20.. 30, 29); m!(0u8, 20..30, 29);
m!(0u8, 20, 20..=30); m!(0u8, 20, 20..=30);
m!(0u8, 25, 20..=30); m!(0u8, 25, 20..=30);
m!(0u8, 30, 20..=30); m!(0u8, 30, 20..=30);
@ -36,19 +36,21 @@ fn main() {
match 0u8 { match 0u8 {
0..=10 => {} 0..=10 => {}
20..=30 => {} 20..=30 => {}
10..=20 => {} //~ ERROR multiple patterns overlap on their endpoints 10..=20 => {}
//~^ ERROR multiple patterns overlap on their endpoints
//~| ERROR multiple patterns overlap on their endpoints
_ => {} _ => {}
} }
match (0u8, true) { match (0u8, true) {
(0..=10, true) => {} (0..=10, true) => {}
(10..20, true) => {} // not detected (10..20, true) => {} //~ ERROR multiple patterns overlap on their endpoints
(10..20, false) => {} (10..20, false) => {} //~ ERROR multiple patterns overlap on their endpoints
_ => {} _ => {}
} }
match (true, 0u8) { match (true, 0u8) {
(true, 0..=10) => {} (true, 0..=10) => {}
(true, 10..20) => {} //~ ERROR multiple patterns overlap on their endpoints (true, 10..20) => {} //~ ERROR multiple patterns overlap on their endpoints
(false, 10..20) => {} (false, 10..20) => {} //~ ERROR multiple patterns overlap on their endpoints
_ => {} _ => {}
} }
match Some(0u8) { match Some(0u8) {

View File

@ -24,10 +24,10 @@ LL | m!(0u8, 30..=40, 20..=30);
= note: you likely meant to write mutually exclusive ranges = note: you likely meant to write mutually exclusive ranges
error: multiple patterns overlap on their endpoints error: multiple patterns overlap on their endpoints
--> $DIR/overlapping_range_endpoints.rs:19:22 --> $DIR/overlapping_range_endpoints.rs:19:21
| |
LL | m!(0u8, 20.. 30, 29..=40); LL | m!(0u8, 20..30, 29..=40);
| ------- ^^^^^^^ ... with this range | ------ ^^^^^^^ ... with this range
| | | |
| this range overlaps on `29_u8`... | this range overlaps on `29_u8`...
| |
@ -58,6 +58,15 @@ error: multiple patterns overlap on their endpoints
| |
LL | 0..=10 => {} LL | 0..=10 => {}
| ------ this range overlaps on `10_u8`... | ------ this range overlaps on `10_u8`...
LL | 20..=30 => {}
LL | 10..=20 => {}
| ^^^^^^^ ... with this range
|
= note: you likely meant to write mutually exclusive ranges
error: multiple patterns overlap on their endpoints
--> $DIR/overlapping_range_endpoints.rs:39:9
|
LL | 20..=30 => {} LL | 20..=30 => {}
| ------- this range overlaps on `20_u8`... | ------- this range overlaps on `20_u8`...
LL | 10..=20 => {} LL | 10..=20 => {}
@ -66,7 +75,28 @@ LL | 10..=20 => {}
= note: you likely meant to write mutually exclusive ranges = note: you likely meant to write mutually exclusive ranges
error: multiple patterns overlap on their endpoints error: multiple patterns overlap on their endpoints
--> $DIR/overlapping_range_endpoints.rs:50:16 --> $DIR/overlapping_range_endpoints.rs:46:10
|
LL | (0..=10, true) => {}
| ------ this range overlaps on `10_u8`...
LL | (10..20, true) => {}
| ^^^^^^ ... with this range
|
= note: you likely meant to write mutually exclusive ranges
error: multiple patterns overlap on their endpoints
--> $DIR/overlapping_range_endpoints.rs:47:10
|
LL | (0..=10, true) => {}
| ------ this range overlaps on `10_u8`...
LL | (10..20, true) => {}
LL | (10..20, false) => {}
| ^^^^^^ ... with this range
|
= note: you likely meant to write mutually exclusive ranges
error: multiple patterns overlap on their endpoints
--> $DIR/overlapping_range_endpoints.rs:52:16
| |
LL | (true, 0..=10) => {} LL | (true, 0..=10) => {}
| ------ this range overlaps on `10_u8`... | ------ this range overlaps on `10_u8`...
@ -76,7 +106,18 @@ LL | (true, 10..20) => {}
= note: you likely meant to write mutually exclusive ranges = note: you likely meant to write mutually exclusive ranges
error: multiple patterns overlap on their endpoints error: multiple patterns overlap on their endpoints
--> $DIR/overlapping_range_endpoints.rs:56:14 --> $DIR/overlapping_range_endpoints.rs:53:17
|
LL | (true, 0..=10) => {}
| ------ this range overlaps on `10_u8`...
LL | (true, 10..20) => {}
LL | (false, 10..20) => {}
| ^^^^^^ ... with this range
|
= note: you likely meant to write mutually exclusive ranges
error: multiple patterns overlap on their endpoints
--> $DIR/overlapping_range_endpoints.rs:58:14
| |
LL | Some(0..=10) => {} LL | Some(0..=10) => {}
| ------ this range overlaps on `10_u8`... | ------ this range overlaps on `10_u8`...
@ -85,5 +126,5 @@ LL | Some(10..20) => {}
| |
= note: you likely meant to write mutually exclusive ranges = note: you likely meant to write mutually exclusive ranges
error: aborting due to 8 previous errors error: aborting due to 12 previous errors

View File

@ -26,11 +26,9 @@ fn upvar() {
fn enum_upvar() { fn enum_upvar() {
type T = impl Copy; type T = impl Copy;
let foo: T = Some((1u32, 2u32)); let foo: T = Some((1u32, 2u32));
let x = move || { let x = move || match foo {
match foo { None => (),
None => (), Some((a, b)) => (),
Some((a, b)) => (),
}
}; };
} }
@ -63,6 +61,19 @@ mod only_pattern {
None => {} None => {}
} }
} }
type V = impl Copy;
fn baz(baz: Option<V>) {
match baz {
_ => {}
Some((mut x, mut y)) => {
x = 42;
y = "foo";
}
None => {}
}
}
} }
mod only_pattern_rpit { mod only_pattern_rpit {
@ -71,11 +82,7 @@ mod only_pattern_rpit {
let (mut x, mut y) = foo(false); let (mut x, mut y) = foo(false);
x = 42; x = 42;
y = "foo"; y = "foo";
if b { if b { panic!() } else { foo(true) }
panic!()
} else {
foo(true)
}
} }
fn bar(b: bool) -> Option<impl Copy> { fn bar(b: bool) -> Option<impl Copy> {