226: Validate byte literals and byte strings r=aochagavia a=aochagavia



Co-authored-by: Adolfo Ochagavía <aochagavia92@gmail.com>
This commit is contained in:
bors[bot] 2018-11-12 15:59:47 +00:00
commit 9aebd9e6ca
15 changed files with 1145 additions and 511 deletions

View File

@ -372,6 +372,80 @@ impl<R: TreeRoot<RaTypes>> BreakExprNode<R> {
impl<'a> BreakExpr<'a> {}
// Byte
#[derive(Debug, Clone, Copy,)]
pub struct ByteNode<R: TreeRoot<RaTypes> = OwnedRoot> {
pub(crate) syntax: SyntaxNode<R>,
}
pub type Byte<'a> = ByteNode<RefRoot<'a>>;
impl<R1: TreeRoot<RaTypes>, R2: TreeRoot<RaTypes>> PartialEq<ByteNode<R1>> for ByteNode<R2> {
fn eq(&self, other: &ByteNode<R1>) -> bool { self.syntax == other.syntax }
}
impl<R: TreeRoot<RaTypes>> Eq for ByteNode<R> {}
impl<R: TreeRoot<RaTypes>> Hash for ByteNode<R> {
fn hash<H: Hasher>(&self, state: &mut H) { self.syntax.hash(state) }
}
impl<'a> AstNode<'a> for Byte<'a> {
fn cast(syntax: SyntaxNodeRef<'a>) -> Option<Self> {
match syntax.kind() {
BYTE => Some(Byte { syntax }),
_ => None,
}
}
fn syntax(self) -> SyntaxNodeRef<'a> { self.syntax }
}
impl<R: TreeRoot<RaTypes>> ByteNode<R> {
pub fn borrowed(&self) -> Byte {
ByteNode { syntax: self.syntax.borrowed() }
}
pub fn owned(&self) -> ByteNode {
ByteNode { syntax: self.syntax.owned() }
}
}
impl<'a> Byte<'a> {}
// ByteString
#[derive(Debug, Clone, Copy,)]
pub struct ByteStringNode<R: TreeRoot<RaTypes> = OwnedRoot> {
pub(crate) syntax: SyntaxNode<R>,
}
pub type ByteString<'a> = ByteStringNode<RefRoot<'a>>;
impl<R1: TreeRoot<RaTypes>, R2: TreeRoot<RaTypes>> PartialEq<ByteStringNode<R1>> for ByteStringNode<R2> {
fn eq(&self, other: &ByteStringNode<R1>) -> bool { self.syntax == other.syntax }
}
impl<R: TreeRoot<RaTypes>> Eq for ByteStringNode<R> {}
impl<R: TreeRoot<RaTypes>> Hash for ByteStringNode<R> {
fn hash<H: Hasher>(&self, state: &mut H) { self.syntax.hash(state) }
}
impl<'a> AstNode<'a> for ByteString<'a> {
fn cast(syntax: SyntaxNodeRef<'a>) -> Option<Self> {
match syntax.kind() {
BYTE_STRING => Some(ByteString { syntax }),
_ => None,
}
}
fn syntax(self) -> SyntaxNodeRef<'a> { self.syntax }
}
impl<R: TreeRoot<RaTypes>> ByteStringNode<R> {
pub fn borrowed(&self) -> ByteString {
ByteStringNode { syntax: self.syntax.borrowed() }
}
pub fn owned(&self) -> ByteStringNode {
ByteStringNode { syntax: self.syntax.owned() }
}
}
impl<'a> ByteString<'a> {}
// CallExpr
#[derive(Debug, Clone, Copy,)]
pub struct CallExprNode<R: TreeRoot<RaTypes> = OwnedRoot> {

View File

@ -134,6 +134,18 @@ impl<'a> Char<'a> {
}
}
impl<'a> Byte<'a> {
pub fn text(&self) -> &SmolStr {
&self.syntax().leaf_text().unwrap()
}
}
impl<'a> ByteString<'a> {
pub fn text(&self) -> &SmolStr {
&self.syntax().leaf_text().unwrap()
}
}
impl<'a> String<'a> {
pub fn text(&self) -> &SmolStr {
&self.syntax().leaf_text().unwrap()

View File

@ -412,6 +412,8 @@ Grammar(
"RangeExpr": (),
"BinExpr": (),
"String": (),
"Byte": (),
"ByteString": (),
"Char": (),
"Literal": (),

View File

@ -1,414 +0,0 @@
use self::CharComponentKind::*;
use rowan::{TextRange, TextUnit};
pub fn parse_string_literal(src: &str) -> StringComponentIterator {
StringComponentIterator {
parser: Parser::new(src),
has_closing_quote: false,
}
}
#[derive(Debug, Eq, PartialEq, Clone)]
pub struct StringComponent {
pub range: TextRange,
pub kind: StringComponentKind,
}
impl StringComponent {
fn new(range: TextRange, kind: StringComponentKind) -> StringComponent {
StringComponent { range, kind }
}
}
#[derive(Debug, Eq, PartialEq, Clone)]
pub enum StringComponentKind {
IgnoreNewline,
Char(CharComponentKind),
}
pub struct StringComponentIterator<'a> {
parser: Parser<'a>,
pub has_closing_quote: bool,
}
impl<'a> Iterator for StringComponentIterator<'a> {
type Item = StringComponent;
fn next(&mut self) -> Option<StringComponent> {
if self.parser.pos == 0 {
assert!(
self.parser.advance() == '"',
"string literal should start with double quotes"
);
}
if let Some(component) = self.parser.parse_string_component() {
return Some(component);
}
// We get here when there are no char components left to parse
if self.parser.peek() == Some('"') {
self.parser.advance();
self.has_closing_quote = true;
}
assert!(
self.parser.peek() == None,
"string literal should leave no unparsed input: src = {}, pos = {}, length = {}",
self.parser.src,
self.parser.pos,
self.parser.src.len()
);
None
}
}
pub fn parse_char_literal(src: &str) -> CharComponentIterator {
CharComponentIterator {
parser: Parser::new(src),
has_closing_quote: false,
}
}
#[derive(Debug, Eq, PartialEq, Clone)]
pub struct CharComponent {
pub range: TextRange,
pub kind: CharComponentKind,
}
impl CharComponent {
fn new(range: TextRange, kind: CharComponentKind) -> CharComponent {
CharComponent { range, kind }
}
}
#[derive(Debug, Eq, PartialEq, Clone)]
pub enum CharComponentKind {
CodePoint,
AsciiEscape,
AsciiCodeEscape,
UnicodeEscape,
}
pub struct CharComponentIterator<'a> {
parser: Parser<'a>,
pub has_closing_quote: bool,
}
impl<'a> Iterator for CharComponentIterator<'a> {
type Item = CharComponent;
fn next(&mut self) -> Option<CharComponent> {
if self.parser.pos == 0 {
assert!(
self.parser.advance() == '\'',
"char literal should start with a quote"
);
}
if let Some(component) = self.parser.parse_char_component() {
return Some(component);
}
// We get here when there are no char components left to parse
if self.parser.peek() == Some('\'') {
self.parser.advance();
self.has_closing_quote = true;
}
assert!(
self.parser.peek() == None,
"char literal should leave no unparsed input: src = {}, pos = {}, length = {}",
self.parser.src,
self.parser.pos,
self.parser.src.len()
);
None
}
}
pub struct Parser<'a> {
src: &'a str,
pos: usize,
}
impl<'a> Parser<'a> {
pub fn new(src: &'a str) -> Parser<'a> {
Parser { src, pos: 0 }
}
// Utility methods
pub fn peek(&self) -> Option<char> {
if self.pos == self.src.len() {
return None;
}
self.src[self.pos..].chars().next()
}
pub fn advance(&mut self) -> char {
let next = self
.peek()
.expect("cannot advance if end of input is reached");
self.pos += next.len_utf8();
next
}
pub fn skip_whitespace(&mut self) {
while self.peek().map(|c| c.is_whitespace()) == Some(true) {
self.advance();
}
}
pub fn get_pos(&self) -> TextUnit {
(self.pos as u32).into()
}
// Char parsing methods
fn parse_unicode_escape(&mut self, start: TextUnit) -> CharComponent {
match self.peek() {
Some('{') => {
self.advance();
// Parse anything until we reach `}`
while let Some(next) = self.peek() {
self.advance();
if next == '}' {
break;
}
}
let end = self.get_pos();
CharComponent::new(TextRange::from_to(start, end), UnicodeEscape)
}
Some(_) | None => {
let end = self.get_pos();
CharComponent::new(TextRange::from_to(start, end), UnicodeEscape)
}
}
}
fn parse_ascii_code_escape(&mut self, start: TextUnit) -> CharComponent {
let code_start = self.get_pos();
while let Some(next) = self.peek() {
if next == '\'' || (self.get_pos() - code_start == 2.into()) {
break;
}
self.advance();
}
let end = self.get_pos();
CharComponent::new(TextRange::from_to(start, end), AsciiCodeEscape)
}
fn parse_escape(&mut self, start: TextUnit) -> CharComponent {
if self.peek().is_none() {
return CharComponent::new(TextRange::from_to(start, start), AsciiEscape);
}
let next = self.advance();
let end = self.get_pos();
let range = TextRange::from_to(start, end);
match next {
'x' => self.parse_ascii_code_escape(start),
'u' => self.parse_unicode_escape(start),
_ => CharComponent::new(range, AsciiEscape),
}
}
pub fn parse_char_component(&mut self) -> Option<CharComponent> {
let next = self.peek()?;
// Ignore character close
if next == '\'' {
return None;
}
let start = self.get_pos();
self.advance();
if next == '\\' {
Some(self.parse_escape(start))
} else {
let end = self.get_pos();
Some(CharComponent::new(
TextRange::from_to(start, end),
CodePoint,
))
}
}
pub fn parse_ignore_newline(&mut self, start: TextUnit) -> Option<StringComponent> {
// In string literals, when a `\` occurs immediately before the newline, the `\`,
// the newline, and all whitespace at the beginning of the next line are ignored
match self.peek() {
Some('\n') | Some('\r') => {
self.skip_whitespace();
Some(StringComponent::new(
TextRange::from_to(start, self.get_pos()),
StringComponentKind::IgnoreNewline,
))
}
_ => None,
}
}
pub fn parse_string_component(&mut self) -> Option<StringComponent> {
let next = self.peek()?;
// Ignore string close
if next == '"' {
return None;
}
let start = self.get_pos();
self.advance();
if next == '\\' {
// Strings can use `\` to ignore newlines, so we first try to parse one of those
// before falling back to parsing char escapes
self.parse_ignore_newline(start).or_else(|| {
let char_component = self.parse_escape(start);
Some(StringComponent::new(
char_component.range,
StringComponentKind::Char(char_component.kind),
))
})
} else {
let end = self.get_pos();
Some(StringComponent::new(
TextRange::from_to(start, end),
StringComponentKind::Char(CodePoint),
))
}
}
}
#[cfg(test)]
mod tests {
use super::*;
fn parse(src: &str) -> (bool, Vec<CharComponent>) {
let component_iterator = &mut super::parse_char_literal(src);
let components: Vec<_> = component_iterator.collect();
(component_iterator.has_closing_quote, components)
}
fn unclosed_char_component(src: &str) -> CharComponent {
let (has_closing_quote, components) = parse(src);
assert!(!has_closing_quote, "char should not have closing quote");
assert!(components.len() == 1);
components[0].clone()
}
fn closed_char_component(src: &str) -> CharComponent {
let (has_closing_quote, components) = parse(src);
assert!(has_closing_quote, "char should have closing quote");
assert!(
components.len() == 1,
"Literal: {}\nComponents: {:#?}",
src,
components
);
components[0].clone()
}
fn closed_char_components(src: &str) -> Vec<CharComponent> {
let (has_closing_quote, components) = parse(src);
assert!(has_closing_quote, "char should have closing quote");
components
}
fn range_closed(src: &str) -> TextRange {
TextRange::from_to(1.into(), (src.len() as u32 - 1).into())
}
fn range_unclosed(src: &str) -> TextRange {
TextRange::from_to(1.into(), (src.len() as u32).into())
}
#[test]
fn test_unicode_escapes() {
let unicode_escapes = &[r"{DEAD}", "{BEEF}", "{FF}", "{}", ""];
for escape in unicode_escapes {
let escape_sequence = format!(r"'\u{}'", escape);
let component = closed_char_component(&escape_sequence);
let expected_range = range_closed(&escape_sequence);
assert_eq!(component.kind, CharComponentKind::UnicodeEscape);
assert_eq!(component.range, expected_range);
}
}
#[test]
fn test_unicode_escapes_unclosed() {
let unicode_escapes = &["{DEAD", "{BEEF", "{FF"];
for escape in unicode_escapes {
let escape_sequence = format!(r"'\u{}'", escape);
let component = unclosed_char_component(&escape_sequence);
let expected_range = range_unclosed(&escape_sequence);
assert_eq!(component.kind, CharComponentKind::UnicodeEscape);
assert_eq!(component.range, expected_range);
}
}
#[test]
fn test_empty_char() {
let (has_closing_quote, components) = parse("''");
assert!(has_closing_quote, "char should have closing quote");
assert!(components.len() == 0);
}
#[test]
fn test_unclosed_char() {
let component = unclosed_char_component("'a");
assert!(component.kind == CodePoint);
assert!(component.range == TextRange::from_to(1.into(), 2.into()));
}
#[test]
fn test_digit_escapes() {
let literals = &[r"", r"5", r"55"];
for literal in literals {
let lit_text = format!(r"'\x{}'", literal);
let component = closed_char_component(&lit_text);
assert!(component.kind == CharComponentKind::AsciiCodeEscape);
assert!(component.range == range_closed(&lit_text));
}
// More than 2 digits starts a new codepoint
let components = closed_char_components(r"'\x555'");
assert!(components.len() == 2);
assert!(components[1].kind == CharComponentKind::CodePoint);
}
#[test]
fn test_ascii_escapes() {
let literals = &[
r"\'", "\\\"", // equivalent to \"
r"\n", r"\r", r"\t", r"\\", r"\0",
];
for literal in literals {
let lit_text = format!("'{}'", literal);
let component = closed_char_component(&lit_text);
assert!(component.kind == CharComponentKind::AsciiEscape);
assert!(component.range == range_closed(&lit_text));
}
}
#[test]
fn test_no_escapes() {
let literals = &['"', 'n', 'r', 't', '0', 'x', 'u'];
for &literal in literals {
let lit_text = format!("'{}'", literal);
let component = closed_char_component(&lit_text);
assert!(component.kind == CharComponentKind::CodePoint);
assert!(component.range == range_closed(&lit_text));
}
}
}

View File

@ -0,0 +1,51 @@
use super::parser::Parser;
use super::CharComponent;
pub fn parse_byte_literal(src: &str) -> ByteComponentIterator {
ByteComponentIterator {
parser: Parser::new(src),
has_closing_quote: false,
}
}
pub struct ByteComponentIterator<'a> {
parser: Parser<'a>,
pub has_closing_quote: bool,
}
impl<'a> Iterator for ByteComponentIterator<'a> {
type Item = CharComponent;
fn next(&mut self) -> Option<CharComponent> {
if self.parser.pos == 0 {
assert!(
self.parser.advance() == 'b',
"Byte literal should start with a `b`"
);
assert!(
self.parser.advance() == '\'',
"Byte literal should start with a `b`, followed by a quote"
);
}
if let Some(component) = self.parser.parse_char_component() {
return Some(component);
}
// We get here when there are no char components left to parse
if self.parser.peek() == Some('\'') {
self.parser.advance();
self.has_closing_quote = true;
}
assert!(
self.parser.peek() == None,
"byte literal should leave no unparsed input: src = {}, pos = {}, length = {}",
self.parser.src,
self.parser.pos,
self.parser.src.len()
);
None
}
}

View File

@ -0,0 +1,51 @@
use super::parser::Parser;
use super::StringComponent;
pub fn parse_byte_string_literal(src: &str) -> ByteStringComponentIterator {
ByteStringComponentIterator {
parser: Parser::new(src),
has_closing_quote: false,
}
}
pub struct ByteStringComponentIterator<'a> {
parser: Parser<'a>,
pub has_closing_quote: bool,
}
impl<'a> Iterator for ByteStringComponentIterator<'a> {
type Item = StringComponent;
fn next(&mut self) -> Option<StringComponent> {
if self.parser.pos == 0 {
assert!(
self.parser.advance() == 'b',
"byte string literal should start with a `b`"
);
assert!(
self.parser.advance() == '"',
"byte string literal should start with a `b`, followed by double quotes"
);
}
if let Some(component) = self.parser.parse_string_component() {
return Some(component);
}
// We get here when there are no char components left to parse
if self.parser.peek() == Some('"') {
self.parser.advance();
self.has_closing_quote = true;
}
assert!(
self.parser.peek() == None,
"byte string literal should leave no unparsed input: src = {}, pos = {}, length = {}",
self.parser.src,
self.parser.pos,
self.parser.src.len()
);
None
}
}

View File

@ -0,0 +1,176 @@
use super::parser::Parser;
use super::CharComponent;
pub fn parse_char_literal(src: &str) -> CharComponentIterator {
CharComponentIterator {
parser: Parser::new(src),
has_closing_quote: false,
}
}
pub struct CharComponentIterator<'a> {
parser: Parser<'a>,
pub has_closing_quote: bool,
}
impl<'a> Iterator for CharComponentIterator<'a> {
type Item = CharComponent;
fn next(&mut self) -> Option<CharComponent> {
if self.parser.pos == 0 {
assert!(
self.parser.advance() == '\'',
"char literal should start with a quote"
);
}
if let Some(component) = self.parser.parse_char_component() {
return Some(component);
}
// We get here when there are no char components left to parse
if self.parser.peek() == Some('\'') {
self.parser.advance();
self.has_closing_quote = true;
}
assert!(
self.parser.peek() == None,
"char literal should leave no unparsed input: src = {}, pos = {}, length = {}",
self.parser.src,
self.parser.pos,
self.parser.src.len()
);
None
}
}
#[cfg(test)]
mod tests {
use rowan::TextRange;
use crate::string_lexing::{
CharComponent,
CharComponentKind::*,
};
fn parse(src: &str) -> (bool, Vec<CharComponent>) {
let component_iterator = &mut super::parse_char_literal(src);
let components: Vec<_> = component_iterator.collect();
(component_iterator.has_closing_quote, components)
}
fn unclosed_char_component(src: &str) -> CharComponent {
let (has_closing_quote, components) = parse(src);
assert!(!has_closing_quote, "char should not have closing quote");
assert!(components.len() == 1);
components[0].clone()
}
fn closed_char_component(src: &str) -> CharComponent {
let (has_closing_quote, components) = parse(src);
assert!(has_closing_quote, "char should have closing quote");
assert!(
components.len() == 1,
"Literal: {}\nComponents: {:#?}",
src,
components
);
components[0].clone()
}
fn closed_char_components(src: &str) -> Vec<CharComponent> {
let (has_closing_quote, components) = parse(src);
assert!(has_closing_quote, "char should have closing quote");
components
}
fn range_closed(src: &str) -> TextRange {
TextRange::from_to(1.into(), (src.len() as u32 - 1).into())
}
fn range_unclosed(src: &str) -> TextRange {
TextRange::from_to(1.into(), (src.len() as u32).into())
}
#[test]
fn test_unicode_escapes() {
let unicode_escapes = &[r"{DEAD}", "{BEEF}", "{FF}", "{}", ""];
for escape in unicode_escapes {
let escape_sequence = format!(r"'\u{}'", escape);
let component = closed_char_component(&escape_sequence);
let expected_range = range_closed(&escape_sequence);
assert_eq!(component.kind, UnicodeEscape);
assert_eq!(component.range, expected_range);
}
}
#[test]
fn test_unicode_escapes_unclosed() {
let unicode_escapes = &["{DEAD", "{BEEF", "{FF"];
for escape in unicode_escapes {
let escape_sequence = format!(r"'\u{}'", escape);
let component = unclosed_char_component(&escape_sequence);
let expected_range = range_unclosed(&escape_sequence);
assert_eq!(component.kind, UnicodeEscape);
assert_eq!(component.range, expected_range);
}
}
#[test]
fn test_empty_char() {
let (has_closing_quote, components) = parse("''");
assert!(has_closing_quote, "char should have closing quote");
assert!(components.len() == 0);
}
#[test]
fn test_unclosed_char() {
let component = unclosed_char_component("'a");
assert!(component.kind == CodePoint);
assert!(component.range == TextRange::from_to(1.into(), 2.into()));
}
#[test]
fn test_digit_escapes() {
let literals = &[r"", r"5", r"55"];
for literal in literals {
let lit_text = format!(r"'\x{}'", literal);
let component = closed_char_component(&lit_text);
assert!(component.kind == AsciiCodeEscape);
assert!(component.range == range_closed(&lit_text));
}
// More than 2 digits starts a new codepoint
let components = closed_char_components(r"'\x555'");
assert!(components.len() == 2);
assert!(components[1].kind == CodePoint);
}
#[test]
fn test_ascii_escapes() {
let literals = &[
r"\'", "\\\"", // equivalent to \"
r"\n", r"\r", r"\t", r"\\", r"\0",
];
for literal in literals {
let lit_text = format!("'{}'", literal);
let component = closed_char_component(&lit_text);
assert!(component.kind == AsciiEscape);
assert!(component.range == range_closed(&lit_text));
}
}
#[test]
fn test_no_escapes() {
let literals = &['"', 'n', 'r', 't', '0', 'x', 'u'];
for &literal in literals {
let lit_text = format!("'{}'", literal);
let component = closed_char_component(&lit_text);
assert!(component.kind == CodePoint);
assert!(component.range == range_closed(&lit_text));
}
}
}

View File

@ -0,0 +1,13 @@
mod parser;
mod byte;
mod byte_string;
mod char;
mod string;
pub use self::{
byte::parse_byte_literal,
byte_string::parse_byte_string_literal,
char::parse_char_literal,
parser::{CharComponent, CharComponentKind, StringComponent, StringComponentKind},
string::parse_string_literal,
};

View File

@ -0,0 +1,201 @@
use rowan::{TextRange, TextUnit};
use self::CharComponentKind::*;
pub struct Parser<'a> {
pub(super) src: &'a str,
pub(super) pos: usize,
}
impl<'a> Parser<'a> {
pub fn new(src: &'a str) -> Parser<'a> {
Parser { src, pos: 0 }
}
// Utility methods
pub fn peek(&self) -> Option<char> {
if self.pos == self.src.len() {
return None;
}
self.src[self.pos..].chars().next()
}
pub fn advance(&mut self) -> char {
let next = self
.peek()
.expect("cannot advance if end of input is reached");
self.pos += next.len_utf8();
next
}
pub fn skip_whitespace(&mut self) {
while self.peek().map(|c| c.is_whitespace()) == Some(true) {
self.advance();
}
}
pub fn get_pos(&self) -> TextUnit {
(self.pos as u32).into()
}
// Char parsing methods
fn parse_unicode_escape(&mut self, start: TextUnit) -> CharComponent {
match self.peek() {
Some('{') => {
self.advance();
// Parse anything until we reach `}`
while let Some(next) = self.peek() {
self.advance();
if next == '}' {
break;
}
}
let end = self.get_pos();
CharComponent::new(TextRange::from_to(start, end), UnicodeEscape)
}
Some(_) | None => {
let end = self.get_pos();
CharComponent::new(TextRange::from_to(start, end), UnicodeEscape)
}
}
}
fn parse_ascii_code_escape(&mut self, start: TextUnit) -> CharComponent {
let code_start = self.get_pos();
while let Some(next) = self.peek() {
if next == '\'' || (self.get_pos() - code_start == 2.into()) {
break;
}
self.advance();
}
let end = self.get_pos();
CharComponent::new(TextRange::from_to(start, end), AsciiCodeEscape)
}
fn parse_escape(&mut self, start: TextUnit) -> CharComponent {
if self.peek().is_none() {
return CharComponent::new(TextRange::from_to(start, start), AsciiEscape);
}
let next = self.advance();
let end = self.get_pos();
let range = TextRange::from_to(start, end);
match next {
'x' => self.parse_ascii_code_escape(start),
'u' => self.parse_unicode_escape(start),
_ => CharComponent::new(range, AsciiEscape),
}
}
pub fn parse_char_component(&mut self) -> Option<CharComponent> {
let next = self.peek()?;
// Ignore character close
if next == '\'' {
return None;
}
let start = self.get_pos();
self.advance();
if next == '\\' {
Some(self.parse_escape(start))
} else {
let end = self.get_pos();
Some(CharComponent::new(
TextRange::from_to(start, end),
CodePoint,
))
}
}
pub fn parse_ignore_newline(&mut self, start: TextUnit) -> Option<StringComponent> {
// In string literals, when a `\` occurs immediately before the newline, the `\`,
// the newline, and all whitespace at the beginning of the next line are ignored
match self.peek() {
Some('\n') | Some('\r') => {
self.skip_whitespace();
Some(StringComponent::new(
TextRange::from_to(start, self.get_pos()),
StringComponentKind::IgnoreNewline,
))
}
_ => None,
}
}
pub fn parse_string_component(&mut self) -> Option<StringComponent> {
let next = self.peek()?;
// Ignore string close
if next == '"' {
return None;
}
let start = self.get_pos();
self.advance();
if next == '\\' {
// Strings can use `\` to ignore newlines, so we first try to parse one of those
// before falling back to parsing char escapes
self.parse_ignore_newline(start).or_else(|| {
let char_component = self.parse_escape(start);
Some(StringComponent::new(
char_component.range,
StringComponentKind::Char(char_component.kind),
))
})
} else {
let end = self.get_pos();
Some(StringComponent::new(
TextRange::from_to(start, end),
StringComponentKind::Char(CodePoint),
))
}
}
}
#[derive(Debug, Eq, PartialEq, Clone)]
pub struct StringComponent {
pub range: TextRange,
pub kind: StringComponentKind,
}
impl StringComponent {
fn new(range: TextRange, kind: StringComponentKind) -> StringComponent {
StringComponent { range, kind }
}
}
#[derive(Debug, Eq, PartialEq, Clone)]
pub enum StringComponentKind {
IgnoreNewline,
Char(CharComponentKind),
}
#[derive(Debug, Eq, PartialEq, Clone)]
pub struct CharComponent {
pub range: TextRange,
pub kind: CharComponentKind,
}
impl CharComponent {
fn new(range: TextRange, kind: CharComponentKind) -> CharComponent {
CharComponent { range, kind }
}
}
#[derive(Debug, Eq, PartialEq, Clone)]
pub enum CharComponentKind {
CodePoint,
AsciiEscape,
AsciiCodeEscape,
UnicodeEscape,
}

View File

@ -0,0 +1,46 @@
use super::parser::Parser;
use super::StringComponent;
pub fn parse_string_literal(src: &str) -> StringComponentIterator {
StringComponentIterator {
parser: Parser::new(src),
has_closing_quote: false,
}
}
pub struct StringComponentIterator<'a> {
parser: Parser<'a>,
pub has_closing_quote: bool,
}
impl<'a> Iterator for StringComponentIterator<'a> {
type Item = StringComponent;
fn next(&mut self) -> Option<StringComponent> {
if self.parser.pos == 0 {
assert!(
self.parser.advance() == '"',
"string literal should start with double quotes"
);
}
if let Some(component) = self.parser.parse_string_component() {
return Some(component);
}
// We get here when there are no char components left to parse
if self.parser.peek() == Some('"') {
self.parser.advance();
self.has_closing_quote = true;
}
assert!(
self.parser.peek() == None,
"string literal should leave no unparsed input: src = {}, pos = {}, length = {}",
self.parser.src,
self.parser.pos,
self.parser.src.len()
);
None
}
}

View File

@ -0,0 +1,211 @@
//! Validation of byte literals
use crate::{
ast::{self, AstNode},
string_lexing::{self, CharComponentKind},
TextRange,
validation::char,
yellow::{
SyntaxError,
SyntaxErrorKind::*,
},
};
pub(super) fn validate_byte_node(node: ast::Byte, errors: &mut Vec<SyntaxError>) {
let literal_text = node.text();
let literal_range = node.syntax().range();
let mut components = string_lexing::parse_byte_literal(literal_text);
let mut len = 0;
for component in &mut components {
len += 1;
let text = &literal_text[component.range];
let range = component.range + literal_range.start();
validate_byte_component(text, component.kind, range, errors);
}
if !components.has_closing_quote {
errors.push(SyntaxError::new(UnclosedByte, literal_range));
}
if len == 0 {
errors.push(SyntaxError::new(EmptyByte, literal_range));
}
if len > 1 {
errors.push(SyntaxError::new(OverlongByte, literal_range));
}
}
pub(super) fn validate_byte_component(
text: &str,
kind: CharComponentKind,
range: TextRange,
errors: &mut Vec<SyntaxError>,
) {
use self::CharComponentKind::*;
match kind {
AsciiEscape => validate_byte_escape(text, range, errors),
AsciiCodeEscape => validate_byte_code_escape(text, range, errors),
UnicodeEscape => errors.push(SyntaxError::new(UnicodeEscapeForbidden, range)),
CodePoint => {
let c = text
.chars()
.next()
.expect("Code points should be one character long");
// These bytes must always be escaped
if c == '\t' || c == '\r' || c == '\n' {
errors.push(SyntaxError::new(UnescapedByte, range));
}
// Only ASCII bytes are allowed
if c > 0x7F as char {
errors.push(SyntaxError::new(ByteOutOfRange, range));
}
}
}
}
fn validate_byte_escape(text: &str, range: TextRange, errors: &mut Vec<SyntaxError>) {
if text.len() == 1 {
// Escape sequence consists only of leading `\`
errors.push(SyntaxError::new(EmptyByteEscape, range));
} else {
let escape_code = text.chars().skip(1).next().unwrap();
if !char::is_ascii_escape(escape_code) {
errors.push(SyntaxError::new(InvalidByteEscape, range));
}
}
}
fn validate_byte_code_escape(text: &str, range: TextRange, errors: &mut Vec<SyntaxError>) {
// A ByteCodeEscape has 4 chars, example: `\xDD`
if text.len() < 4 {
errors.push(SyntaxError::new(TooShortByteCodeEscape, range));
} else {
assert!(
text.chars().count() == 4,
"ByteCodeEscape cannot be longer than 4 chars"
);
if u8::from_str_radix(&text[2..], 16).is_err() {
errors.push(SyntaxError::new(MalformedByteCodeEscape, range));
}
}
}
#[cfg(test)]
mod test {
use crate::SourceFileNode;
fn build_file(literal: &str) -> SourceFileNode {
let src = format!("const C: u8 = b'{}';", literal);
SourceFileNode::parse(&src)
}
fn assert_valid_byte(literal: &str) {
let file = build_file(literal);
assert!(
file.errors().len() == 0,
"Errors for literal '{}': {:?}",
literal,
file.errors()
);
}
fn assert_invalid_byte(literal: &str) {
let file = build_file(literal);
assert!(file.errors().len() > 0);
}
#[test]
fn test_ansi_codepoints() {
for byte in 0..128 {
match byte {
b'\n' | b'\r' | b'\t' => assert_invalid_byte(&(byte as char).to_string()),
b'\'' | b'\\' => { /* Ignore character close and backslash */ }
_ => assert_valid_byte(&(byte as char).to_string()),
}
}
for byte in 128..=255u8 {
assert_invalid_byte(&(byte as char).to_string());
}
}
#[test]
fn test_unicode_codepoints() {
let invalid = ["Ƒ", "", "", ""];
for c in &invalid {
assert_invalid_byte(c);
}
}
#[test]
fn test_unicode_multiple_codepoints() {
let invalid = ["नी", "👨‍👨‍"];
for c in &invalid {
assert_invalid_byte(c);
}
}
#[test]
fn test_valid_byte_escape() {
let valid = [r"\'", "\"", "\\\\", "\\\"", r"\n", r"\r", r"\t", r"\0"];
for c in &valid {
assert_valid_byte(c);
}
}
#[test]
fn test_invalid_byte_escape() {
let invalid = [r"\a", r"\?", r"\"];
for c in &invalid {
assert_invalid_byte(c);
}
}
#[test]
fn test_valid_byte_code_escape() {
let valid = [r"\x00", r"\x7F", r"\x55", r"\xF0"];
for c in &valid {
assert_valid_byte(c);
}
}
#[test]
fn test_invalid_byte_code_escape() {
let invalid = [r"\x", r"\x7"];
for c in &invalid {
assert_invalid_byte(c);
}
}
#[test]
fn test_invalid_unicode_escape() {
let well_formed = [
r"\u{FF}",
r"\u{0}",
r"\u{F}",
r"\u{10FFFF}",
r"\u{1_0__FF___FF_____}",
];
for c in &well_formed {
assert_invalid_byte(c);
}
let invalid = [
r"\u",
r"\u{}",
r"\u{",
r"\u{FF",
r"\u{FFFFFF}",
r"\u{_F}",
r"\u{00FFFFF}",
r"\u{110000}",
];
for c in &invalid {
assert_invalid_byte(c);
}
}
}

View File

@ -0,0 +1,178 @@
use crate::{
ast::{self, AstNode},
string_lexing::{self, StringComponentKind},
yellow::{
SyntaxError,
SyntaxErrorKind::*,
},
};
use super::byte;
pub(crate) fn validate_byte_string_node(node: ast::ByteString, errors: &mut Vec<SyntaxError>) {
let literal_text = node.text();
let literal_range = node.syntax().range();
let mut components = string_lexing::parse_byte_string_literal(literal_text);
for component in &mut components {
let range = component.range + literal_range.start();
match component.kind {
StringComponentKind::Char(kind) => {
// Chars must escape \t, \n and \r codepoints, but strings don't
let text = &literal_text[component.range];
match text {
"\t" | "\n" | "\r" => { /* always valid */ }
_ => byte::validate_byte_component(text, kind, range, errors),
}
}
StringComponentKind::IgnoreNewline => { /* always valid */ }
}
}
if !components.has_closing_quote {
errors.push(SyntaxError::new(UnclosedString, literal_range));
}
}
#[cfg(test)]
mod test {
use crate::SourceFileNode;
fn build_file(literal: &str) -> SourceFileNode {
let src = format!(r#"const S: &'static [u8] = b"{}";"#, literal);
println!("Source: {}", src);
SourceFileNode::parse(&src)
}
fn assert_valid_str(literal: &str) {
let file = build_file(literal);
assert!(
file.errors().len() == 0,
"Errors for literal '{}': {:?}",
literal,
file.errors()
);
}
fn assert_invalid_str(literal: &str) {
let file = build_file(literal);
assert!(file.errors().len() > 0);
}
#[test]
fn test_ansi_codepoints() {
for byte in 0..128 {
match byte {
b'\"' | b'\\' => { /* Ignore string close and backslash */ }
_ => assert_valid_str(&(byte as char).to_string()),
}
}
for byte in 128..=255u8 {
assert_invalid_str(&(byte as char).to_string());
}
}
#[test]
fn test_unicode_codepoints() {
let invalid = ["Ƒ", "", "", ""];
for c in &invalid {
assert_invalid_str(c);
}
}
#[test]
fn test_unicode_multiple_codepoints() {
let invalid = ["नी", "👨‍👨‍"];
for c in &invalid {
assert_invalid_str(c);
}
}
#[test]
fn test_valid_ascii_escape() {
let valid = [r"\'", r#"\""#, r"\\", r"\n", r"\r", r"\t", r"\0", "a", "b"];
for c in &valid {
assert_valid_str(c);
}
}
#[test]
fn test_invalid_ascii_escape() {
let invalid = [r"\a", r"\?", r"\"];
for c in &invalid {
assert_invalid_str(c);
}
}
#[test]
fn test_valid_ascii_code_escape() {
let valid = [r"\x00", r"\x7F", r"\x55", r"\xF0"];
for c in &valid {
assert_valid_str(c);
}
}
#[test]
fn test_invalid_ascii_code_escape() {
let invalid = [r"\x", r"\x7"];
for c in &invalid {
assert_invalid_str(c);
}
}
#[test]
fn test_invalid_unicode_escape() {
let well_formed = [
r"\u{FF}",
r"\u{0}",
r"\u{F}",
r"\u{10FFFF}",
r"\u{1_0__FF___FF_____}",
];
for c in &well_formed {
assert_invalid_str(c);
}
let invalid = [
r"\u",
r"\u{}",
r"\u{",
r"\u{FF",
r"\u{FFFFFF}",
r"\u{_F}",
r"\u{00FFFFF}",
r"\u{110000}",
];
for c in &invalid {
assert_invalid_str(c);
}
}
#[test]
fn test_mixed_invalid() {
assert_invalid_str(
r"This is the tale of a string
with a newline in between, some emoji (👨👨) here and there,
unicode escapes like this: \u{1FFBB} and weird stuff like
this ",
);
}
#[test]
fn test_mixed_valid() {
assert_valid_str(
r"This is the tale of a string
with a newline in between, no emoji at all,
nor unicode escapes or weird stuff",
);
}
#[test]
fn test_ignore_newline() {
assert_valid_str(
"Hello \
World",
);
}
}

View File

@ -1,3 +1,5 @@
//! Validation of char literals
use std::u32;
use arrayvec::ArrayString;
@ -12,7 +14,7 @@ use crate::{
},
};
pub(crate) fn validate_char_node(node: ast::Char, errors: &mut Vec<SyntaxError>) {
pub(super) fn validate_char_node(node: ast::Char, errors: &mut Vec<SyntaxError>) {
let literal_text = node.text();
let literal_range = node.syntax().range();
let mut components = string_lexing::parse_char_literal(literal_text);
@ -37,7 +39,7 @@ pub(crate) fn validate_char_node(node: ast::Char, errors: &mut Vec<SyntaxError>)
}
}
pub(crate) fn validate_char_component(
pub(super) fn validate_char_component(
text: &str,
kind: CharComponentKind,
range: TextRange,
@ -46,112 +48,118 @@ pub(crate) fn validate_char_component(
// Validate escapes
use self::CharComponentKind::*;
match kind {
AsciiEscape => {
if text.len() == 1 {
// Escape sequence consists only of leading `\`
errors.push(SyntaxError::new(EmptyAsciiEscape, range));
} else {
let escape_code = text.chars().skip(1).next().unwrap();
if !is_ascii_escape(escape_code) {
errors.push(SyntaxError::new(InvalidAsciiEscape, range));
}
}
}
AsciiCodeEscape => {
// An AsciiCodeEscape has 4 chars, example: `\xDD`
if text.len() < 4 {
errors.push(SyntaxError::new(TooShortAsciiCodeEscape, range));
} else {
assert!(
text.chars().count() == 4,
"AsciiCodeEscape cannot be longer than 4 chars"
);
match u8::from_str_radix(&text[2..], 16) {
Ok(code) if code < 128 => { /* Escape code is valid */ }
Ok(_) => errors.push(SyntaxError::new(AsciiCodeEscapeOutOfRange, range)),
Err(_) => errors.push(SyntaxError::new(MalformedAsciiCodeEscape, range)),
}
}
}
UnicodeEscape => {
assert!(&text[..2] == "\\u", "UnicodeEscape always starts with \\u");
if text.len() == 2 {
// No starting `{`
errors.push(SyntaxError::new(MalformedUnicodeEscape, range));
return;
}
if text.len() == 3 {
// Only starting `{`
errors.push(SyntaxError::new(UnclosedUnicodeEscape, range));
return;
}
let mut code = ArrayString::<[_; 6]>::new();
let mut closed = false;
for c in text[3..].chars() {
assert!(!closed, "no characters after escape is closed");
if c.is_digit(16) {
if code.len() == 6 {
errors.push(SyntaxError::new(OverlongUnicodeEscape, range));
return;
}
code.push(c);
} else if c == '_' {
// Reject leading _
if code.len() == 0 {
errors.push(SyntaxError::new(MalformedUnicodeEscape, range));
return;
}
} else if c == '}' {
closed = true;
} else {
errors.push(SyntaxError::new(MalformedUnicodeEscape, range));
return;
}
}
if !closed {
errors.push(SyntaxError::new(UnclosedUnicodeEscape, range))
}
if code.len() == 0 {
errors.push(SyntaxError::new(EmptyUnicodeEcape, range));
return;
}
match u32::from_str_radix(&code, 16) {
Ok(code_u32) if code_u32 > 0x10FFFF => {
errors.push(SyntaxError::new(UnicodeEscapeOutOfRange, range));
}
Ok(_) => {
// Valid escape code
}
Err(_) => {
errors.push(SyntaxError::new(MalformedUnicodeEscape, range));
}
}
}
AsciiEscape => validate_ascii_escape(text, range, errors),
AsciiCodeEscape => validate_ascii_code_escape(text, range, errors),
UnicodeEscape => validate_unicode_escape(text, range, errors),
CodePoint => {
// These code points must always be escaped
if text == "\t" || text == "\r" {
if text == "\t" || text == "\r" || text == "\n" {
errors.push(SyntaxError::new(UnescapedCodepoint, range));
}
}
}
}
fn is_ascii_escape(code: char) -> bool {
fn validate_ascii_escape(text: &str, range: TextRange, errors: &mut Vec<SyntaxError>) {
if text.len() == 1 {
// Escape sequence consists only of leading `\`
errors.push(SyntaxError::new(EmptyAsciiEscape, range));
} else {
let escape_code = text.chars().skip(1).next().unwrap();
if !is_ascii_escape(escape_code) {
errors.push(SyntaxError::new(InvalidAsciiEscape, range));
}
}
}
pub(super) fn is_ascii_escape(code: char) -> bool {
match code {
'\\' | '\'' | '"' | 'n' | 'r' | 't' | '0' => true,
_ => false,
}
}
fn validate_ascii_code_escape(text: &str, range: TextRange, errors: &mut Vec<SyntaxError>) {
// An AsciiCodeEscape has 4 chars, example: `\xDD`
if text.len() < 4 {
errors.push(SyntaxError::new(TooShortAsciiCodeEscape, range));
} else {
assert!(
text.chars().count() == 4,
"AsciiCodeEscape cannot be longer than 4 chars"
);
match u8::from_str_radix(&text[2..], 16) {
Ok(code) if code < 128 => { /* Escape code is valid */ }
Ok(_) => errors.push(SyntaxError::new(AsciiCodeEscapeOutOfRange, range)),
Err(_) => errors.push(SyntaxError::new(MalformedAsciiCodeEscape, range)),
}
}
}
fn validate_unicode_escape(text: &str, range: TextRange, errors: &mut Vec<SyntaxError>) {
assert!(&text[..2] == "\\u", "UnicodeEscape always starts with \\u");
if text.len() == 2 {
// No starting `{`
errors.push(SyntaxError::new(MalformedUnicodeEscape, range));
return;
}
if text.len() == 3 {
// Only starting `{`
errors.push(SyntaxError::new(UnclosedUnicodeEscape, range));
return;
}
let mut code = ArrayString::<[_; 6]>::new();
let mut closed = false;
for c in text[3..].chars() {
assert!(!closed, "no characters after escape is closed");
if c.is_digit(16) {
if code.len() == 6 {
errors.push(SyntaxError::new(OverlongUnicodeEscape, range));
return;
}
code.push(c);
} else if c == '_' {
// Reject leading _
if code.len() == 0 {
errors.push(SyntaxError::new(MalformedUnicodeEscape, range));
return;
}
} else if c == '}' {
closed = true;
} else {
errors.push(SyntaxError::new(MalformedUnicodeEscape, range));
return;
}
}
if !closed {
errors.push(SyntaxError::new(UnclosedUnicodeEscape, range))
}
if code.len() == 0 {
errors.push(SyntaxError::new(EmptyUnicodeEcape, range));
return;
}
match u32::from_str_radix(&code, 16) {
Ok(code_u32) if code_u32 > 0x10FFFF => {
errors.push(SyntaxError::new(UnicodeEscapeOutOfRange, range));
}
Ok(_) => {
// Valid escape code
}
Err(_) => {
errors.push(SyntaxError::new(MalformedUnicodeEscape, range));
}
}
}
#[cfg(test)]
mod test {
use crate::SourceFileNode;
@ -205,9 +213,7 @@ mod test {
#[test]
fn test_valid_ascii_escape() {
let valid = [
r"\'", "\"", "\\\\", "\\\"", r"\n", r"\r", r"\t", r"\0", "a", "b",
];
let valid = [r"\'", "\"", "\\\\", "\\\"", r"\n", r"\r", r"\t", r"\0"];
for c in &valid {
assert_valid_char(c);
}

View File

@ -5,6 +5,8 @@ use crate::{
yellow::SyntaxError,
};
mod byte;
mod byte_string;
mod char;
mod string;
@ -12,6 +14,8 @@ pub(crate) fn validate(file: &SourceFileNode) -> Vec<SyntaxError> {
let mut errors = Vec::new();
for node in file.syntax().descendants() {
let _ = visitor_ctx(&mut errors)
.visit::<ast::Byte, _>(self::byte::validate_byte_node)
.visit::<ast::ByteString, _>(self::byte_string::validate_byte_string_node)
.visit::<ast::Char, _>(self::char::validate_char_node)
.visit::<ast::String, _>(self::string::validate_string_node)
.accept(node);

View File

@ -72,6 +72,16 @@ pub enum SyntaxErrorKind {
EmptyChar,
UnclosedChar,
OverlongChar,
EmptyByte,
UnclosedByte,
OverlongByte,
ByteOutOfRange,
UnescapedByte,
EmptyByteEscape,
InvalidByteEscape,
TooShortByteCodeEscape,
MalformedByteCodeEscape,
UnicodeEscapeForbidden,
EmptyAsciiEscape,
InvalidAsciiEscape,
TooShortAsciiCodeEscape,
@ -98,6 +108,19 @@ impl fmt::Display for SyntaxErrorKind {
EmptyChar => write!(f, "Empty char literal"),
UnclosedChar => write!(f, "Unclosed char literal"),
OverlongChar => write!(f, "Char literal should be one character long"),
EmptyByte => write!(f, "Empty byte literal"),
UnclosedByte => write!(f, "Unclosed byte literal"),
OverlongByte => write!(f, "Byte literal should be one character long"),
ByteOutOfRange => write!(f, "Byte should be a valid ASCII character"),
UnescapedByte => write!(f, "This byte should always be escaped"),
EmptyByteEscape => write!(f, "Empty escape sequence"),
InvalidByteEscape => write!(f, "Invalid escape sequence"),
TooShortByteCodeEscape => write!(f, "Escape sequence should have two digits"),
MalformedByteCodeEscape => write!(f, "Escape sequence should be a hexadecimal number"),
UnicodeEscapeForbidden => write!(
f,
"Unicode escapes are not allowed in byte literals or byte strings"
),
TooShortAsciiCodeEscape => write!(f, "Escape sequence should have two digits"),
AsciiCodeEscapeOutOfRange => {
write!(f, "Escape sequence should be between \\x00 and \\x7F")