mirror of
https://github.com/rust-lang/rust.git
synced 2025-01-22 04:34:51 +00:00
extra: Introduce a mutex type for native/green threads
This commit is contained in:
parent
b49771e392
commit
984727ff87
564
src/libextra/sync/mutex.rs
Normal file
564
src/libextra/sync/mutex.rs
Normal file
@ -0,0 +1,564 @@
|
||||
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
|
||||
// file at the top-level directory of this distribution and at
|
||||
// http://rust-lang.org/COPYRIGHT.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
//! A proper mutex implementation regardless of the "flavor of task" which is
|
||||
//! acquiring the lock.
|
||||
|
||||
// # Implementation of Rust mutexes
|
||||
//
|
||||
// Most answers to the question of "how do I use a mutex" are "use pthreads",
|
||||
// but for Rust this isn't quite sufficient. Green threads cannot acquire an OS
|
||||
// mutex because they can context switch among many OS threads, leading to
|
||||
// deadlocks with other green threads.
|
||||
//
|
||||
// Another problem for green threads grabbing an OS mutex is that POSIX dictates
|
||||
// that unlocking a mutex on a different thread from where it was locked is
|
||||
// undefined behavior. Remember that green threads can migrate among OS threads,
|
||||
// so this would mean that we would have to pin green threads to OS threads,
|
||||
// which is less than ideal.
|
||||
//
|
||||
// ## Using deschedule/reawaken
|
||||
//
|
||||
// We already have primitives for descheduling/reawakening tasks, so they're the
|
||||
// first obvious choice when implementing a mutex. The idea would be to have a
|
||||
// concurrent queue that everyone is pushed on to, and then the owner of the
|
||||
// mutex is the one popping from the queue.
|
||||
//
|
||||
// Unfortunately, this is not very performant for native tasks. The suspected
|
||||
// reason for this is that each native thread is suspended on its own condition
|
||||
// variable, unique from all the other threads. In this situation, the kernel
|
||||
// has no idea what the scheduling semantics are of the user program, so all of
|
||||
// the threads are distributed among all cores on the system. This ends up
|
||||
// having very expensive wakeups of remote cores high up in the profile when
|
||||
// handing off the mutex among native tasks. On the other hand, when using an OS
|
||||
// mutex, the kernel knows that all native threads are contended on the same
|
||||
// mutex, so they're in theory all migrated to a single core (fast context
|
||||
// switching).
|
||||
//
|
||||
// ## Mixing implementations
|
||||
//
|
||||
// From that above information, we have two constraints. The first is that
|
||||
// green threads can't touch os mutexes, and the second is that native tasks
|
||||
// pretty much *must* touch an os mutex.
|
||||
//
|
||||
// As a compromise, the queueing implementation is used for green threads and
|
||||
// the os mutex is used for native threads (why not have both?). This ends up
|
||||
// leading to fairly decent performance for both native threads and green
|
||||
// threads on various workloads (uncontended and contended).
|
||||
//
|
||||
// The crux of this implementation is an atomic work which is CAS'd on many many
|
||||
// times in order to manage a few flags about who's blocking where and whether
|
||||
// it's locked or not.
|
||||
|
||||
use std::rt::local::Local;
|
||||
use std::rt::task::{BlockedTask, Task};
|
||||
use std::rt::thread::Thread;
|
||||
use std::sync::atomics;
|
||||
use std::unstable::mutex;
|
||||
|
||||
use q = sync::mpsc_intrusive;
|
||||
|
||||
pub static LOCKED: uint = 1 << 0;
|
||||
pub static GREEN_BLOCKED: uint = 1 << 1;
|
||||
pub static NATIVE_BLOCKED: uint = 1 << 2;
|
||||
|
||||
/// A mutual exclusion primitive useful for protecting shared data
|
||||
///
|
||||
/// This mutex is an implementation of a lock for all flavors of tasks which may
|
||||
/// be grabbing. A common problem with green threads is that they cannot grab
|
||||
/// locks (if they reschedule during the lock a contender could deadlock the
|
||||
/// system), but this mutex does *not* suffer this problem.
|
||||
///
|
||||
/// This mutex will properly block tasks waiting for the lock to become
|
||||
/// available. The mutex can also be statically initialized or created via a
|
||||
/// `new` constructor.
|
||||
///
|
||||
/// # Example
|
||||
///
|
||||
/// ```rust
|
||||
/// use extra::sync::mutex::Mutex;
|
||||
///
|
||||
/// let mut m = Mutex::new();
|
||||
/// let guard = m.lock();
|
||||
/// // do some work
|
||||
/// drop(guard); // unlock the lock
|
||||
///
|
||||
/// {
|
||||
/// let _g = m.lock();
|
||||
/// // do some work in a scope
|
||||
/// }
|
||||
///
|
||||
/// // now the mutex is unlocked
|
||||
/// ```
|
||||
pub struct Mutex {
|
||||
priv lock: StaticMutex,
|
||||
}
|
||||
|
||||
#[deriving(Eq)]
|
||||
enum Flavor {
|
||||
Unlocked,
|
||||
TryLockAcquisition,
|
||||
GreenAcquisition,
|
||||
NativeAcquisition,
|
||||
}
|
||||
|
||||
/// The static mutex type is provided to allow for static allocation of mutexes.
|
||||
///
|
||||
/// Note that this is a separate type because using a Mutex correctly means that
|
||||
/// it needs to have a destructor run. In Rust, statics are not allowed to have
|
||||
/// destructors. As a result, a `StaticMutex` has one extra method when compared
|
||||
/// to a `Mutex`, a `destroy` method. This method is unsafe to call, and
|
||||
/// documentation can be found directly on the method.
|
||||
///
|
||||
/// # Example
|
||||
///
|
||||
/// ```rust
|
||||
/// use extra::sync::mutex::{StaticMutex, MUTEX_INIT};
|
||||
///
|
||||
/// static mut LOCK: StaticMutex = MUTEX_INIT;
|
||||
///
|
||||
/// unsafe {
|
||||
/// let _g = LOCK.lock();
|
||||
/// // do some productive work
|
||||
/// }
|
||||
/// // lock is unlocked here.
|
||||
/// ```
|
||||
pub struct StaticMutex {
|
||||
/// Current set of flags on this mutex
|
||||
priv state: atomics::AtomicUint,
|
||||
/// Type of locking operation currently on this mutex
|
||||
priv flavor: Flavor,
|
||||
/// uint-cast of the green thread waiting for this mutex
|
||||
priv green_blocker: uint,
|
||||
/// uint-cast of the native thread waiting for this mutex
|
||||
priv native_blocker: uint,
|
||||
/// an OS mutex used by native threads
|
||||
priv lock: mutex::Mutex,
|
||||
|
||||
/// A concurrent mpsc queue used by green threads, along with a count used
|
||||
/// to figure out when to dequeue and enqueue.
|
||||
priv q: q::Queue<uint>,
|
||||
priv green_cnt: atomics::AtomicUint,
|
||||
}
|
||||
|
||||
/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
|
||||
/// dropped (falls out of scope), the lock will be unlocked.
|
||||
pub struct Guard<'a> {
|
||||
priv lock: &'a mut StaticMutex,
|
||||
}
|
||||
|
||||
/// Static initialization of a mutex. This constant can be used to initialize
|
||||
/// other mutex constants.
|
||||
pub static MUTEX_INIT: StaticMutex = StaticMutex {
|
||||
lock: mutex::MUTEX_INIT,
|
||||
state: atomics::INIT_ATOMIC_UINT,
|
||||
flavor: Unlocked,
|
||||
green_blocker: 0,
|
||||
native_blocker: 0,
|
||||
green_cnt: atomics::INIT_ATOMIC_UINT,
|
||||
q: q::Queue {
|
||||
head: atomics::INIT_ATOMIC_UINT,
|
||||
tail: 0 as *mut q::Node<uint>,
|
||||
stub: q::DummyNode {
|
||||
next: atomics::INIT_ATOMIC_UINT,
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
impl StaticMutex {
|
||||
/// Attempts to grab this lock, see `Mutex::try_lock`
|
||||
pub fn try_lock<'a>(&'a mut self) -> Option<Guard<'a>> {
|
||||
// Attempt to steal the mutex from an unlocked state.
|
||||
//
|
||||
// FIXME: this can mess up the fairness of the mutex, seems bad
|
||||
match self.state.compare_and_swap(0, LOCKED, atomics::SeqCst) {
|
||||
0 => {
|
||||
assert!(self.flavor == Unlocked);
|
||||
self.flavor = TryLockAcquisition;
|
||||
Some(Guard::new(self))
|
||||
}
|
||||
_ => None
|
||||
}
|
||||
}
|
||||
|
||||
/// Acquires this lock, see `Mutex::lock`
|
||||
pub fn lock<'a>(&'a mut self) -> Guard<'a> {
|
||||
// First, attempt to steal the mutex from an unlocked state. The "fast
|
||||
// path" needs to have as few atomic instructions as possible, and this
|
||||
// one cmpxchg is already pretty expensive.
|
||||
//
|
||||
// FIXME: this can mess up the fairness of the mutex, seems bad
|
||||
match self.state.compare_and_swap(0, LOCKED, atomics::SeqCst) {
|
||||
0 => {
|
||||
assert!(self.flavor == Unlocked);
|
||||
self.flavor = TryLockAcquisition;
|
||||
return Guard::new(self)
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
|
||||
// After we've failed the fast path, then we delegate to the differnet
|
||||
// locking protocols for green/native tasks. This will select two tasks
|
||||
// to continue further (one native, one green).
|
||||
let t: ~Task = Local::take();
|
||||
let can_block = t.can_block();
|
||||
let native_bit;
|
||||
if can_block {
|
||||
self.native_lock(t);
|
||||
native_bit = NATIVE_BLOCKED;
|
||||
} else {
|
||||
self.green_lock(t);
|
||||
native_bit = GREEN_BLOCKED;
|
||||
}
|
||||
|
||||
// After we've arbitrated among task types, attempt to re-acquire the
|
||||
// lock (avoids a deschedule). This is very important to do in order to
|
||||
// allow threads coming out of the native_lock function to try their
|
||||
// best to not hit a cvar in deschedule.
|
||||
let mut old = match self.state.compare_and_swap(0, LOCKED,
|
||||
atomics::SeqCst) {
|
||||
0 => {
|
||||
self.flavor = if can_block {
|
||||
NativeAcquisition
|
||||
} else {
|
||||
GreenAcquisition
|
||||
};
|
||||
return Guard::new(self)
|
||||
}
|
||||
old => old,
|
||||
};
|
||||
|
||||
// Alright, everything else failed. We need to deschedule ourselves and
|
||||
// flag ourselves as waiting. Note that this case should only happen
|
||||
// regularly in native/green contention. Due to try_lock and the header
|
||||
// of lock stealing the lock, it's also possible for native/native
|
||||
// contention to hit this location, but as less common.
|
||||
let t: ~Task = Local::take();
|
||||
t.deschedule(1, |task| {
|
||||
let task = unsafe { task.cast_to_uint() };
|
||||
if can_block {
|
||||
assert_eq!(self.native_blocker, 0);
|
||||
self.native_blocker = task;
|
||||
} else {
|
||||
assert_eq!(self.green_blocker, 0);
|
||||
self.green_blocker = task;
|
||||
}
|
||||
|
||||
loop {
|
||||
assert_eq!(old & native_bit, 0);
|
||||
// If the old state was locked, then we need to flag ourselves
|
||||
// as blocking in the state. If the old state was unlocked, then
|
||||
// we attempt to acquire the mutex. Everything here is a CAS
|
||||
// loop that'll eventually make progress.
|
||||
if old & LOCKED != 0 {
|
||||
old = match self.state.compare_and_swap(old,
|
||||
old | native_bit,
|
||||
atomics::SeqCst) {
|
||||
n if n == old => return Ok(()),
|
||||
n => n
|
||||
};
|
||||
} else {
|
||||
assert_eq!(old, 0);
|
||||
old = match self.state.compare_and_swap(old,
|
||||
old | LOCKED,
|
||||
atomics::SeqCst) {
|
||||
n if n == old => {
|
||||
assert_eq!(self.flavor, Unlocked);
|
||||
if can_block {
|
||||
self.native_blocker = 0;
|
||||
self.flavor = NativeAcquisition;
|
||||
} else {
|
||||
self.green_blocker = 0;
|
||||
self.flavor = GreenAcquisition;
|
||||
}
|
||||
return Err(unsafe {
|
||||
BlockedTask::cast_from_uint(task)
|
||||
})
|
||||
}
|
||||
n => n,
|
||||
};
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
Guard::new(self)
|
||||
}
|
||||
|
||||
// Tasks which can block are super easy. These tasks just call the blocking
|
||||
// `lock()` function on an OS mutex
|
||||
fn native_lock(&mut self, t: ~Task) {
|
||||
Local::put(t);
|
||||
unsafe { self.lock.lock(); }
|
||||
}
|
||||
|
||||
fn native_unlock(&mut self) {
|
||||
unsafe { self.lock.unlock(); }
|
||||
}
|
||||
|
||||
fn green_lock(&mut self, t: ~Task) {
|
||||
// Green threads flag their presence with an atomic counter, and if they
|
||||
// fail to be the first to the mutex, they enqueue themselves on a
|
||||
// concurrent internal queue with a stack-allocated node.
|
||||
//
|
||||
// FIXME: There isn't a cancellation currently of an enqueue, forcing
|
||||
// the unlocker to spin for a bit.
|
||||
if self.green_cnt.fetch_add(1, atomics::SeqCst) == 0 {
|
||||
Local::put(t);
|
||||
return
|
||||
}
|
||||
|
||||
let mut node = q::Node::new(0);
|
||||
t.deschedule(1, |task| {
|
||||
unsafe {
|
||||
node.data = task.cast_to_uint();
|
||||
self.q.push(&mut node);
|
||||
}
|
||||
Ok(())
|
||||
});
|
||||
}
|
||||
|
||||
fn green_unlock(&mut self) {
|
||||
// If we're the only green thread, then no need to check the queue,
|
||||
// otherwise the fixme above forces us to spin for a bit.
|
||||
if self.green_cnt.fetch_sub(1, atomics::SeqCst) == 1 { return }
|
||||
let node;
|
||||
loop {
|
||||
match unsafe { self.q.pop() } {
|
||||
Some(t) => { node = t; break; }
|
||||
None => Thread::yield_now(),
|
||||
}
|
||||
}
|
||||
let task = unsafe { BlockedTask::cast_from_uint((*node).data) };
|
||||
task.wake().map(|t| t.reawaken());
|
||||
}
|
||||
|
||||
fn unlock(&mut self) {
|
||||
// Unlocking this mutex is a little tricky. We favor any task that is
|
||||
// manually blocked (not in each of the separate locks) in order to help
|
||||
// provide a little fairness (green threads will wake up the pending
|
||||
// native thread and native threads will wake up the pending green
|
||||
// thread).
|
||||
//
|
||||
// There's also the question of when we unlock the actual green/native
|
||||
// locking halves as well. If we're waking up someone, then we can wait
|
||||
// to unlock until we've acquired the task to wake up (we're guaranteed
|
||||
// the mutex memory is still valid when there's contenders), but as soon
|
||||
// as we don't find any contenders we must unlock the mutex, and *then*
|
||||
// flag the mutex as unlocked.
|
||||
//
|
||||
// This flagging can fail, leading to another round of figuring out if a
|
||||
// task needs to be woken, and in this case it's ok that the "mutex
|
||||
// halves" are unlocked, we're just mainly dealing with the atomic state
|
||||
// of the outer mutex.
|
||||
let flavor = self.flavor;
|
||||
self.flavor = Unlocked;
|
||||
|
||||
let mut state = self.state.load(atomics::SeqCst);
|
||||
let mut unlocked = false;
|
||||
let task;
|
||||
loop {
|
||||
assert!(state & LOCKED != 0);
|
||||
if state & GREEN_BLOCKED != 0 {
|
||||
self.unset(state, GREEN_BLOCKED);
|
||||
task = unsafe {
|
||||
BlockedTask::cast_from_uint(self.green_blocker)
|
||||
};
|
||||
self.green_blocker = 0;
|
||||
self.flavor = GreenAcquisition;
|
||||
break;
|
||||
} else if state & NATIVE_BLOCKED != 0 {
|
||||
self.unset(state, NATIVE_BLOCKED);
|
||||
task = unsafe {
|
||||
BlockedTask::cast_from_uint(self.native_blocker)
|
||||
};
|
||||
self.native_blocker = 0;
|
||||
self.flavor = NativeAcquisition;
|
||||
break;
|
||||
} else {
|
||||
assert_eq!(state, LOCKED);
|
||||
if !unlocked {
|
||||
match flavor {
|
||||
GreenAcquisition => { self.green_unlock(); }
|
||||
NativeAcquisition => { self.native_unlock(); }
|
||||
TryLockAcquisition => {}
|
||||
Unlocked => unreachable!()
|
||||
}
|
||||
unlocked = true;
|
||||
}
|
||||
match self.state.compare_and_swap(LOCKED, 0, atomics::SeqCst) {
|
||||
LOCKED => return,
|
||||
n => { state = n; }
|
||||
}
|
||||
}
|
||||
}
|
||||
if !unlocked {
|
||||
match flavor {
|
||||
GreenAcquisition => { self.green_unlock(); }
|
||||
NativeAcquisition => { self.native_unlock(); }
|
||||
TryLockAcquisition => {}
|
||||
Unlocked => unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
task.wake().map(|t| t.reawaken());
|
||||
}
|
||||
|
||||
/// Loops around a CAS to unset the `bit` in `state`
|
||||
fn unset(&mut self, mut state: uint, bit: uint) {
|
||||
loop {
|
||||
assert!(state & bit != 0);
|
||||
let new = state ^ bit;
|
||||
match self.state.compare_and_swap(state, new, atomics::SeqCst) {
|
||||
n if n == state => break,
|
||||
n => { state = n; }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Deallocates resources associated with this static mutex.
|
||||
///
|
||||
/// This method is unsafe because it provides no guarantees that there are
|
||||
/// no active users of this mutex, and safety is not guaranteed if there are
|
||||
/// active users of this mutex.
|
||||
///
|
||||
/// This method is required to ensure that there are no memory leaks on
|
||||
/// *all* platforms. It may be the case that some platforms do not leak
|
||||
/// memory if this method is not called, but this is not guaranteed to be
|
||||
/// true on all platforms.
|
||||
pub unsafe fn destroy(&mut self) {
|
||||
self.lock.destroy()
|
||||
}
|
||||
}
|
||||
|
||||
impl Mutex {
|
||||
/// Creates a new mutex in an unlocked state ready for use.
|
||||
pub fn new() -> Mutex {
|
||||
Mutex {
|
||||
lock: StaticMutex {
|
||||
state: atomics::AtomicUint::new(0),
|
||||
flavor: Unlocked,
|
||||
green_blocker: 0,
|
||||
native_blocker: 0,
|
||||
green_cnt: atomics::AtomicUint::new(0),
|
||||
q: q::Queue::new(),
|
||||
lock: unsafe { mutex::Mutex::new() },
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Attempts to acquire this lock.
|
||||
///
|
||||
/// If the lock could not be acquired at this time, then `None` is returned.
|
||||
/// Otherwise, an RAII guard is returned. The lock will be unlocked when the
|
||||
/// guard is dropped.
|
||||
///
|
||||
/// This function does not block.
|
||||
pub fn try_lock<'a>(&'a mut self) -> Option<Guard<'a>> {
|
||||
self.lock.try_lock()
|
||||
}
|
||||
|
||||
/// Acquires a mutex, blocking the current task until it is able to do so.
|
||||
///
|
||||
/// This function will block the local task until it is availble to acquire
|
||||
/// the mutex. Upon returning, the task is the only task with the mutex
|
||||
/// held. An RAII guard is returned to allow scoped unlock of the lock. When
|
||||
/// the guard goes out of scope, the mutex will be unlocked.
|
||||
pub fn lock<'a>(&'a mut self) -> Guard<'a> { self.lock.lock() }
|
||||
}
|
||||
|
||||
impl<'a> Guard<'a> {
|
||||
fn new<'b>(lock: &'b mut StaticMutex) -> Guard<'b> {
|
||||
if cfg!(debug) {
|
||||
assert!(lock.flavor != Unlocked);
|
||||
assert!(lock.state.load(atomics::SeqCst) & LOCKED != 0);
|
||||
}
|
||||
Guard { lock: lock }
|
||||
}
|
||||
}
|
||||
|
||||
#[unsafe_destructor]
|
||||
impl<'a> Drop for Guard<'a> {
|
||||
#[inline]
|
||||
fn drop(&mut self) {
|
||||
self.lock.unlock();
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for Mutex {
|
||||
fn drop(&mut self) {
|
||||
// This is actually safe b/c we know that there is no further usage of
|
||||
// this mutex (it's up to the user to arrange for a mutex to get
|
||||
// dropped, that's not our job)
|
||||
unsafe { self.lock.destroy() }
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
extern mod native;
|
||||
use super::{Mutex, StaticMutex, MUTEX_INIT};
|
||||
|
||||
#[test]
|
||||
fn smoke() {
|
||||
let mut m = Mutex::new();
|
||||
drop(m.lock());
|
||||
drop(m.lock());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn smoke_static() {
|
||||
static mut m: StaticMutex = MUTEX_INIT;
|
||||
unsafe {
|
||||
drop(m.lock());
|
||||
drop(m.lock());
|
||||
m.destroy();
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn lots_and_lots() {
|
||||
static mut m: StaticMutex = MUTEX_INIT;
|
||||
static mut CNT: uint = 0;
|
||||
static M: uint = 1000;
|
||||
static N: uint = 3;
|
||||
|
||||
fn inc() {
|
||||
for _ in range(0, M) {
|
||||
unsafe {
|
||||
let _g = m.lock();
|
||||
CNT += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let (p, c) = SharedChan::new();
|
||||
for _ in range(0, N) {
|
||||
let c2 = c.clone();
|
||||
do native::task::spawn { inc(); c2.send(()); }
|
||||
let c2 = c.clone();
|
||||
do spawn { inc(); c2.send(()); }
|
||||
}
|
||||
|
||||
drop(c);
|
||||
for _ in range(0, 2 * N) {
|
||||
p.recv();
|
||||
}
|
||||
assert_eq!(unsafe {CNT}, M * N * 2);
|
||||
unsafe {
|
||||
m.destroy();
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn trylock() {
|
||||
let mut m = Mutex::new();
|
||||
assert!(m.try_lock().is_some());
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user