implementing fallible allocation API (try_reserve) for Vec, String and HashMap

This commit is contained in:
snf 2018-03-08 14:36:43 +00:00
parent fab632f975
commit 92bfcd2b19
16 changed files with 1056 additions and 72 deletions

View File

@ -373,6 +373,24 @@ impl fmt::Display for CannotReallocInPlace {
}
}
/// Augments `AllocErr` with a CapacityOverflow variant.
#[derive(Clone, PartialEq, Eq, Debug)]
#[unstable(feature = "try_reserve", reason = "new API", issue="48043")]
pub enum CollectionAllocErr {
/// Error due to the computed capacity exceeding the collection's maximum
/// (usually `isize::MAX` bytes).
CapacityOverflow,
/// Error due to the allocator (see the `AllocErr` type's docs).
AllocErr(AllocErr),
}
#[unstable(feature = "try_reserve", reason = "new API", issue="48043")]
impl From<AllocErr> for CollectionAllocErr {
fn from(err: AllocErr) -> Self {
CollectionAllocErr::AllocErr(err)
}
}
/// An implementation of `Alloc` can allocate, reallocate, and
/// deallocate arbitrary blocks of data described via `Layout`.
///

View File

@ -117,6 +117,7 @@
#![feature(staged_api)]
#![feature(str_internals)]
#![feature(trusted_len)]
#![feature(try_reserve)]
#![feature(unboxed_closures)]
#![feature(unicode)]
#![feature(unsize)]

View File

@ -15,6 +15,8 @@ use core::ptr::{self, Unique};
use core::slice;
use heap::{Alloc, Layout, Heap};
use super::boxed::Box;
use super::allocator::CollectionAllocErr;
use super::allocator::CollectionAllocErr::*;
/// A low-level utility for more ergonomically allocating, reallocating, and deallocating
/// a buffer of memory on the heap without having to worry about all the corner cases
@ -84,7 +86,7 @@ impl<T, A: Alloc> RawVec<T, A> {
let elem_size = mem::size_of::<T>();
let alloc_size = cap.checked_mul(elem_size).expect("capacity overflow");
alloc_guard(alloc_size);
alloc_guard(alloc_size).expect("capacity overflow");
// handles ZSTs and `cap = 0` alike
let ptr = if alloc_size == 0 {
@ -308,7 +310,7 @@ impl<T, A: Alloc> RawVec<T, A> {
let new_cap = 2 * self.cap;
let new_size = new_cap * elem_size;
let new_layout = Layout::from_size_align_unchecked(new_size, cur.align());
alloc_guard(new_size);
alloc_guard(new_size).expect("capacity overflow");
let ptr_res = self.a.realloc(self.ptr.as_ptr() as *mut u8,
cur,
new_layout);
@ -367,7 +369,7 @@ impl<T, A: Alloc> RawVec<T, A> {
// overflow and the alignment is sufficiently small.
let new_cap = 2 * self.cap;
let new_size = new_cap * elem_size;
alloc_guard(new_size);
alloc_guard(new_size).expect("capacity overflow");
let ptr = self.ptr() as *mut _;
let new_layout = Layout::from_size_align_unchecked(new_size, old_layout.align());
match self.a.grow_in_place(ptr, old_layout, new_layout) {
@ -403,7 +405,9 @@ impl<T, A: Alloc> RawVec<T, A> {
/// # Aborts
///
/// Aborts on OOM
pub fn reserve_exact(&mut self, used_cap: usize, needed_extra_cap: usize) {
pub fn try_reserve_exact(&mut self, used_cap: usize, needed_extra_cap: usize)
-> Result<(), CollectionAllocErr> {
unsafe {
// NOTE: we don't early branch on ZSTs here because we want this
// to actually catch "asking for more than usize::MAX" in that case.
@ -413,16 +417,15 @@ impl<T, A: Alloc> RawVec<T, A> {
// Don't actually need any more capacity.
// Wrapping in case they gave a bad `used_cap`.
if self.cap().wrapping_sub(used_cap) >= needed_extra_cap {
return;
return Ok(());
}
// Nothing we can really do about these checks :(
let new_cap = used_cap.checked_add(needed_extra_cap).expect("capacity overflow");
let new_layout = match Layout::array::<T>(new_cap) {
Some(layout) => layout,
None => panic!("capacity overflow"),
};
alloc_guard(new_layout.size());
let new_cap = used_cap.checked_add(needed_extra_cap).ok_or(CapacityOverflow)?;
let new_layout = Layout::array::<T>(new_cap).ok_or(CapacityOverflow)?;
alloc_guard(new_layout.size())?;
let res = match self.current_layout() {
Some(layout) => {
let old_ptr = self.ptr.as_ptr() as *mut u8;
@ -430,26 +433,34 @@ impl<T, A: Alloc> RawVec<T, A> {
}
None => self.a.alloc(new_layout),
};
let uniq = match res {
Ok(ptr) => Unique::new_unchecked(ptr as *mut T),
Err(e) => self.a.oom(e),
};
self.ptr = uniq;
self.ptr = Unique::new_unchecked(res? as *mut T);
self.cap = new_cap;
Ok(())
}
}
pub fn reserve_exact(&mut self, used_cap: usize, needed_extra_cap: usize) {
match self.try_reserve_exact(used_cap, needed_extra_cap) {
Err(CapacityOverflow) => panic!("capacity overflow"),
Err(AllocErr(e)) => self.a.oom(e),
Ok(()) => { /* yay */ }
}
}
/// Calculates the buffer's new size given that it'll hold `used_cap +
/// needed_extra_cap` elements. This logic is used in amortized reserve methods.
/// Returns `(new_capacity, new_alloc_size)`.
fn amortized_new_size(&self, used_cap: usize, needed_extra_cap: usize) -> usize {
fn amortized_new_size(&self, used_cap: usize, needed_extra_cap: usize)
-> Result<usize, CollectionAllocErr> {
// Nothing we can really do about these checks :(
let required_cap = used_cap.checked_add(needed_extra_cap)
.expect("capacity overflow");
let required_cap = used_cap.checked_add(needed_extra_cap).ok_or(CapacityOverflow)?;
// Cannot overflow, because `cap <= isize::MAX`, and type of `cap` is `usize`.
let double_cap = self.cap * 2;
// `double_cap` guarantees exponential growth.
cmp::max(double_cap, required_cap)
Ok(cmp::max(double_cap, required_cap))
}
/// Ensures that the buffer contains at least enough space to hold
@ -504,8 +515,9 @@ impl<T, A: Alloc> RawVec<T, A> {
/// # vector.push_all(&[1, 3, 5, 7, 9]);
/// # }
/// ```
pub fn reserve(&mut self, used_cap: usize, needed_extra_cap: usize) {
unsafe {
pub fn try_reserve(&mut self, used_cap: usize, needed_extra_cap: usize)
-> Result<(), CollectionAllocErr> {
unsafe {
// NOTE: we don't early branch on ZSTs here because we want this
// to actually catch "asking for more than usize::MAX" in that case.
// If we make it past the first branch then we are guaranteed to
@ -514,17 +526,15 @@ impl<T, A: Alloc> RawVec<T, A> {
// Don't actually need any more capacity.
// Wrapping in case they give a bad `used_cap`
if self.cap().wrapping_sub(used_cap) >= needed_extra_cap {
return;
return Ok(());
}
let new_cap = self.amortized_new_size(used_cap, needed_extra_cap);
let new_cap = self.amortized_new_size(used_cap, needed_extra_cap)?;
let new_layout = Layout::array::<T>(new_cap).ok_or(CapacityOverflow)?;
// FIXME: may crash and burn on over-reserve
alloc_guard(new_layout.size())?;
let new_layout = match Layout::array::<T>(new_cap) {
Some(layout) => layout,
None => panic!("capacity overflow"),
};
// FIXME: may crash and burn on over-reserve
alloc_guard(new_layout.size());
let res = match self.current_layout() {
Some(layout) => {
let old_ptr = self.ptr.as_ptr() as *mut u8;
@ -532,15 +542,22 @@ impl<T, A: Alloc> RawVec<T, A> {
}
None => self.a.alloc(new_layout),
};
let uniq = match res {
Ok(ptr) => Unique::new_unchecked(ptr as *mut T),
Err(e) => self.a.oom(e),
};
self.ptr = uniq;
self.ptr = Unique::new_unchecked(res? as *mut T);
self.cap = new_cap;
Ok(())
}
}
/// The same as try_reserve, but errors are lowered to a call to oom().
pub fn reserve(&mut self, used_cap: usize, needed_extra_cap: usize) {
match self.try_reserve(used_cap, needed_extra_cap) {
Err(CapacityOverflow) => panic!("capacity overflow"),
Err(AllocErr(e)) => self.a.oom(e),
Ok(()) => { /* yay */ }
}
}
/// Attempts to ensure that the buffer contains at least enough space to hold
/// `used_cap + needed_extra_cap` elements. If it doesn't already have
/// enough capacity, will reallocate in place enough space plus comfortable slack
@ -576,7 +593,8 @@ impl<T, A: Alloc> RawVec<T, A> {
return false;
}
let new_cap = self.amortized_new_size(used_cap, needed_extra_cap);
let new_cap = self.amortized_new_size(used_cap, needed_extra_cap)
.expect("capacity overflow");
// Here, `cap < used_cap + needed_extra_cap <= new_cap`
// (regardless of whether `self.cap - used_cap` wrapped).
@ -585,7 +603,7 @@ impl<T, A: Alloc> RawVec<T, A> {
let ptr = self.ptr() as *mut _;
let new_layout = Layout::new::<T>().repeat(new_cap).unwrap().0;
// FIXME: may crash and burn on over-reserve
alloc_guard(new_layout.size());
alloc_guard(new_layout.size()).expect("capacity overflow");
match self.a.grow_in_place(ptr, old_layout, new_layout) {
Ok(_) => {
self.cap = new_cap;
@ -709,14 +727,14 @@ unsafe impl<#[may_dangle] T, A: Alloc> Drop for RawVec<T, A> {
// all 4GB in user-space. e.g. PAE or x32
#[inline]
fn alloc_guard(alloc_size: usize) {
if mem::size_of::<usize>() < 8 {
assert!(alloc_size <= ::core::isize::MAX as usize,
"capacity overflow");
fn alloc_guard(alloc_size: usize) -> Result<(), CollectionAllocErr> {
if mem::size_of::<usize>() < 8 && alloc_size > ::core::isize::MAX as usize {
Err(CapacityOverflow)
} else {
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;

View File

@ -71,6 +71,7 @@ use Bound::{Excluded, Included, Unbounded};
use str::{self, from_boxed_utf8_unchecked, FromStr, Utf8Error, Chars};
use vec::Vec;
use boxed::Box;
use super::allocator::CollectionAllocErr;
/// A UTF-8 encoded, growable string.
///
@ -920,6 +921,79 @@ impl String {
self.vec.reserve_exact(additional)
}
/// Tries to reserve capacity for at least `additional` more elements to be inserted
/// in the given `String`. The collection may reserve more space to avoid
/// frequent reallocations. After calling `reserve`, capacity will be
/// greater than or equal to `self.len() + additional`. Does nothing if
/// capacity is already sufficient.
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// #![feature(try_reserve)]
/// use std::collections::CollectionAllocErr;
///
/// fn process_data(data: &str) -> Result<String, CollectionAllocErr> {
/// let mut output = String::new();
///
/// // Pre-reserve the memory, exiting if we can't
/// output.try_reserve(data.len())?;
///
/// // Now we know this can't OOM in the middle of our complex work
/// output.push_str(data);
///
/// Ok(output)
/// }
/// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
/// ```
#[unstable(feature = "try_reserve", reason = "new API", issue="48043")]
pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
self.vec.try_reserve(additional)
}
/// Tries to reserves the minimum capacity for exactly `additional` more elements to
/// be inserted in the given `String`. After calling `reserve_exact`,
/// capacity will be greater than or equal to `self.len() + additional`.
/// Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it
/// requests. Therefore capacity can not be relied upon to be precisely
/// minimal. Prefer `reserve` if future insertions are expected.
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// #![feature(try_reserve)]
/// use std::collections::CollectionAllocErr;
///
/// fn process_data(data: &str) -> Result<String, CollectionAllocErr> {
/// let mut output = String::new();
///
/// // Pre-reserve the memory, exiting if we can't
/// output.try_reserve(data.len())?;
///
/// // Now we know this can't OOM in the middle of our complex work
/// output.push_str(data);
///
/// Ok(output)
/// }
/// # process_data("rust").expect("why is the test harness OOMing on 4 bytes?");
/// ```
#[unstable(feature = "try_reserve", reason = "new API", issue="48043")]
pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
self.vec.try_reserve_exact(additional)
}
/// Shrinks the capacity of this `String` to match its length.
///
/// # Examples

View File

@ -26,6 +26,7 @@
#![feature(splice)]
#![feature(str_escape)]
#![feature(string_retain)]
#![feature(try_reserve)]
#![feature(unboxed_closures)]
#![feature(unicode)]
#![feature(exact_chunks)]

View File

@ -9,6 +9,9 @@
// except according to those terms.
use std::borrow::Cow;
use std::collections::CollectionAllocErr::*;
use std::mem::size_of;
use std::{usize, isize};
pub trait IntoCow<'a, B: ?Sized> where B: ToOwned {
fn into_cow(self) -> Cow<'a, B>;
@ -504,3 +507,163 @@ fn test_into_boxed_str() {
let ys = xs.into_boxed_str();
assert_eq!(&*ys, "hello my name is bob");
}
#[test]
fn test_reserve_exact() {
// This is all the same as test_reserve
let mut s = String::new();
assert_eq!(s.capacity(), 0);
s.reserve_exact(2);
assert!(s.capacity() >= 2);
for _i in 0..16 {
s.push('0');
}
assert!(s.capacity() >= 16);
s.reserve_exact(16);
assert!(s.capacity() >= 32);
s.push('0');
s.reserve_exact(16);
assert!(s.capacity() >= 33)
}
#[test]
fn test_try_reserve() {
// These are the interesting cases:
// * exactly isize::MAX should never trigger a CapacityOverflow (can be OOM)
// * > isize::MAX should always fail
// * On 16/32-bit should CapacityOverflow
// * On 64-bit should OOM
// * overflow may trigger when adding `len` to `cap` (in number of elements)
// * overflow may trigger when multiplying `new_cap` by size_of::<T> (to get bytes)
const MAX_CAP: usize = isize::MAX as usize;
const MAX_USIZE: usize = usize::MAX;
// On 16/32-bit, we check that allocations don't exceed isize::MAX,
// on 64-bit, we assume the OS will give an OOM for such a ridiculous size.
// Any platform that succeeds for these requests is technically broken with
// ptr::offset because LLVM is the worst.
let guards_against_isize = size_of::<usize>() < 8;
{
// Note: basic stuff is checked by test_reserve
let mut empty_string: String = String::new();
// Check isize::MAX doesn't count as an overflow
if let Err(CapacityOverflow) = empty_string.try_reserve(MAX_CAP) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
// Play it again, frank! (just to be sure)
if let Err(CapacityOverflow) = empty_string.try_reserve(MAX_CAP) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
// Check isize::MAX + 1 does count as overflow
if let Err(CapacityOverflow) = empty_string.try_reserve(MAX_CAP + 1) {
} else { panic!("isize::MAX + 1 should trigger an overflow!") }
// Check usize::MAX does count as overflow
if let Err(CapacityOverflow) = empty_string.try_reserve(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an overflow!") }
} else {
// Check isize::MAX + 1 is an OOM
if let Err(AllocErr(_)) = empty_string.try_reserve(MAX_CAP + 1) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
// Check usize::MAX is an OOM
if let Err(AllocErr(_)) = empty_string.try_reserve(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an OOM!") }
}
}
{
// Same basic idea, but with non-zero len
let mut ten_bytes: String = String::from("0123456789");
if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 9) {
} else { panic!("isize::MAX + 1 should trigger an overflow!"); }
} else {
if let Err(AllocErr(_)) = ten_bytes.try_reserve(MAX_CAP - 9) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
}
// Should always overflow in the add-to-len
if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an overflow!") }
}
}
#[test]
fn test_try_reserve_exact() {
// This is exactly the same as test_try_reserve with the method changed.
// See that test for comments.
const MAX_CAP: usize = isize::MAX as usize;
const MAX_USIZE: usize = usize::MAX;
let guards_against_isize = size_of::<usize>() < 8;
{
let mut empty_string: String = String::new();
if let Err(CapacityOverflow) = empty_string.try_reserve_exact(MAX_CAP) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = empty_string.try_reserve_exact(MAX_CAP) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
if let Err(CapacityOverflow) = empty_string.try_reserve_exact(MAX_CAP + 1) {
} else { panic!("isize::MAX + 1 should trigger an overflow!") }
if let Err(CapacityOverflow) = empty_string.try_reserve_exact(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an overflow!") }
} else {
if let Err(AllocErr(_)) = empty_string.try_reserve_exact(MAX_CAP + 1) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
if let Err(AllocErr(_)) = empty_string.try_reserve_exact(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an OOM!") }
}
}
{
let mut ten_bytes: String = String::from("0123456789");
if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_CAP - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_CAP - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_CAP - 9) {
} else { panic!("isize::MAX + 1 should trigger an overflow!"); }
} else {
if let Err(AllocErr(_)) = ten_bytes.try_reserve_exact(MAX_CAP - 9) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
}
if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an overflow!") }
}
}

View File

@ -10,8 +10,9 @@
use std::borrow::Cow;
use std::mem::size_of;
use std::panic;
use std::{usize, isize, panic};
use std::vec::{Drain, IntoIter};
use std::collections::CollectionAllocErr::*;
struct DropCounter<'a> {
count: &'a mut u32,
@ -965,3 +966,209 @@ fn drain_filter_complex() {
assert_eq!(vec, vec![1, 3, 5, 7, 9, 11, 13, 15, 17, 19]);
}
}
#[test]
fn test_reserve_exact() {
// This is all the same as test_reserve
let mut v = Vec::new();
assert_eq!(v.capacity(), 0);
v.reserve_exact(2);
assert!(v.capacity() >= 2);
for i in 0..16 {
v.push(i);
}
assert!(v.capacity() >= 16);
v.reserve_exact(16);
assert!(v.capacity() >= 32);
v.push(16);
v.reserve_exact(16);
assert!(v.capacity() >= 33)
}
#[test]
fn test_try_reserve() {
// These are the interesting cases:
// * exactly isize::MAX should never trigger a CapacityOverflow (can be OOM)
// * > isize::MAX should always fail
// * On 16/32-bit should CapacityOverflow
// * On 64-bit should OOM
// * overflow may trigger when adding `len` to `cap` (in number of elements)
// * overflow may trigger when multiplying `new_cap` by size_of::<T> (to get bytes)
const MAX_CAP: usize = isize::MAX as usize;
const MAX_USIZE: usize = usize::MAX;
// On 16/32-bit, we check that allocations don't exceed isize::MAX,
// on 64-bit, we assume the OS will give an OOM for such a ridiculous size.
// Any platform that succeeds for these requests is technically broken with
// ptr::offset because LLVM is the worst.
let guards_against_isize = size_of::<usize>() < 8;
{
// Note: basic stuff is checked by test_reserve
let mut empty_bytes: Vec<u8> = Vec::new();
// Check isize::MAX doesn't count as an overflow
if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_CAP) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
// Play it again, frank! (just to be sure)
if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_CAP) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
// Check isize::MAX + 1 does count as overflow
if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_CAP + 1) {
} else { panic!("isize::MAX + 1 should trigger an overflow!") }
// Check usize::MAX does count as overflow
if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an overflow!") }
} else {
// Check isize::MAX + 1 is an OOM
if let Err(AllocErr(_)) = empty_bytes.try_reserve(MAX_CAP + 1) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
// Check usize::MAX is an OOM
if let Err(AllocErr(_)) = empty_bytes.try_reserve(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an OOM!") }
}
}
{
// Same basic idea, but with non-zero len
let mut ten_bytes: Vec<u8> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 9) {
} else { panic!("isize::MAX + 1 should trigger an overflow!"); }
} else {
if let Err(AllocErr(_)) = ten_bytes.try_reserve(MAX_CAP - 9) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
}
// Should always overflow in the add-to-len
if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an overflow!") }
}
{
// Same basic idea, but with interesting type size
let mut ten_u32s: Vec<u32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_CAP/4 - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_CAP/4 - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_CAP/4 - 9) {
} else { panic!("isize::MAX + 1 should trigger an overflow!"); }
} else {
if let Err(AllocErr(_)) = ten_u32s.try_reserve(MAX_CAP/4 - 9) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
}
// Should fail in the mul-by-size
if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_USIZE - 20) {
} else {
panic!("usize::MAX should trigger an overflow!");
}
}
}
#[test]
fn test_try_reserve_exact() {
// This is exactly the same as test_try_reserve with the method changed.
// See that test for comments.
const MAX_CAP: usize = isize::MAX as usize;
const MAX_USIZE: usize = usize::MAX;
let guards_against_isize = size_of::<usize>() < 8;
{
let mut empty_bytes: Vec<u8> = Vec::new();
if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_CAP) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_CAP) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_CAP + 1) {
} else { panic!("isize::MAX + 1 should trigger an overflow!") }
if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an overflow!") }
} else {
if let Err(AllocErr(_)) = empty_bytes.try_reserve_exact(MAX_CAP + 1) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
if let Err(AllocErr(_)) = empty_bytes.try_reserve_exact(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an OOM!") }
}
}
{
let mut ten_bytes: Vec<u8> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_CAP - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_CAP - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_CAP - 9) {
} else { panic!("isize::MAX + 1 should trigger an overflow!"); }
} else {
if let Err(AllocErr(_)) = ten_bytes.try_reserve_exact(MAX_CAP - 9) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
}
if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an overflow!") }
}
{
let mut ten_u32s: Vec<u32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
if let Err(CapacityOverflow) = ten_u32s.try_reserve_exact(MAX_CAP/4 - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = ten_u32s.try_reserve_exact(MAX_CAP/4 - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
if let Err(CapacityOverflow) = ten_u32s.try_reserve_exact(MAX_CAP/4 - 9) {
} else { panic!("isize::MAX + 1 should trigger an overflow!"); }
} else {
if let Err(AllocErr(_)) = ten_u32s.try_reserve_exact(MAX_CAP/4 - 9) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
}
if let Err(CapacityOverflow) = ten_u32s.try_reserve_exact(MAX_USIZE - 20) {
} else { panic!("usize::MAX should trigger an overflow!") }
}
}

View File

@ -11,6 +11,9 @@
use std::collections::VecDeque;
use std::fmt::Debug;
use std::collections::vec_deque::{Drain};
use std::collections::CollectionAllocErr::*;
use std::mem::size_of;
use std::{usize, isize};
use self::Taggy::*;
use self::Taggypar::*;
@ -1022,3 +1025,208 @@ fn test_placement_in() {
}
assert_eq!(buf, [5,4,3,1,2,6]);
}
#[test]
fn test_reserve_exact_2() {
// This is all the same as test_reserve
let mut v = VecDeque::new();
v.reserve_exact(2);
assert!(v.capacity() >= 2);
for i in 0..16 {
v.push_back(i);
}
assert!(v.capacity() >= 16);
v.reserve_exact(16);
assert!(v.capacity() >= 32);
v.push_back(16);
v.reserve_exact(16);
assert!(v.capacity() >= 48)
}
#[test]
fn test_try_reserve() {
// These are the interesting cases:
// * exactly isize::MAX should never trigger a CapacityOverflow (can be OOM)
// * > isize::MAX should always fail
// * On 16/32-bit should CapacityOverflow
// * On 64-bit should OOM
// * overflow may trigger when adding `len` to `cap` (in number of elements)
// * overflow may trigger when multiplying `new_cap` by size_of::<T> (to get bytes)
const MAX_CAP: usize = (isize::MAX as usize + 1) / 2 - 1;
const MAX_USIZE: usize = usize::MAX;
// On 16/32-bit, we check that allocations don't exceed isize::MAX,
// on 64-bit, we assume the OS will give an OOM for such a ridiculous size.
// Any platform that succeeds for these requests is technically broken with
// ptr::offset because LLVM is the worst.
let guards_against_isize = size_of::<usize>() < 8;
{
// Note: basic stuff is checked by test_reserve
let mut empty_bytes: VecDeque<u8> = VecDeque::new();
// Check isize::MAX doesn't count as an overflow
if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_CAP) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
// Play it again, frank! (just to be sure)
if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_CAP) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
// Check isize::MAX + 1 does count as overflow
if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_CAP + 1) {
} else { panic!("isize::MAX + 1 should trigger an overflow!") }
// Check usize::MAX does count as overflow
if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an overflow!") }
} else {
// Check isize::MAX is an OOM
// VecDeque starts with capacity 7, always adds 1 to the capacity
// and also rounds the number to next power of 2 so this is the
// furthest we can go without triggering CapacityOverflow
if let Err(AllocErr(_)) = empty_bytes.try_reserve(MAX_CAP) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
}
}
{
// Same basic idea, but with non-zero len
let mut ten_bytes: VecDeque<u8> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10].into_iter().collect();
if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 9) {
} else { panic!("isize::MAX + 1 should trigger an overflow!"); }
} else {
if let Err(AllocErr(_)) = ten_bytes.try_reserve(MAX_CAP - 9) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
}
// Should always overflow in the add-to-len
if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an overflow!") }
}
{
// Same basic idea, but with interesting type size
let mut ten_u32s: VecDeque<u32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10].into_iter().collect();
if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_CAP/4 - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_CAP/4 - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_CAP/4 - 9) {
} else { panic!("isize::MAX + 1 should trigger an overflow!"); }
} else {
if let Err(AllocErr(_)) = ten_u32s.try_reserve(MAX_CAP/4 - 9) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
}
// Should fail in the mul-by-size
if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_USIZE - 20) {
} else {
panic!("usize::MAX should trigger an overflow!");
}
}
}
#[test]
fn test_try_reserve_exact() {
// This is exactly the same as test_try_reserve with the method changed.
// See that test for comments.
const MAX_CAP: usize = (isize::MAX as usize + 1) / 2 - 1;
const MAX_USIZE: usize = usize::MAX;
let guards_against_isize = size_of::<usize>() < 8;
{
let mut empty_bytes: VecDeque<u8> = VecDeque::new();
if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_CAP) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_CAP) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_CAP + 1) {
} else { panic!("isize::MAX + 1 should trigger an overflow!") }
if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an overflow!") }
} else {
// Check isize::MAX is an OOM
// VecDeque starts with capacity 7, always adds 1 to the capacity
// and also rounds the number to next power of 2 so this is the
// furthest we can go without triggering CapacityOverflow
if let Err(AllocErr(_)) = empty_bytes.try_reserve_exact(MAX_CAP) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
}
}
{
let mut ten_bytes: VecDeque<u8> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10].into_iter().collect();
if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_CAP - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_CAP - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_CAP - 9) {
} else { panic!("isize::MAX + 1 should trigger an overflow!"); }
} else {
if let Err(AllocErr(_)) = ten_bytes.try_reserve_exact(MAX_CAP - 9) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
}
if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an overflow!") }
}
{
let mut ten_u32s: VecDeque<u32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10].into_iter().collect();
if let Err(CapacityOverflow) = ten_u32s.try_reserve_exact(MAX_CAP/4 - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = ten_u32s.try_reserve_exact(MAX_CAP/4 - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
if let Err(CapacityOverflow) = ten_u32s.try_reserve_exact(MAX_CAP/4 - 9) {
} else { panic!("isize::MAX + 1 should trigger an overflow!"); }
} else {
if let Err(AllocErr(_)) = ten_u32s.try_reserve_exact(MAX_CAP/4 - 9) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
}
if let Err(CapacityOverflow) = ten_u32s.try_reserve_exact(MAX_USIZE - 20) {
} else { panic!("usize::MAX should trigger an overflow!") }
}
}

View File

@ -86,6 +86,7 @@ use borrow::Cow;
use boxed::Box;
use raw_vec::RawVec;
use super::range::RangeArgument;
use super::allocator::CollectionAllocErr;
use Bound::{Excluded, Included, Unbounded};
/// A contiguous growable array type, written `Vec<T>` but pronounced 'vector'.
@ -489,6 +490,83 @@ impl<T> Vec<T> {
self.buf.reserve_exact(self.len, additional);
}
/// Tries to reserve capacity for at least `additional` more elements to be inserted
/// in the given `Vec<T>`. The collection may reserve more space to avoid
/// frequent reallocations. After calling `reserve`, capacity will be
/// greater than or equal to `self.len() + additional`. Does nothing if
/// capacity is already sufficient.
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// #![feature(try_reserve)]
/// use std::collections::CollectionAllocErr;
///
/// fn process_data(data: &[u32]) -> Result<Vec<u32>, CollectionAllocErr> {
/// let mut output = Vec::new();
///
/// // Pre-reserve the memory, exiting if we can't
/// output.try_reserve(data.len())?;
///
/// // Now we know this can't OOM in the middle of our complex work
/// output.extend(data.iter().map(|&val| {
/// val * 2 + 5 // very complicated
/// }));
///
/// Ok(output)
/// }
/// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
/// ```
#[unstable(feature = "try_reserve", reason = "new API", issue="48043")]
pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
self.buf.try_reserve(self.len, additional)
}
/// Tries to reserves the minimum capacity for exactly `additional` more elements to
/// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
/// capacity will be greater than or equal to `self.len() + additional`.
/// Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it
/// requests. Therefore capacity can not be relied upon to be precisely
/// minimal. Prefer `reserve` if future insertions are expected.
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// #![feature(try_reserve)]
/// use std::collections::CollectionAllocErr;
///
/// fn process_data(data: &[u32]) -> Result<Vec<u32>, CollectionAllocErr> {
/// let mut output = Vec::new();
///
/// // Pre-reserve the memory, exiting if we can't
/// output.try_reserve(data.len())?;
///
/// // Now we know this can't OOM in the middle of our complex work
/// output.extend(data.iter().map(|&val| {
/// val * 2 + 5 // very complicated
/// }));
///
/// Ok(output)
/// }
/// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
/// ```
#[unstable(feature = "try_reserve", reason = "new API", issue="48043")]
pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
self.buf.try_reserve_exact(self.len, additional)
}
/// Shrinks the capacity of the vector as much as possible.
///
/// It will drop down as close as possible to the length but the allocator

View File

@ -31,6 +31,7 @@ use core::cmp;
use raw_vec::RawVec;
use super::allocator::CollectionAllocErr;
use super::range::RangeArgument;
use Bound::{Excluded, Included, Unbounded};
use super::vec::Vec;
@ -566,6 +567,97 @@ impl<T> VecDeque<T> {
}
}
/// Tries to reserves the minimum capacity for exactly `additional` more elements to
/// be inserted in the given `VecDeque<T>`. After calling `reserve_exact`,
/// capacity will be greater than or equal to `self.len() + additional`.
/// Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it
/// requests. Therefore capacity can not be relied upon to be precisely
/// minimal. Prefer `reserve` if future insertions are expected.
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// #![feature(try_reserve)]
/// use std::collections::CollectionAllocErr;
/// use std::collections::VecDeque;
///
/// fn process_data(data: &[u32]) -> Result<VecDeque<u32>, CollectionAllocErr> {
/// let mut output = VecDeque::new();
///
/// // Pre-reserve the memory, exiting if we can't
/// output.try_reserve_exact(data.len())?;
///
/// // Now we know this can't OOM in the middle of our complex work
/// output.extend(data.iter().map(|&val| {
/// val * 2 + 5 // very complicated
/// }));
///
/// Ok(output)
/// }
/// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
/// ```
#[unstable(feature = "try_reserve", reason = "new API", issue="48043")]
pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
self.try_reserve(additional)
}
/// Tries to reserve capacity for at least `additional` more elements to be inserted
/// in the given `VecDeque<T>`. The collection may reserve more space to avoid
/// frequent reallocations. After calling `reserve`, capacity will be
/// greater than or equal to `self.len() + additional`. Does nothing if
/// capacity is already sufficient.
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// #![feature(try_reserve)]
/// use std::collections::CollectionAllocErr;
/// use std::collections::VecDeque;
///
/// fn process_data(data: &[u32]) -> Result<VecDeque<u32>, CollectionAllocErr> {
/// let mut output = VecDeque::new();
///
/// // Pre-reserve the memory, exiting if we can't
/// output.try_reserve(data.len())?;
///
/// // Now we know this can't OOM in the middle of our complex work
/// output.extend(data.iter().map(|&val| {
/// val * 2 + 5 // very complicated
/// }));
///
/// Ok(output)
/// }
/// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
/// ```
#[unstable(feature = "try_reserve", reason = "new API", issue="48043")]
pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
let old_cap = self.cap();
let used_cap = self.len() + 1;
let new_cap = used_cap.checked_add(additional)
.and_then(|needed_cap| needed_cap.checked_next_power_of_two())
.ok_or(CollectionAllocErr::CapacityOverflow)?;
if new_cap > old_cap {
self.buf.try_reserve_exact(used_cap, new_cap - used_cap)?;
unsafe {
self.handle_cap_increase(old_cap);
}
}
Ok(())
}
/// Shrinks the capacity of the `VecDeque` as much as possible.
///
/// It will drop down as close as possible to the length but the allocator may still inform the

View File

@ -11,6 +11,8 @@
use self::Entry::*;
use self::VacantEntryState::*;
use alloc::heap::{Heap, Alloc};
use alloc::allocator::CollectionAllocErr;
use cell::Cell;
use borrow::Borrow;
use cmp::max;
@ -42,21 +44,28 @@ impl DefaultResizePolicy {
/// provide that capacity, accounting for maximum loading. The raw capacity
/// is always zero or a power of two.
#[inline]
fn raw_capacity(&self, len: usize) -> usize {
fn try_raw_capacity(&self, len: usize) -> Result<usize, CollectionAllocErr> {
if len == 0 {
0
Ok(0)
} else {
// 1. Account for loading: `raw_capacity >= len * 1.1`.
// 2. Ensure it is a power of two.
// 3. Ensure it is at least the minimum size.
let mut raw_cap = len * 11 / 10;
assert!(raw_cap >= len, "raw_cap overflow");
raw_cap = raw_cap.checked_next_power_of_two().expect("raw_capacity overflow");
let mut raw_cap = len.checked_mul(11)
.map(|l| l / 10)
.and_then(|l| l.checked_next_power_of_two())
.ok_or(CollectionAllocErr::CapacityOverflow)?;
raw_cap = max(MIN_NONZERO_RAW_CAPACITY, raw_cap);
raw_cap
Ok(raw_cap)
}
}
#[inline]
fn raw_capacity(&self, len: usize) -> usize {
self.try_raw_capacity(len).expect("raw_capacity overflow")
}
/// The capacity of the given raw capacity.
#[inline]
fn capacity(&self, raw_cap: usize) -> usize {
@ -775,17 +784,45 @@ impl<K, V, S> HashMap<K, V, S>
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn reserve(&mut self, additional: usize) {
match self.try_reserve(additional) {
Err(CollectionAllocErr::CapacityOverflow) => panic!("capacity overflow"),
Err(CollectionAllocErr::AllocErr(e)) => Heap.oom(e),
Ok(()) => { /* yay */ }
}
}
/// Tries to reserve capacity for at least `additional` more elements to be inserted
/// in the given `HashMap<K,V>`. The collection may reserve more space to avoid
/// frequent reallocations.
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// #![feature(try_reserve)]
/// use std::collections::HashMap;
/// let mut map: HashMap<&str, isize> = HashMap::new();
/// map.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?");
/// ```
#[unstable(feature = "try_reserve", reason = "new API", issue="48043")]
pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
let remaining = self.capacity() - self.len(); // this can't overflow
if remaining < additional {
let min_cap = self.len().checked_add(additional).expect("reserve overflow");
let raw_cap = self.resize_policy.raw_capacity(min_cap);
self.resize(raw_cap);
let min_cap = self.len().checked_add(additional)
.ok_or(CollectionAllocErr::CapacityOverflow)?;
let raw_cap = self.resize_policy.try_raw_capacity(min_cap)?;
self.try_resize(raw_cap)?;
} else if self.table.tag() && remaining <= self.len() {
// Probe sequence is too long and table is half full,
// resize early to reduce probing length.
let new_capacity = self.table.capacity() * 2;
self.resize(new_capacity);
self.try_resize(new_capacity)?;
}
Ok(())
}
/// Resizes the internal vectors to a new capacity. It's your
@ -795,15 +832,15 @@ impl<K, V, S> HashMap<K, V, S>
/// 2) Ensure `new_raw_cap` is a power of two or zero.
#[inline(never)]
#[cold]
fn resize(&mut self, new_raw_cap: usize) {
fn try_resize(&mut self, new_raw_cap: usize) -> Result<(), CollectionAllocErr> {
assert!(self.table.size() <= new_raw_cap);
assert!(new_raw_cap.is_power_of_two() || new_raw_cap == 0);
let mut old_table = replace(&mut self.table, RawTable::new(new_raw_cap));
let mut old_table = replace(&mut self.table, RawTable::try_new(new_raw_cap)?);
let old_size = old_table.size();
if old_table.size() == 0 {
return;
return Ok(());
}
let mut bucket = Bucket::head_bucket(&mut old_table);
@ -838,6 +875,7 @@ impl<K, V, S> HashMap<K, V, S>
}
assert_eq!(self.table.size(), old_size);
Ok(())
}
/// Shrinks the capacity of the map as much as possible. It will drop
@ -2717,6 +2755,9 @@ mod test_map {
use cell::RefCell;
use rand::{thread_rng, Rng};
use panic;
use realstd::collections::CollectionAllocErr::*;
use realstd::mem::size_of;
use realstd::usize;
#[test]
fn test_zero_capacities() {
@ -3651,4 +3692,33 @@ mod test_map {
let _ = panic::catch_unwind(panic::AssertUnwindSafe(|| { hm.entry(0) <- makepanic(); }));
assert_eq!(hm.len(), 0);
}
#[test]
fn test_try_reserve() {
let mut empty_bytes: HashMap<u8,u8> = HashMap::new();
const MAX_USIZE: usize = usize::MAX;
// HashMap and RawTables use complicated size calculations
// hashes_size is sizeof(HashUint) * capacity;
// pairs_size is sizeof((K. V)) * capacity;
// alignment_hashes_size is 8
// alignment_pairs size is 4
let size_of_multiplier = (size_of::<usize>() + size_of::<(u8, u8)>()).next_power_of_two();
// The following formula is used to calculate the new capacity
let max_no_ovf = ((MAX_USIZE / 11) * 10) / size_of_multiplier - 1;
if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an overflow!"); }
if size_of::<usize>() < 8 {
if let Err(CapacityOverflow) = empty_bytes.try_reserve(max_no_ovf) {
} else { panic!("isize::MAX + 1 should trigger a CapacityOverflow!") }
} else {
if let Err(AllocErr(_)) = empty_bytes.try_reserve(max_no_ovf) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
}
}
}

View File

@ -17,6 +17,7 @@ use mem::{align_of, size_of, needs_drop};
use mem;
use ops::{Deref, DerefMut};
use ptr::{self, Unique, NonNull};
use alloc::allocator::CollectionAllocErr;
use self::BucketState::*;
@ -741,14 +742,15 @@ fn test_offset_calculation() {
impl<K, V> RawTable<K, V> {
/// Does not initialize the buckets. The caller should ensure they,
/// at the very least, set every hash to EMPTY_BUCKET.
unsafe fn new_uninitialized(capacity: usize) -> RawTable<K, V> {
/// Returns an error if it cannot allocate or capacity overflows.
unsafe fn try_new_uninitialized(capacity: usize) -> Result<RawTable<K, V>, CollectionAllocErr> {
if capacity == 0 {
return RawTable {
return Ok(RawTable {
size: 0,
capacity_mask: capacity.wrapping_sub(1),
hashes: TaggedHashUintPtr::new(EMPTY as *mut HashUint),
marker: marker::PhantomData,
};
});
}
// No need for `checked_mul` before a more restrictive check performed
@ -768,25 +770,38 @@ impl<K, V> RawTable<K, V> {
align_of::<HashUint>(),
pairs_size,
align_of::<(K, V)>());
assert!(!oflo, "capacity overflow");
if oflo {
return Err(CollectionAllocErr::CapacityOverflow);
}
// One check for overflow that covers calculation and rounding of size.
let size_of_bucket = size_of::<HashUint>().checked_add(size_of::<(K, V)>()).unwrap();
assert!(size >=
capacity.checked_mul(size_of_bucket)
.expect("capacity overflow"),
"capacity overflow");
let size_of_bucket = size_of::<HashUint>().checked_add(size_of::<(K, V)>())
.ok_or(CollectionAllocErr::CapacityOverflow)?;
let capacity_mul_size_of_bucket = capacity.checked_mul(size_of_bucket);
if capacity_mul_size_of_bucket.is_none() || size < capacity_mul_size_of_bucket.unwrap() {
return Err(CollectionAllocErr::CapacityOverflow);
}
let buffer = Heap.alloc(Layout::from_size_align(size, alignment).unwrap())
.unwrap_or_else(|e| Heap.oom(e));
let buffer = Heap.alloc(Layout::from_size_align(size, alignment)
.ok_or(CollectionAllocErr::CapacityOverflow)?)?;
let hashes = buffer as *mut HashUint;
RawTable {
Ok(RawTable {
capacity_mask: capacity.wrapping_sub(1),
size: 0,
hashes: TaggedHashUintPtr::new(hashes),
marker: marker::PhantomData,
})
}
/// Does not initialize the buckets. The caller should ensure they,
/// at the very least, set every hash to EMPTY_BUCKET.
unsafe fn new_uninitialized(capacity: usize) -> RawTable<K, V> {
match Self::try_new_uninitialized(capacity) {
Err(CollectionAllocErr::CapacityOverflow) => panic!("capacity overflow"),
Err(CollectionAllocErr::AllocErr(e)) => Heap.oom(e),
Ok(table) => { table }
}
}
@ -809,13 +824,23 @@ impl<K, V> RawTable<K, V> {
}
}
/// Tries to create a new raw table from a given capacity. If it cannot allocate,
/// it returns with AllocErr.
pub fn try_new(capacity: usize) -> Result<RawTable<K, V>, CollectionAllocErr> {
unsafe {
let ret = RawTable::try_new_uninitialized(capacity)?;
ptr::write_bytes(ret.hashes.ptr(), 0, capacity);
Ok(ret)
}
}
/// Creates a new raw table from a given capacity. All buckets are
/// initially empty.
pub fn new(capacity: usize) -> RawTable<K, V> {
unsafe {
let ret = RawTable::new_uninitialized(capacity);
ptr::write_bytes(ret.hashes.ptr(), 0, capacity);
ret
match Self::try_new(capacity) {
Err(CollectionAllocErr::CapacityOverflow) => panic!("capacity overflow"),
Err(CollectionAllocErr::AllocErr(e)) => Heap.oom(e),
Ok(table) => { table }
}
}

View File

@ -438,6 +438,9 @@ pub use self::hash_set::HashSet;
#[stable(feature = "rust1", since = "1.0.0")]
pub use alloc::range;
#[unstable(feature = "try_reserve", reason = "new API", issue="48043")]
pub use alloc::allocator::CollectionAllocErr;
mod hash;
#[stable(feature = "rust1", since = "1.0.0")]

View File

@ -314,6 +314,7 @@
#![feature(thread_local)]
#![feature(toowned_clone_into)]
#![feature(try_from)]
#![feature(try_reserve)]
#![feature(unboxed_closures)]
#![feature(unicode)]
#![feature(untagged_unions)]

View File

@ -0,0 +1,14 @@
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
fn main() {
let v = Vec::new();
v.try_reserve(10); //~ ERROR: use of unstable library feature 'try_reserve'
}

View File

@ -0,0 +1,11 @@
error[E0658]: use of unstable library feature 'try_reserve': new API (see issue #48043)
--> $DIR/feature-gate-try_reserve.rs:13:7
|
LL | v.try_reserve(10); //~ ERROR: use of unstable library feature 'try_reserve'
| ^^^^^^^^^^^
|
= help: add #![feature(try_reserve)] to the crate attributes to enable
error: aborting due to previous error
If you want more information on this error, try using "rustc --explain E0658"