Auto merge of #104153 - tspiteri:doc-float-constants, r=workingjubilee

doc: expand description for f32 and f64 associated constants

This explains the meaning of some of the floating-point associated constants.
This commit is contained in:
bors 2023-10-05 11:46:55 +00:00
commit 90f3a6f920
2 changed files with 80 additions and 4 deletions

View File

@ -377,6 +377,13 @@ impl f32 {
pub const MANTISSA_DIGITS: u32 = 24;
/// Approximate number of significant digits in base 10.
///
/// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
/// significant digits can be converted to `f32` and back without loss.
///
/// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
///
/// [`MANTISSA_DIGITS`]: f32::MANTISSA_DIGITS
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const DIGITS: u32 = 6;
@ -384,31 +391,62 @@ impl f32 {
///
/// This is the difference between `1.0` and the next larger representable number.
///
/// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
///
/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
/// [`MANTISSA_DIGITS`]: f32::MANTISSA_DIGITS
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const EPSILON: f32 = 1.19209290e-07_f32;
/// Smallest finite `f32` value.
///
/// Equal to &minus;[`MAX`].
///
/// [`MAX`]: f32::MAX
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN: f32 = -3.40282347e+38_f32;
/// Smallest positive normal `f32` value.
///
/// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
///
/// [`MIN_EXP`]: f32::MIN_EXP
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN_POSITIVE: f32 = 1.17549435e-38_f32;
/// Largest finite `f32` value.
///
/// Equal to
/// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
///
/// [`MANTISSA_DIGITS`]: f32::MANTISSA_DIGITS
/// [`MAX_EXP`]: f32::MAX_EXP
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MAX: f32 = 3.40282347e+38_f32;
/// One greater than the minimum possible normal power of 2 exponent.
///
/// If <i>x</i>&nbsp;=&nbsp;`MIN_EXP`, then normal numbers
/// ≥&nbsp;0.5&nbsp;×&nbsp;2<sup><i>x</i></sup>.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN_EXP: i32 = -125;
/// Maximum possible power of 2 exponent.
///
/// If <i>x</i>&nbsp;=&nbsp;`MAX_EXP`, then normal numbers
/// &lt;&nbsp;1&nbsp;×&nbsp;2<sup><i>x</i></sup>.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MAX_EXP: i32 = 128;
/// Minimum possible normal power of 10 exponent.
/// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
///
/// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
///
/// [`MIN_POSITIVE`]: f32::MIN_POSITIVE
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN_10_EXP: i32 = -37;
/// Maximum possible power of 10 exponent.
/// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
///
/// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
///
/// [`MAX`]: f32::MAX
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MAX_10_EXP: i32 = 38;

View File

@ -376,6 +376,13 @@ impl f64 {
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MANTISSA_DIGITS: u32 = 53;
/// Approximate number of significant digits in base 10.
///
/// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
/// significant digits can be converted to `f64` and back without loss.
///
/// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
///
/// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const DIGITS: u32 = 15;
@ -383,31 +390,62 @@ impl f64 {
///
/// This is the difference between `1.0` and the next larger representable number.
///
/// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
///
/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
/// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const EPSILON: f64 = 2.2204460492503131e-16_f64;
/// Smallest finite `f64` value.
///
/// Equal to &minus;[`MAX`].
///
/// [`MAX`]: f64::MAX
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN: f64 = -1.7976931348623157e+308_f64;
/// Smallest positive normal `f64` value.
///
/// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
///
/// [`MIN_EXP`]: f64::MIN_EXP
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN_POSITIVE: f64 = 2.2250738585072014e-308_f64;
/// Largest finite `f64` value.
///
/// Equal to
/// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
///
/// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
/// [`MAX_EXP`]: f64::MAX_EXP
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MAX: f64 = 1.7976931348623157e+308_f64;
/// One greater than the minimum possible normal power of 2 exponent.
///
/// If <i>x</i>&nbsp;=&nbsp;`MIN_EXP`, then normal numbers
/// ≥&nbsp;0.5&nbsp;×&nbsp;2<sup><i>x</i></sup>.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN_EXP: i32 = -1021;
/// Maximum possible power of 2 exponent.
///
/// If <i>x</i>&nbsp;=&nbsp;`MAX_EXP`, then normal numbers
/// &lt;&nbsp;1&nbsp;×&nbsp;2<sup><i>x</i></sup>.
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MAX_EXP: i32 = 1024;
/// Minimum possible normal power of 10 exponent.
/// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
///
/// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
///
/// [`MIN_POSITIVE`]: f64::MIN_POSITIVE
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MIN_10_EXP: i32 = -307;
/// Maximum possible power of 10 exponent.
/// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
///
/// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
///
/// [`MAX`]: f64::MAX
#[stable(feature = "assoc_int_consts", since = "1.43.0")]
pub const MAX_10_EXP: i32 = 308;