Auto merge of #131263 - compiler-errors:solver-relating, r=lcnr

Introduce SolverRelating type relation to the new solver

Redux of #128744.

Splits out relate for the new solver so that implementors don't need to implement it themselves.

r? lcnr
This commit is contained in:
bors 2024-10-10 14:59:40 +00:00
commit 8d94e06ec9
31 changed files with 912 additions and 518 deletions

View File

@ -11,6 +11,7 @@ use rustc_middle::span_bug;
use rustc_middle::traits::ObligationCause;
use rustc_middle::traits::query::NoSolution;
use rustc_middle::ty::fold::FnMutDelegate;
use rustc_middle::ty::relate::combine::{super_combine_consts, super_combine_tys};
use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitableExt};
use rustc_span::symbol::sym;
use rustc_span::{Span, Symbol};
@ -362,7 +363,7 @@ impl<'b, 'tcx> TypeRelation<TyCtxt<'tcx>> for NllTypeRelating<'_, 'b, 'tcx> {
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: a_def_id, .. }),
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: b_def_id, .. }),
) if a_def_id == b_def_id || infcx.next_trait_solver() => {
infcx.super_combine_tys(self, a, b).map(|_| ()).or_else(|err| {
super_combine_tys(&infcx.infcx, self, a, b).map(|_| ()).or_else(|err| {
// This behavior is only there for the old solver, the new solver
// shouldn't ever fail. Instead, it unconditionally emits an
// alias-relate goal.
@ -385,7 +386,7 @@ impl<'b, 'tcx> TypeRelation<TyCtxt<'tcx>> for NllTypeRelating<'_, 'b, 'tcx> {
debug!(?a, ?b, ?self.ambient_variance);
// Will also handle unification of `IntVar` and `FloatVar`.
self.type_checker.infcx.super_combine_tys(self, a, b)?;
super_combine_tys(&self.type_checker.infcx.infcx, self, a, b)?;
}
}
@ -422,7 +423,7 @@ impl<'b, 'tcx> TypeRelation<TyCtxt<'tcx>> for NllTypeRelating<'_, 'b, 'tcx> {
assert!(!a.has_non_region_infer(), "unexpected inference var {:?}", a);
assert!(!b.has_non_region_infer(), "unexpected inference var {:?}", b);
self.type_checker.infcx.super_combine_consts(self, a, b)
super_combine_consts(&self.type_checker.infcx.infcx, self, a, b)
}
#[instrument(skip(self), level = "trace")]

View File

@ -27,11 +27,14 @@
use relate::lattice::{LatticeOp, LatticeOpKind};
use rustc_middle::bug;
use rustc_middle::ty::relate::solver_relating::RelateExt as NextSolverRelate;
use rustc_middle::ty::{Const, ImplSubject};
use super::*;
use crate::infer::relate::type_relating::TypeRelating;
use crate::infer::relate::{Relate, StructurallyRelateAliases, TypeRelation};
use crate::infer::relate::{Relate, TypeRelation};
use crate::traits::Obligation;
use crate::traits::solve::Goal;
/// Whether we should define opaque types or just treat them opaquely.
///
@ -109,17 +112,27 @@ impl<'a, 'tcx> At<'a, 'tcx> {
where
T: ToTrace<'tcx>,
{
if self.infcx.next_trait_solver {
NextSolverRelate::relate(
self.infcx,
self.param_env,
expected,
ty::Contravariant,
actual,
)
.map(|goals| self.goals_to_obligations(goals))
} else {
let mut op = TypeRelating::new(
self.infcx,
ToTrace::to_trace(self.cause, expected, actual),
self.param_env,
define_opaque_types,
StructurallyRelateAliases::No,
ty::Contravariant,
);
op.relate(expected, actual)?;
Ok(InferOk { value: (), obligations: op.into_obligations() })
}
}
/// Makes `expected <: actual`.
pub fn sub<T>(
@ -131,17 +144,21 @@ impl<'a, 'tcx> At<'a, 'tcx> {
where
T: ToTrace<'tcx>,
{
if self.infcx.next_trait_solver {
NextSolverRelate::relate(self.infcx, self.param_env, expected, ty::Covariant, actual)
.map(|goals| self.goals_to_obligations(goals))
} else {
let mut op = TypeRelating::new(
self.infcx,
ToTrace::to_trace(self.cause, expected, actual),
self.param_env,
define_opaque_types,
StructurallyRelateAliases::No,
ty::Covariant,
);
op.relate(expected, actual)?;
Ok(InferOk { value: (), obligations: op.into_obligations() })
}
}
/// Makes `expected == actual`.
pub fn eq<T>(
@ -172,17 +189,21 @@ impl<'a, 'tcx> At<'a, 'tcx> {
where
T: Relate<TyCtxt<'tcx>>,
{
if self.infcx.next_trait_solver {
NextSolverRelate::relate(self.infcx, self.param_env, expected, ty::Invariant, actual)
.map(|goals| self.goals_to_obligations(goals))
} else {
let mut op = TypeRelating::new(
self.infcx,
trace,
self.param_env,
define_opaque_types,
StructurallyRelateAliases::No,
ty::Invariant,
);
op.relate(expected, actual)?;
Ok(InferOk { value: (), obligations: op.into_obligations() })
}
}
pub fn relate<T>(
self,
@ -208,49 +229,6 @@ impl<'a, 'tcx> At<'a, 'tcx> {
}
}
/// Used in the new solver since we don't care about tracking an `ObligationCause`.
pub fn relate_no_trace<T>(
self,
expected: T,
variance: ty::Variance,
actual: T,
) -> Result<Vec<Goal<'tcx, ty::Predicate<'tcx>>>, NoSolution>
where
T: Relate<TyCtxt<'tcx>>,
{
let mut op = TypeRelating::new(
self.infcx,
TypeTrace::dummy(self.cause),
self.param_env,
DefineOpaqueTypes::Yes,
StructurallyRelateAliases::No,
variance,
);
op.relate(expected, actual)?;
Ok(op.into_obligations().into_iter().map(|o| o.into()).collect())
}
/// Used in the new solver since we don't care about tracking an `ObligationCause`.
pub fn eq_structurally_relating_aliases_no_trace<T>(
self,
expected: T,
actual: T,
) -> Result<Vec<Goal<'tcx, ty::Predicate<'tcx>>>, NoSolution>
where
T: Relate<TyCtxt<'tcx>>,
{
let mut op = TypeRelating::new(
self.infcx,
TypeTrace::dummy(self.cause),
self.param_env,
DefineOpaqueTypes::Yes,
StructurallyRelateAliases::Yes,
ty::Invariant,
);
op.relate(expected, actual)?;
Ok(op.into_obligations().into_iter().map(|o| o.into()).collect())
}
/// Computes the least-upper-bound, or mutual supertype, of two
/// values. The order of the arguments doesn't matter, but since
/// this can result in an error (e.g., if asked to compute LUB of
@ -269,6 +247,26 @@ impl<'a, 'tcx> At<'a, 'tcx> {
let value = op.relate(expected, actual)?;
Ok(InferOk { value, obligations: op.into_obligations() })
}
fn goals_to_obligations(
&self,
goals: Vec<Goal<'tcx, ty::Predicate<'tcx>>>,
) -> InferOk<'tcx, ()> {
InferOk {
value: (),
obligations: goals
.into_iter()
.map(|goal| {
Obligation::new(
self.infcx.tcx,
self.cause.clone(),
goal.param_env,
goal.predicate,
)
})
.collect(),
}
}
}
impl<'tcx> ToTrace<'tcx> for ImplSubject<'tcx> {

View File

@ -1,22 +1,27 @@
///! Definition of `InferCtxtLike` from the librarified type layer.
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_middle::infer::unify_key::EffectVarValue;
use rustc_middle::traits::ObligationCause;
use rustc_middle::traits::solve::{Goal, NoSolution, SolverMode};
use rustc_middle::traits::solve::SolverMode;
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::relate::RelateResult;
use rustc_middle::ty::relate::combine::PredicateEmittingRelation;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_span::DUMMY_SP;
use rustc_type_ir::InferCtxtLike;
use rustc_type_ir::relate::Relate;
use rustc_span::{DUMMY_SP, ErrorGuaranteed};
use super::{BoundRegionConversionTime, InferCtxt, SubregionOrigin};
impl<'tcx> InferCtxtLike for InferCtxt<'tcx> {
impl<'tcx> rustc_type_ir::InferCtxtLike for InferCtxt<'tcx> {
type Interner = TyCtxt<'tcx>;
fn cx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn next_trait_solver(&self) -> bool {
self.next_trait_solver
}
fn solver_mode(&self) -> ty::solve::SolverMode {
match self.intercrate {
true => SolverMode::Coherence,
@ -131,29 +136,86 @@ impl<'tcx> InferCtxtLike for InferCtxt<'tcx> {
self.enter_forall(value, f)
}
fn relate<T: Relate<TyCtxt<'tcx>>>(
&self,
param_env: ty::ParamEnv<'tcx>,
lhs: T,
variance: ty::Variance,
rhs: T,
) -> Result<Vec<Goal<'tcx, ty::Predicate<'tcx>>>, NoSolution> {
self.at(&ObligationCause::dummy(), param_env).relate_no_trace(lhs, variance, rhs)
fn equate_ty_vids_raw(&self, a: rustc_type_ir::TyVid, b: rustc_type_ir::TyVid) {
self.inner.borrow_mut().type_variables().equate(a, b);
}
fn eq_structurally_relating_aliases<T: Relate<TyCtxt<'tcx>>>(
fn equate_int_vids_raw(&self, a: rustc_type_ir::IntVid, b: rustc_type_ir::IntVid) {
self.inner.borrow_mut().int_unification_table().union(a, b);
}
fn equate_float_vids_raw(&self, a: rustc_type_ir::FloatVid, b: rustc_type_ir::FloatVid) {
self.inner.borrow_mut().float_unification_table().union(a, b);
}
fn equate_const_vids_raw(&self, a: rustc_type_ir::ConstVid, b: rustc_type_ir::ConstVid) {
self.inner.borrow_mut().const_unification_table().union(a, b);
}
fn equate_effect_vids_raw(&self, a: rustc_type_ir::EffectVid, b: rustc_type_ir::EffectVid) {
self.inner.borrow_mut().effect_unification_table().union(a, b);
}
fn instantiate_ty_var_raw<R: PredicateEmittingRelation<Self>>(
&self,
param_env: ty::ParamEnv<'tcx>,
lhs: T,
rhs: T,
) -> Result<Vec<Goal<'tcx, ty::Predicate<'tcx>>>, NoSolution> {
self.at(&ObligationCause::dummy(), param_env)
.eq_structurally_relating_aliases_no_trace(lhs, rhs)
relation: &mut R,
target_is_expected: bool,
target_vid: rustc_type_ir::TyVid,
instantiation_variance: rustc_type_ir::Variance,
source_ty: Ty<'tcx>,
) -> RelateResult<'tcx, ()> {
self.instantiate_ty_var(
relation,
target_is_expected,
target_vid,
instantiation_variance,
source_ty,
)
}
fn instantiate_int_var_raw(
&self,
vid: rustc_type_ir::IntVid,
value: rustc_type_ir::IntVarValue,
) {
self.inner.borrow_mut().int_unification_table().union_value(vid, value);
}
fn instantiate_float_var_raw(
&self,
vid: rustc_type_ir::FloatVid,
value: rustc_type_ir::FloatVarValue,
) {
self.inner.borrow_mut().float_unification_table().union_value(vid, value);
}
fn instantiate_effect_var_raw(&self, vid: rustc_type_ir::EffectVid, value: ty::Const<'tcx>) {
self.inner
.borrow_mut()
.effect_unification_table()
.union_value(vid, EffectVarValue::Known(value));
}
fn instantiate_const_var_raw<R: PredicateEmittingRelation<Self>>(
&self,
relation: &mut R,
target_is_expected: bool,
target_vid: rustc_type_ir::ConstVid,
source_ct: ty::Const<'tcx>,
) -> RelateResult<'tcx, ()> {
self.instantiate_const_var(relation, target_is_expected, target_vid, source_ct)
}
fn set_tainted_by_errors(&self, e: ErrorGuaranteed) {
self.set_tainted_by_errors(e)
}
fn shallow_resolve(&self, ty: Ty<'tcx>) -> Ty<'tcx> {
self.shallow_resolve(ty)
}
fn shallow_resolve_const(&self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
self.shallow_resolve_const(ct)
}
fn resolve_vars_if_possible<T>(&self, value: T) -> T
where
@ -167,7 +229,19 @@ impl<'tcx> InferCtxtLike for InferCtxt<'tcx> {
}
fn sub_regions(&self, sub: ty::Region<'tcx>, sup: ty::Region<'tcx>) {
self.sub_regions(SubregionOrigin::RelateRegionParamBound(DUMMY_SP, None), sub, sup)
self.inner.borrow_mut().unwrap_region_constraints().make_subregion(
SubregionOrigin::RelateRegionParamBound(DUMMY_SP, None),
sub,
sup,
);
}
fn equate_regions(&self, a: ty::Region<'tcx>, b: ty::Region<'tcx>) {
self.inner.borrow_mut().unwrap_region_constraints().make_eqregion(
SubregionOrigin::RelateRegionParamBound(DUMMY_SP, None),
a,
b,
);
}
fn register_ty_outlives(&self, ty: Ty<'tcx>, r: ty::Region<'tcx>) {

View File

@ -32,7 +32,6 @@ use rustc_middle::infer::unify_key::{
use rustc_middle::mir::ConstraintCategory;
use rustc_middle::mir::interpret::{ErrorHandled, EvalToValTreeResult};
use rustc_middle::traits::select;
use rustc_middle::traits::solve::{Goal, NoSolution};
pub use rustc_middle::ty::IntVarValue;
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::fold::{
@ -340,7 +339,6 @@ pub enum ValuePairs<'tcx> {
PolySigs(ExpectedFound<ty::PolyFnSig<'tcx>>),
ExistentialTraitRef(ExpectedFound<ty::PolyExistentialTraitRef<'tcx>>),
ExistentialProjection(ExpectedFound<ty::PolyExistentialProjection<'tcx>>),
Dummy,
}
impl<'tcx> ValuePairs<'tcx> {
@ -1638,10 +1636,6 @@ impl<'tcx> TypeTrace<'tcx> {
values: ValuePairs::Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
}
}
fn dummy(cause: &ObligationCause<'tcx>) -> TypeTrace<'tcx> {
TypeTrace { cause: cause.clone(), values: ValuePairs::Dummy }
}
}
impl<'tcx> SubregionOrigin<'tcx> {

View File

@ -1,240 +0,0 @@
//! There are four type combiners: `TypeRelating`, `Lub`, and `Glb`,
//! and `NllTypeRelating` in rustc_borrowck, which is only used for NLL.
//!
//! Each implements the trait [TypeRelation] and contains methods for
//! combining two instances of various things and yielding a new instance.
//! These combiner methods always yield a `Result<T>`. To relate two
//! types, you can use `infcx.at(cause, param_env)` which then allows
//! you to use the relevant methods of [At](crate::infer::at::At).
//!
//! Combiners mostly do their specific behavior and then hand off the
//! bulk of the work to [InferCtxt::super_combine_tys] and
//! [InferCtxt::super_combine_consts].
//!
//! Combining two types may have side-effects on the inference contexts
//! which can be undone by using snapshots. You probably want to use
//! either [InferCtxt::commit_if_ok] or [InferCtxt::probe].
//!
//! On success, the LUB/GLB operations return the appropriate bound. The
//! return value of `Equate` or `Sub` shouldn't really be used.
use rustc_middle::bug;
use rustc_middle::infer::unify_key::EffectVarValue;
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::{self, InferConst, IntType, Ty, TypeVisitableExt, UintType};
pub use rustc_next_trait_solver::relate::combine::*;
use tracing::debug;
use super::{RelateResult, StructurallyRelateAliases};
use crate::infer::{InferCtxt, relate};
impl<'tcx> InferCtxt<'tcx> {
pub fn super_combine_tys<R>(
&self,
relation: &mut R,
a: Ty<'tcx>,
b: Ty<'tcx>,
) -> RelateResult<'tcx, Ty<'tcx>>
where
R: PredicateEmittingRelation<InferCtxt<'tcx>>,
{
debug!("super_combine_tys::<{}>({:?}, {:?})", std::any::type_name::<R>(), a, b);
debug_assert!(!a.has_escaping_bound_vars());
debug_assert!(!b.has_escaping_bound_vars());
match (a.kind(), b.kind()) {
// Relate integral variables to other types
(&ty::Infer(ty::IntVar(a_id)), &ty::Infer(ty::IntVar(b_id))) => {
self.inner.borrow_mut().int_unification_table().union(a_id, b_id);
Ok(a)
}
(&ty::Infer(ty::IntVar(v_id)), &ty::Int(v)) => {
self.unify_integral_variable(v_id, IntType(v));
Ok(b)
}
(&ty::Int(v), &ty::Infer(ty::IntVar(v_id))) => {
self.unify_integral_variable(v_id, IntType(v));
Ok(a)
}
(&ty::Infer(ty::IntVar(v_id)), &ty::Uint(v)) => {
self.unify_integral_variable(v_id, UintType(v));
Ok(b)
}
(&ty::Uint(v), &ty::Infer(ty::IntVar(v_id))) => {
self.unify_integral_variable(v_id, UintType(v));
Ok(a)
}
// Relate floating-point variables to other types
(&ty::Infer(ty::FloatVar(a_id)), &ty::Infer(ty::FloatVar(b_id))) => {
self.inner.borrow_mut().float_unification_table().union(a_id, b_id);
Ok(a)
}
(&ty::Infer(ty::FloatVar(v_id)), &ty::Float(v)) => {
self.unify_float_variable(v_id, ty::FloatVarValue::Known(v));
Ok(b)
}
(&ty::Float(v), &ty::Infer(ty::FloatVar(v_id))) => {
self.unify_float_variable(v_id, ty::FloatVarValue::Known(v));
Ok(a)
}
// We don't expect `TyVar` or `Fresh*` vars at this point with lazy norm.
(ty::Alias(..), ty::Infer(ty::TyVar(_))) | (ty::Infer(ty::TyVar(_)), ty::Alias(..))
if self.next_trait_solver() =>
{
bug!(
"We do not expect to encounter `TyVar` this late in combine \
-- they should have been handled earlier"
)
}
(_, ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)))
| (ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)), _)
if self.next_trait_solver() =>
{
bug!("We do not expect to encounter `Fresh` variables in the new solver")
}
(_, ty::Alias(..)) | (ty::Alias(..), _) if self.next_trait_solver() => {
match relation.structurally_relate_aliases() {
StructurallyRelateAliases::Yes => {
relate::structurally_relate_tys(relation, a, b)
}
StructurallyRelateAliases::No => {
relation.register_alias_relate_predicate(a, b);
Ok(a)
}
}
}
// All other cases of inference are errors
(&ty::Infer(_), _) | (_, &ty::Infer(_)) => {
Err(TypeError::Sorts(ExpectedFound::new(true, a, b)))
}
// During coherence, opaque types should be treated as *possibly*
// equal to any other type (except for possibly itself). This is an
// extremely heavy hammer, but can be relaxed in a forwards-compatible
// way later.
(&ty::Alias(ty::Opaque, _), _) | (_, &ty::Alias(ty::Opaque, _)) if self.intercrate => {
relation.register_predicates([ty::Binder::dummy(ty::PredicateKind::Ambiguous)]);
Ok(a)
}
_ => relate::structurally_relate_tys(relation, a, b),
}
}
pub fn super_combine_consts<R>(
&self,
relation: &mut R,
a: ty::Const<'tcx>,
b: ty::Const<'tcx>,
) -> RelateResult<'tcx, ty::Const<'tcx>>
where
R: PredicateEmittingRelation<InferCtxt<'tcx>>,
{
debug!("super_combine_consts::<{}>({:?}, {:?})", std::any::type_name::<R>(), a, b);
debug_assert!(!a.has_escaping_bound_vars());
debug_assert!(!b.has_escaping_bound_vars());
if a == b {
return Ok(a);
}
let a = self.shallow_resolve_const(a);
let b = self.shallow_resolve_const(b);
match (a.kind(), b.kind()) {
(
ty::ConstKind::Infer(InferConst::Var(a_vid)),
ty::ConstKind::Infer(InferConst::Var(b_vid)),
) => {
self.inner.borrow_mut().const_unification_table().union(a_vid, b_vid);
Ok(a)
}
(
ty::ConstKind::Infer(InferConst::EffectVar(a_vid)),
ty::ConstKind::Infer(InferConst::EffectVar(b_vid)),
) => {
self.inner.borrow_mut().effect_unification_table().union(a_vid, b_vid);
Ok(a)
}
// All other cases of inference with other variables are errors.
(
ty::ConstKind::Infer(InferConst::Var(_) | InferConst::EffectVar(_)),
ty::ConstKind::Infer(_),
)
| (
ty::ConstKind::Infer(_),
ty::ConstKind::Infer(InferConst::Var(_) | InferConst::EffectVar(_)),
) => {
bug!(
"tried to combine ConstKind::Infer/ConstKind::Infer(InferConst::Var): {a:?} and {b:?}"
)
}
(ty::ConstKind::Infer(InferConst::Var(vid)), _) => {
self.instantiate_const_var(relation, true, vid, b)?;
Ok(b)
}
(_, ty::ConstKind::Infer(InferConst::Var(vid))) => {
self.instantiate_const_var(relation, false, vid, a)?;
Ok(a)
}
(ty::ConstKind::Infer(InferConst::EffectVar(vid)), _) => {
Ok(self.unify_effect_variable(vid, b))
}
(_, ty::ConstKind::Infer(InferConst::EffectVar(vid))) => {
Ok(self.unify_effect_variable(vid, a))
}
(ty::ConstKind::Unevaluated(..), _) | (_, ty::ConstKind::Unevaluated(..))
if self.tcx.features().generic_const_exprs || self.next_trait_solver() =>
{
match relation.structurally_relate_aliases() {
StructurallyRelateAliases::No => {
relation.register_predicates([if self.next_trait_solver() {
ty::PredicateKind::AliasRelate(
a.into(),
b.into(),
ty::AliasRelationDirection::Equate,
)
} else {
ty::PredicateKind::ConstEquate(a, b)
}]);
Ok(b)
}
StructurallyRelateAliases::Yes => {
relate::structurally_relate_consts(relation, a, b)
}
}
}
_ => relate::structurally_relate_consts(relation, a, b),
}
}
#[inline(always)]
fn unify_integral_variable(&self, vid: ty::IntVid, val: ty::IntVarValue) {
self.inner.borrow_mut().int_unification_table().union_value(vid, val);
}
#[inline(always)]
fn unify_float_variable(&self, vid: ty::FloatVid, val: ty::FloatVarValue) {
self.inner.borrow_mut().float_unification_table().union_value(vid, val);
}
fn unify_effect_variable(&self, vid: ty::EffectVid, val: ty::Const<'tcx>) -> ty::Const<'tcx> {
self.inner
.borrow_mut()
.effect_unification_table()
.union_value(vid, EffectVarValue::Known(val));
val
}
}

View File

@ -183,7 +183,7 @@ impl<'tcx> InferCtxt<'tcx> {
///
/// See `tests/ui/const-generics/occurs-check/` for more examples where this is relevant.
#[instrument(level = "debug", skip(self, relation))]
pub(super) fn instantiate_const_var<R: PredicateEmittingRelation<InferCtxt<'tcx>>>(
pub(crate) fn instantiate_const_var<R: PredicateEmittingRelation<InferCtxt<'tcx>>>(
&self,
relation: &mut R,
target_is_expected: bool,

View File

@ -18,6 +18,7 @@
//! [lattices]: https://en.wikipedia.org/wiki/Lattice_(order)
use rustc_middle::traits::solve::Goal;
use rustc_middle::ty::relate::combine::{super_combine_consts, super_combine_tys};
use rustc_middle::ty::relate::{Relate, RelateResult, TypeRelation};
use rustc_middle::ty::{self, Ty, TyCtxt, TyVar, TypeVisitableExt};
use rustc_span::Span;
@ -148,7 +149,7 @@ impl<'tcx> TypeRelation<TyCtxt<'tcx>> for LatticeOp<'_, 'tcx> {
(
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: a_def_id, .. }),
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: b_def_id, .. }),
) if a_def_id == b_def_id => infcx.super_combine_tys(self, a, b),
) if a_def_id == b_def_id => super_combine_tys(infcx, self, a, b),
(&ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }), _)
| (_, &ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }))
@ -163,7 +164,7 @@ impl<'tcx> TypeRelation<TyCtxt<'tcx>> for LatticeOp<'_, 'tcx> {
Ok(a)
}
_ => infcx.super_combine_tys(self, a, b),
_ => super_combine_tys(infcx, self, a, b),
}
}
@ -191,7 +192,7 @@ impl<'tcx> TypeRelation<TyCtxt<'tcx>> for LatticeOp<'_, 'tcx> {
a: ty::Const<'tcx>,
b: ty::Const<'tcx>,
) -> RelateResult<'tcx, ty::Const<'tcx>> {
self.infcx.super_combine_consts(self, a, b)
super_combine_consts(self.infcx, self, a, b)
}
fn binders<T>(

View File

@ -3,12 +3,9 @@
//! As well as the implementation of `Relate` for interned things (`Ty`/`Const`/etc).
pub use rustc_middle::ty::relate::RelateResult;
pub use rustc_next_trait_solver::relate::*;
pub use rustc_type_ir::relate::combine::PredicateEmittingRelation;
pub use rustc_type_ir::relate::*;
pub use self::combine::PredicateEmittingRelation;
#[allow(hidden_glob_reexports)]
pub(super) mod combine;
mod generalize;
mod higher_ranked;
pub(super) mod lattice;

View File

@ -1,4 +1,5 @@
use rustc_middle::traits::solve::Goal;
use rustc_middle::ty::relate::combine::{super_combine_consts, super_combine_tys};
use rustc_middle::ty::relate::{
Relate, RelateResult, TypeRelation, relate_args_invariantly, relate_args_with_variances,
};
@ -20,7 +21,6 @@ pub(crate) struct TypeRelating<'infcx, 'tcx> {
trace: TypeTrace<'tcx>,
param_env: ty::ParamEnv<'tcx>,
define_opaque_types: DefineOpaqueTypes,
structurally_relate_aliases: StructurallyRelateAliases,
// Mutable fields.
ambient_variance: ty::Variance,
@ -56,15 +56,14 @@ impl<'infcx, 'tcx> TypeRelating<'infcx, 'tcx> {
trace: TypeTrace<'tcx>,
param_env: ty::ParamEnv<'tcx>,
define_opaque_types: DefineOpaqueTypes,
structurally_relate_aliases: StructurallyRelateAliases,
ambient_variance: ty::Variance,
) -> TypeRelating<'infcx, 'tcx> {
assert!(!infcx.next_trait_solver);
TypeRelating {
infcx,
trace,
param_env,
define_opaque_types,
structurally_relate_aliases,
ambient_variance,
obligations: vec![],
cache: Default::default(),
@ -183,23 +182,16 @@ impl<'tcx> TypeRelation<TyCtxt<'tcx>> for TypeRelating<'_, 'tcx> {
)?;
}
(&ty::Error(e), _) | (_, &ty::Error(e)) => {
infcx.set_tainted_by_errors(e);
return Ok(Ty::new_error(self.cx(), e));
}
(
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: a_def_id, .. }),
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: b_def_id, .. }),
) if a_def_id == b_def_id => {
infcx.super_combine_tys(self, a, b)?;
super_combine_tys(infcx, self, a, b)?;
}
(&ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }), _)
| (_, &ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }))
if self.define_opaque_types == DefineOpaqueTypes::Yes
&& def_id.is_local()
&& !infcx.next_trait_solver() =>
if self.define_opaque_types == DefineOpaqueTypes::Yes && def_id.is_local() =>
{
self.register_goals(infcx.handle_opaque_type(
a,
@ -210,7 +202,7 @@ impl<'tcx> TypeRelation<TyCtxt<'tcx>> for TypeRelating<'_, 'tcx> {
}
_ => {
infcx.super_combine_tys(self, a, b)?;
super_combine_tys(infcx, self, a, b)?;
}
}
@ -265,7 +257,7 @@ impl<'tcx> TypeRelation<TyCtxt<'tcx>> for TypeRelating<'_, 'tcx> {
a: ty::Const<'tcx>,
b: ty::Const<'tcx>,
) -> RelateResult<'tcx, ty::Const<'tcx>> {
self.infcx.super_combine_consts(self, a, b)
super_combine_consts(self.infcx, self, a, b)
}
fn binders<T>(
@ -357,7 +349,7 @@ impl<'tcx> PredicateEmittingRelation<InferCtxt<'tcx>> for TypeRelating<'_, 'tcx>
}
fn structurally_relate_aliases(&self) -> StructurallyRelateAliases {
self.structurally_relate_aliases
StructurallyRelateAliases::No
}
fn register_predicates(

View File

@ -698,6 +698,12 @@ impl<'tcx> rustc_type_ir::inherent::Features<TyCtxt<'tcx>> for &'tcx rustc_featu
}
}
impl<'tcx> rustc_type_ir::inherent::Span<TyCtxt<'tcx>> for Span {
fn dummy() -> Self {
DUMMY_SP
}
}
type InternedSet<'tcx, T> = ShardedHashMap<InternedInSet<'tcx, T>, ()>;
pub struct CtxtInterners<'tcx> {

View File

@ -12,6 +12,5 @@
pub mod canonicalizer;
pub mod coherence;
pub mod delegate;
pub mod relate;
pub mod resolve;
pub mod solve;

View File

@ -1,15 +0,0 @@
pub use rustc_type_ir::relate::*;
pub mod combine;
/// Whether aliases should be related structurally or not. Used
/// to adjust the behavior of generalization and combine.
///
/// This should always be `No` unless in a few special-cases when
/// instantiating canonical responses and in the new solver. Each
/// such case should have a comment explaining why it is used.
#[derive(Debug, Copy, Clone)]
pub enum StructurallyRelateAliases {
Yes,
No,
}

View File

@ -1,34 +0,0 @@
pub use rustc_type_ir::relate::*;
use rustc_type_ir::solve::Goal;
use rustc_type_ir::{InferCtxtLike, Interner, Upcast};
use super::StructurallyRelateAliases;
pub trait PredicateEmittingRelation<Infcx, I = <Infcx as InferCtxtLike>::Interner>:
TypeRelation<I>
where
Infcx: InferCtxtLike<Interner = I>,
I: Interner,
{
fn span(&self) -> I::Span;
fn param_env(&self) -> I::ParamEnv;
/// Whether aliases should be related structurally. This is pretty much
/// always `No` unless you're equating in some specific locations of the
/// new solver. See the comments in these use-cases for more details.
fn structurally_relate_aliases(&self) -> StructurallyRelateAliases;
/// Register obligations that must hold in order for this relation to hold
fn register_goals(&mut self, obligations: impl IntoIterator<Item = Goal<I, I::Predicate>>);
/// Register predicates that must hold in order for this relation to hold.
/// This uses the default `param_env` of the obligation.
fn register_predicates(
&mut self,
obligations: impl IntoIterator<Item: Upcast<I, I::Predicate>>,
);
/// Register `AliasRelate` obligation(s) that both types must be related to each other.
fn register_alias_relate_predicate(&mut self, a: I::Ty, b: I::Ty);
}

View File

@ -14,6 +14,7 @@ use std::iter;
use rustc_index::IndexVec;
use rustc_type_ir::fold::TypeFoldable;
use rustc_type_ir::inherent::*;
use rustc_type_ir::relate::solver_relating::RelateExt;
use rustc_type_ir::{self as ty, Canonical, CanonicalVarValues, InferCtxtLike, Interner};
use tracing::{instrument, trace};

View File

@ -7,6 +7,7 @@ use rustc_type_ir::data_structures::{HashMap, HashSet, ensure_sufficient_stack};
use rustc_type_ir::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
use rustc_type_ir::inherent::*;
use rustc_type_ir::relate::Relate;
use rustc_type_ir::relate::solver_relating::RelateExt;
use rustc_type_ir::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypeVisitor};
use rustc_type_ir::{self as ty, CanonicalVarValues, InferCtxtLike, Interner};
use rustc_type_ir_macros::{Lift_Generic, TypeFoldable_Generic, TypeVisitable_Generic};
@ -871,7 +872,7 @@ where
lhs: T,
rhs: T,
) -> Result<Vec<Goal<I, I::Predicate>>, NoSolution> {
self.delegate.relate(param_env, lhs, ty::Variance::Invariant, rhs)
Ok(self.delegate.relate(param_env, lhs, ty::Variance::Invariant, rhs)?)
}
pub(super) fn instantiate_binder_with_infer<T: TypeFoldable<I> + Copy>(

View File

@ -1285,9 +1285,6 @@ impl<'a, 'tcx> TypeErrCtxt<'a, 'tcx> {
ValuePairs::ExistentialProjection(_) => {
(false, Mismatch::Fixed("existential projection"))
}
ValuePairs::Dummy => {
bug!("do not expect to report a type error from a ValuePairs::Dummy")
}
};
let Some(vals) = self.values_str(values) else {
// Derived error. Cancel the emitter.
@ -1853,9 +1850,6 @@ impl<'a, 'tcx> TypeErrCtxt<'a, 'tcx> {
let (exp, fnd) = self.cmp_fn_sig(&exp_found.expected, &exp_found.found);
Some((exp, fnd, None))
}
ValuePairs::Dummy => {
bug!("do not expect to report a type error from a ValuePairs::Dummy")
}
}
}

View File

@ -1,12 +1,21 @@
use crate::fold::TypeFoldable;
use crate::relate::Relate;
use crate::solve::{Goal, NoSolution, SolverMode};
use crate::relate::RelateResult;
use crate::relate::combine::PredicateEmittingRelation;
use crate::solve::SolverMode;
use crate::{self as ty, Interner};
pub trait InferCtxtLike: Sized {
type Interner: Interner;
fn cx(&self) -> Self::Interner;
/// Whether the new trait solver is enabled. This only exists because rustc
/// shares code between the new and old trait solvers; for all other users,
/// this should always be true. If this is unknowingly false and you try to
/// use the new trait solver, things will break badly.
fn next_trait_solver(&self) -> bool {
true
}
fn solver_mode(&self) -> SolverMode;
fn universe(&self) -> ty::UniverseIndex;
@ -58,25 +67,45 @@ pub trait InferCtxtLike: Sized {
f: impl FnOnce(T) -> U,
) -> U;
fn relate<T: Relate<Self::Interner>>(
&self,
param_env: <Self::Interner as Interner>::ParamEnv,
lhs: T,
variance: ty::Variance,
rhs: T,
) -> Result<Vec<Goal<Self::Interner, <Self::Interner as Interner>::Predicate>>, NoSolution>;
fn equate_ty_vids_raw(&self, a: ty::TyVid, b: ty::TyVid);
fn equate_int_vids_raw(&self, a: ty::IntVid, b: ty::IntVid);
fn equate_float_vids_raw(&self, a: ty::FloatVid, b: ty::FloatVid);
fn equate_const_vids_raw(&self, a: ty::ConstVid, b: ty::ConstVid);
fn equate_effect_vids_raw(&self, a: ty::EffectVid, b: ty::EffectVid);
fn eq_structurally_relating_aliases<T: Relate<Self::Interner>>(
fn instantiate_ty_var_raw<R: PredicateEmittingRelation<Self>>(
&self,
param_env: <Self::Interner as Interner>::ParamEnv,
lhs: T,
rhs: T,
) -> Result<Vec<Goal<Self::Interner, <Self::Interner as Interner>::Predicate>>, NoSolution>;
relation: &mut R,
target_is_expected: bool,
target_vid: ty::TyVid,
instantiation_variance: ty::Variance,
source_ty: <Self::Interner as Interner>::Ty,
) -> RelateResult<Self::Interner, ()>;
fn instantiate_int_var_raw(&self, vid: ty::IntVid, value: ty::IntVarValue);
fn instantiate_float_var_raw(&self, vid: ty::FloatVid, value: ty::FloatVarValue);
fn instantiate_effect_var_raw(
&self,
vid: ty::EffectVid,
value: <Self::Interner as Interner>::Const,
);
fn instantiate_const_var_raw<R: PredicateEmittingRelation<Self>>(
&self,
relation: &mut R,
target_is_expected: bool,
target_vid: ty::ConstVid,
source_ct: <Self::Interner as Interner>::Const,
) -> RelateResult<Self::Interner, ()>;
fn set_tainted_by_errors(&self, e: <Self::Interner as Interner>::ErrorGuaranteed);
fn shallow_resolve(
&self,
ty: <Self::Interner as Interner>::Ty,
) -> <Self::Interner as Interner>::Ty;
fn shallow_resolve_const(
&self,
ty: <Self::Interner as Interner>::Const,
) -> <Self::Interner as Interner>::Const;
fn resolve_vars_if_possible<T>(&self, value: T) -> T
where
@ -90,6 +119,12 @@ pub trait InferCtxtLike: Sized {
sup: <Self::Interner as Interner>::Region,
);
fn equate_regions(
&self,
a: <Self::Interner as Interner>::Region,
b: <Self::Interner as Interner>::Region,
);
fn register_ty_outlives(
&self,
ty: <Self::Interner as Interner>::Ty,

View File

@ -565,6 +565,10 @@ pub trait BoundExistentialPredicates<I: Interner>:
) -> impl IntoIterator<Item = ty::Binder<I, ty::ExistentialProjection<I>>>;
}
pub trait Span<I: Interner>: Copy + Debug + Hash + Eq + TypeFoldable<I> {
fn dummy() -> Self;
}
pub trait SliceLike: Sized + Copy {
type Item: Copy;
type IntoIter: Iterator<Item = Self::Item>;

View File

@ -36,7 +36,7 @@ pub trait Interner:
{
type DefId: DefId<Self>;
type LocalDefId: Copy + Debug + Hash + Eq + Into<Self::DefId> + TypeFoldable<Self>;
type Span: Copy + Debug + Hash + Eq + TypeFoldable<Self>;
type Span: Span<Self>;
type GenericArgs: GenericArgs<Self>;
type GenericArgsSlice: Copy + Debug + Hash + Eq + SliceLike<Item = Self::GenericArg>;

View File

@ -206,8 +206,8 @@ pub fn debug_bound_var<T: std::fmt::Write>(
}
}
#[derive(Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "nightly", derive(Decodable, Encodable, Hash, HashStable_NoContext))]
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "nightly", derive(Decodable, Encodable, HashStable_NoContext))]
#[cfg_attr(feature = "nightly", rustc_pass_by_value)]
pub enum Variance {
Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type

View File

@ -9,8 +9,23 @@ use crate::fold::TypeFoldable;
use crate::inherent::*;
use crate::{self as ty, Interner};
pub mod combine;
pub mod solver_relating;
pub type RelateResult<I, T> = Result<T, TypeError<I>>;
/// Whether aliases should be related structurally or not. Used
/// to adjust the behavior of generalization and combine.
///
/// This should always be `No` unless in a few special-cases when
/// instantiating canonical responses and in the new solver. Each
/// such case should have a comment explaining why it is used.
#[derive(Debug, Copy, Clone)]
pub enum StructurallyRelateAliases {
Yes,
No,
}
/// Extra information about why we ended up with a particular variance.
/// This is only used to add more information to error messages, and
/// has no effect on soundness. While choosing the 'wrong' `VarianceDiagInfo`

View File

@ -0,0 +1,246 @@
use tracing::debug;
use super::{
ExpectedFound, RelateResult, StructurallyRelateAliases, TypeRelation,
structurally_relate_consts, structurally_relate_tys,
};
use crate::error::TypeError;
use crate::inherent::*;
use crate::solve::{Goal, SolverMode};
use crate::visit::TypeVisitableExt as _;
use crate::{self as ty, InferCtxtLike, Interner, Upcast};
pub trait PredicateEmittingRelation<Infcx, I = <Infcx as InferCtxtLike>::Interner>:
TypeRelation<I>
where
Infcx: InferCtxtLike<Interner = I>,
I: Interner,
{
fn span(&self) -> I::Span;
fn param_env(&self) -> I::ParamEnv;
/// Whether aliases should be related structurally. This is pretty much
/// always `No` unless you're equating in some specific locations of the
/// new solver. See the comments in these use-cases for more details.
fn structurally_relate_aliases(&self) -> StructurallyRelateAliases;
/// Register obligations that must hold in order for this relation to hold
fn register_goals(&mut self, obligations: impl IntoIterator<Item = Goal<I, I::Predicate>>);
/// Register predicates that must hold in order for this relation to hold.
/// This uses the default `param_env` of the obligation.
fn register_predicates(
&mut self,
obligations: impl IntoIterator<Item: Upcast<I, I::Predicate>>,
);
/// Register `AliasRelate` obligation(s) that both types must be related to each other.
fn register_alias_relate_predicate(&mut self, a: I::Ty, b: I::Ty);
}
pub fn super_combine_tys<Infcx, I, R>(
infcx: &Infcx,
relation: &mut R,
a: I::Ty,
b: I::Ty,
) -> RelateResult<I, I::Ty>
where
Infcx: InferCtxtLike<Interner = I>,
I: Interner,
R: PredicateEmittingRelation<Infcx>,
{
debug!("super_combine_tys::<{}>({:?}, {:?})", std::any::type_name::<R>(), a, b);
debug_assert!(!a.has_escaping_bound_vars());
debug_assert!(!b.has_escaping_bound_vars());
match (a.kind(), b.kind()) {
(ty::Error(e), _) | (_, ty::Error(e)) => {
infcx.set_tainted_by_errors(e);
return Ok(Ty::new_error(infcx.cx(), e));
}
// Relate integral variables to other types
(ty::Infer(ty::IntVar(a_id)), ty::Infer(ty::IntVar(b_id))) => {
infcx.equate_int_vids_raw(a_id, b_id);
Ok(a)
}
(ty::Infer(ty::IntVar(v_id)), ty::Int(v)) => {
infcx.instantiate_int_var_raw(v_id, ty::IntVarValue::IntType(v));
Ok(b)
}
(ty::Int(v), ty::Infer(ty::IntVar(v_id))) => {
infcx.instantiate_int_var_raw(v_id, ty::IntVarValue::IntType(v));
Ok(a)
}
(ty::Infer(ty::IntVar(v_id)), ty::Uint(v)) => {
infcx.instantiate_int_var_raw(v_id, ty::IntVarValue::UintType(v));
Ok(b)
}
(ty::Uint(v), ty::Infer(ty::IntVar(v_id))) => {
infcx.instantiate_int_var_raw(v_id, ty::IntVarValue::UintType(v));
Ok(a)
}
// Relate floating-point variables to other types
(ty::Infer(ty::FloatVar(a_id)), ty::Infer(ty::FloatVar(b_id))) => {
infcx.equate_float_vids_raw(a_id, b_id);
Ok(a)
}
(ty::Infer(ty::FloatVar(v_id)), ty::Float(v)) => {
infcx.instantiate_float_var_raw(v_id, ty::FloatVarValue::Known(v));
Ok(b)
}
(ty::Float(v), ty::Infer(ty::FloatVar(v_id))) => {
infcx.instantiate_float_var_raw(v_id, ty::FloatVarValue::Known(v));
Ok(a)
}
// We don't expect `TyVar` or `Fresh*` vars at this point with lazy norm.
(ty::Alias(..), ty::Infer(ty::TyVar(_))) | (ty::Infer(ty::TyVar(_)), ty::Alias(..))
if infcx.next_trait_solver() =>
{
panic!(
"We do not expect to encounter `TyVar` this late in combine \
-- they should have been handled earlier"
)
}
(_, ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)))
| (ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)), _)
if infcx.next_trait_solver() =>
{
panic!("We do not expect to encounter `Fresh` variables in the new solver")
}
(_, ty::Alias(..)) | (ty::Alias(..), _) if infcx.next_trait_solver() => {
match relation.structurally_relate_aliases() {
StructurallyRelateAliases::Yes => structurally_relate_tys(relation, a, b),
StructurallyRelateAliases::No => {
relation.register_alias_relate_predicate(a, b);
Ok(a)
}
}
}
// All other cases of inference are errors
(ty::Infer(_), _) | (_, ty::Infer(_)) => {
Err(TypeError::Sorts(ExpectedFound::new(true, a, b)))
}
(ty::Alias(ty::Opaque, _), _) | (_, ty::Alias(ty::Opaque, _)) => {
match infcx.solver_mode() {
SolverMode::Normal => {
assert!(!infcx.next_trait_solver());
structurally_relate_tys(relation, a, b)
}
// During coherence, opaque types should be treated as *possibly*
// equal to any other type (except for possibly itinfcx). This is an
// extremely heavy hammer, but can be relaxed in a forwards-compatible
// way later.
SolverMode::Coherence => {
relation.register_predicates([ty::Binder::dummy(ty::PredicateKind::Ambiguous)]);
Ok(a)
}
}
}
_ => structurally_relate_tys(relation, a, b),
}
}
pub fn super_combine_consts<Infcx, I, R>(
infcx: &Infcx,
relation: &mut R,
a: I::Const,
b: I::Const,
) -> RelateResult<I, I::Const>
where
Infcx: InferCtxtLike<Interner = I>,
I: Interner,
R: PredicateEmittingRelation<Infcx>,
{
debug!("super_combine_consts::<{}>({:?}, {:?})", std::any::type_name::<R>(), a, b);
debug_assert!(!a.has_escaping_bound_vars());
debug_assert!(!b.has_escaping_bound_vars());
if a == b {
return Ok(a);
}
let a = infcx.shallow_resolve_const(a);
let b = infcx.shallow_resolve_const(b);
match (a.kind(), b.kind()) {
(
ty::ConstKind::Infer(ty::InferConst::Var(a_vid)),
ty::ConstKind::Infer(ty::InferConst::Var(b_vid)),
) => {
infcx.equate_const_vids_raw(a_vid, b_vid);
Ok(a)
}
(
ty::ConstKind::Infer(ty::InferConst::EffectVar(a_vid)),
ty::ConstKind::Infer(ty::InferConst::EffectVar(b_vid)),
) => {
infcx.equate_effect_vids_raw(a_vid, b_vid);
Ok(a)
}
// All other cases of inference with other variables are errors.
(
ty::ConstKind::Infer(ty::InferConst::Var(_) | ty::InferConst::EffectVar(_)),
ty::ConstKind::Infer(_),
)
| (
ty::ConstKind::Infer(_),
ty::ConstKind::Infer(ty::InferConst::Var(_) | ty::InferConst::EffectVar(_)),
) => {
panic!(
"tried to combine ConstKind::Infer/ConstKind::Infer(InferConst::Var): {a:?} and {b:?}"
)
}
(ty::ConstKind::Infer(ty::InferConst::Var(vid)), _) => {
infcx.instantiate_const_var_raw(relation, true, vid, b)?;
Ok(b)
}
(_, ty::ConstKind::Infer(ty::InferConst::Var(vid))) => {
infcx.instantiate_const_var_raw(relation, false, vid, a)?;
Ok(a)
}
(ty::ConstKind::Infer(ty::InferConst::EffectVar(vid)), _) => {
infcx.instantiate_effect_var_raw(vid, b);
Ok(b)
}
(_, ty::ConstKind::Infer(ty::InferConst::EffectVar(vid))) => {
infcx.instantiate_effect_var_raw(vid, a);
Ok(a)
}
(ty::ConstKind::Unevaluated(..), _) | (_, ty::ConstKind::Unevaluated(..))
if infcx.cx().features().generic_const_exprs() || infcx.next_trait_solver() =>
{
match relation.structurally_relate_aliases() {
StructurallyRelateAliases::No => {
relation.register_predicates([if infcx.next_trait_solver() {
ty::PredicateKind::AliasRelate(
a.into(),
b.into(),
ty::AliasRelationDirection::Equate,
)
} else {
ty::PredicateKind::ConstEquate(a, b)
}]);
Ok(b)
}
StructurallyRelateAliases::Yes => structurally_relate_consts(relation, a, b),
}
}
_ => structurally_relate_consts(relation, a, b),
}
}

View File

@ -0,0 +1,394 @@
pub use rustc_type_ir::relate::*;
use rustc_type_ir::solve::Goal;
use rustc_type_ir::{self as ty, InferCtxtLike, Interner};
use tracing::{debug, instrument};
use self::combine::{PredicateEmittingRelation, super_combine_consts, super_combine_tys};
use crate::data_structures::DelayedSet;
pub trait RelateExt: InferCtxtLike {
fn relate<T: Relate<Self::Interner>>(
&self,
param_env: <Self::Interner as Interner>::ParamEnv,
lhs: T,
variance: ty::Variance,
rhs: T,
) -> Result<
Vec<Goal<Self::Interner, <Self::Interner as Interner>::Predicate>>,
TypeError<Self::Interner>,
>;
fn eq_structurally_relating_aliases<T: Relate<Self::Interner>>(
&self,
param_env: <Self::Interner as Interner>::ParamEnv,
lhs: T,
rhs: T,
) -> Result<
Vec<Goal<Self::Interner, <Self::Interner as Interner>::Predicate>>,
TypeError<Self::Interner>,
>;
}
impl<Infcx: InferCtxtLike> RelateExt for Infcx {
fn relate<T: Relate<Self::Interner>>(
&self,
param_env: <Self::Interner as Interner>::ParamEnv,
lhs: T,
variance: ty::Variance,
rhs: T,
) -> Result<
Vec<Goal<Self::Interner, <Self::Interner as Interner>::Predicate>>,
TypeError<Self::Interner>,
> {
let mut relate =
SolverRelating::new(self, StructurallyRelateAliases::No, variance, param_env);
relate.relate(lhs, rhs)?;
Ok(relate.goals)
}
fn eq_structurally_relating_aliases<T: Relate<Self::Interner>>(
&self,
param_env: <Self::Interner as Interner>::ParamEnv,
lhs: T,
rhs: T,
) -> Result<
Vec<Goal<Self::Interner, <Self::Interner as Interner>::Predicate>>,
TypeError<Self::Interner>,
> {
let mut relate =
SolverRelating::new(self, StructurallyRelateAliases::Yes, ty::Invariant, param_env);
relate.relate(lhs, rhs)?;
Ok(relate.goals)
}
}
/// Enforce that `a` is equal to or a subtype of `b`.
pub struct SolverRelating<'infcx, Infcx, I: Interner> {
infcx: &'infcx Infcx,
// Immutable fields.
structurally_relate_aliases: StructurallyRelateAliases,
param_env: I::ParamEnv,
// Mutable fields.
ambient_variance: ty::Variance,
goals: Vec<Goal<I, I::Predicate>>,
/// The cache only tracks the `ambient_variance` as it's the
/// only field which is mutable and which meaningfully changes
/// the result when relating types.
///
/// The cache does not track whether the state of the
/// `Infcx` has been changed or whether we've added any
/// goals to `self.goals`. Whether a goal is added once or multiple
/// times is not really meaningful.
///
/// Changes in the inference state may delay some type inference to
/// the next fulfillment loop. Given that this loop is already
/// necessary, this is also not a meaningful change. Consider
/// the following three relations:
/// ```text
/// Vec<?0> sub Vec<?1>
/// ?0 eq u32
/// Vec<?0> sub Vec<?1>
/// ```
/// Without a cache, the second `Vec<?0> sub Vec<?1>` would eagerly
/// constrain `?1` to `u32`. When using the cache entry from the
/// first time we've related these types, this only happens when
/// later proving the `Subtype(?0, ?1)` goal from the first relation.
cache: DelayedSet<(ty::Variance, I::Ty, I::Ty)>,
}
impl<'infcx, Infcx, I> SolverRelating<'infcx, Infcx, I>
where
Infcx: InferCtxtLike<Interner = I>,
I: Interner,
{
pub fn new(
infcx: &'infcx Infcx,
structurally_relate_aliases: StructurallyRelateAliases,
ambient_variance: ty::Variance,
param_env: I::ParamEnv,
) -> Self {
SolverRelating {
infcx,
structurally_relate_aliases,
ambient_variance,
param_env,
goals: vec![],
cache: Default::default(),
}
}
}
impl<Infcx, I> TypeRelation<I> for SolverRelating<'_, Infcx, I>
where
Infcx: InferCtxtLike<Interner = I>,
I: Interner,
{
fn cx(&self) -> I {
self.infcx.cx()
}
fn relate_item_args(
&mut self,
item_def_id: I::DefId,
a_arg: I::GenericArgs,
b_arg: I::GenericArgs,
) -> RelateResult<I, I::GenericArgs> {
if self.ambient_variance == ty::Invariant {
// Avoid fetching the variance if we are in an invariant
// context; no need, and it can induce dependency cycles
// (e.g., #41849).
relate_args_invariantly(self, a_arg, b_arg)
} else {
let tcx = self.cx();
let opt_variances = tcx.variances_of(item_def_id);
relate_args_with_variances(self, item_def_id, opt_variances, a_arg, b_arg, false)
}
}
fn relate_with_variance<T: Relate<I>>(
&mut self,
variance: ty::Variance,
_info: VarianceDiagInfo<I>,
a: T,
b: T,
) -> RelateResult<I, T> {
let old_ambient_variance = self.ambient_variance;
self.ambient_variance = self.ambient_variance.xform(variance);
debug!(?self.ambient_variance, "new ambient variance");
let r = if self.ambient_variance == ty::Bivariant { Ok(a) } else { self.relate(a, b) };
self.ambient_variance = old_ambient_variance;
r
}
#[instrument(skip(self), level = "trace")]
fn tys(&mut self, a: I::Ty, b: I::Ty) -> RelateResult<I, I::Ty> {
if a == b {
return Ok(a);
}
let infcx = self.infcx;
let a = infcx.shallow_resolve(a);
let b = infcx.shallow_resolve(b);
if self.cache.contains(&(self.ambient_variance, a, b)) {
return Ok(a);
}
match (a.kind(), b.kind()) {
(ty::Infer(ty::TyVar(a_id)), ty::Infer(ty::TyVar(b_id))) => {
match self.ambient_variance {
ty::Covariant => {
// can't make progress on `A <: B` if both A and B are
// type variables, so record an obligation.
self.goals.push(Goal::new(
self.cx(),
self.param_env,
ty::Binder::dummy(ty::PredicateKind::Subtype(ty::SubtypePredicate {
a_is_expected: true,
a,
b,
})),
));
}
ty::Contravariant => {
// can't make progress on `B <: A` if both A and B are
// type variables, so record an obligation.
self.goals.push(Goal::new(
self.cx(),
self.param_env,
ty::Binder::dummy(ty::PredicateKind::Subtype(ty::SubtypePredicate {
a_is_expected: false,
a: b,
b: a,
})),
));
}
ty::Invariant => {
infcx.equate_ty_vids_raw(a_id, b_id);
}
ty::Bivariant => {
unreachable!("Expected bivariance to be handled in relate_with_variance")
}
}
}
(ty::Infer(ty::TyVar(a_vid)), _) => {
infcx.instantiate_ty_var_raw(self, true, a_vid, self.ambient_variance, b)?;
}
(_, ty::Infer(ty::TyVar(b_vid))) => {
infcx.instantiate_ty_var_raw(
self,
false,
b_vid,
self.ambient_variance.xform(ty::Contravariant),
a,
)?;
}
_ => {
super_combine_tys(self.infcx, self, a, b)?;
}
}
assert!(self.cache.insert((self.ambient_variance, a, b)));
Ok(a)
}
#[instrument(skip(self), level = "trace")]
fn regions(&mut self, a: I::Region, b: I::Region) -> RelateResult<I, I::Region> {
match self.ambient_variance {
// Subtype(&'a u8, &'b u8) => Outlives('a: 'b) => SubRegion('b, 'a)
ty::Covariant => self.infcx.sub_regions(b, a),
// Suptype(&'a u8, &'b u8) => Outlives('b: 'a) => SubRegion('a, 'b)
ty::Contravariant => self.infcx.sub_regions(a, b),
ty::Invariant => self.infcx.equate_regions(a, b),
ty::Bivariant => {
unreachable!("Expected bivariance to be handled in relate_with_variance")
}
}
Ok(a)
}
#[instrument(skip(self), level = "trace")]
fn consts(&mut self, a: I::Const, b: I::Const) -> RelateResult<I, I::Const> {
super_combine_consts(self.infcx, self, a, b)
}
fn binders<T>(
&mut self,
a: ty::Binder<I, T>,
b: ty::Binder<I, T>,
) -> RelateResult<I, ty::Binder<I, T>>
where
T: Relate<I>,
{
// If they're equal, then short-circuit.
if a == b {
return Ok(a);
}
// If they have no bound vars, relate normally.
if let Some(a_inner) = a.no_bound_vars() {
if let Some(b_inner) = b.no_bound_vars() {
self.relate(a_inner, b_inner)?;
return Ok(a);
}
};
match self.ambient_variance {
// Checks whether `for<..> sub <: for<..> sup` holds.
//
// For this to hold, **all** instantiations of the super type
// have to be a super type of **at least one** instantiation of
// the subtype.
//
// This is implemented by first entering a new universe.
// We then replace all bound variables in `sup` with placeholders,
// and all bound variables in `sub` with inference vars.
// We can then just relate the two resulting types as normal.
//
// Note: this is a subtle algorithm. For a full explanation, please see
// the [rustc dev guide][rd]
//
// [rd]: https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html
ty::Covariant => {
self.infcx.enter_forall(b, |b| {
let a = self.infcx.instantiate_binder_with_infer(a);
self.relate(a, b)
})?;
}
ty::Contravariant => {
self.infcx.enter_forall(a, |a| {
let b = self.infcx.instantiate_binder_with_infer(b);
self.relate(a, b)
})?;
}
// When **equating** binders, we check that there is a 1-to-1
// correspondence between the bound vars in both types.
//
// We do so by separately instantiating one of the binders with
// placeholders and the other with inference variables and then
// equating the instantiated types.
//
// We want `for<..> A == for<..> B` -- therefore we want
// `exists<..> A == for<..> B` and `exists<..> B == for<..> A`.
// Check if `exists<..> A == for<..> B`
ty::Invariant => {
self.infcx.enter_forall(b, |b| {
let a = self.infcx.instantiate_binder_with_infer(a);
self.relate(a, b)
})?;
// Check if `exists<..> B == for<..> A`.
self.infcx.enter_forall(a, |a| {
let b = self.infcx.instantiate_binder_with_infer(b);
self.relate(a, b)
})?;
}
ty::Bivariant => {
unreachable!("Expected bivariance to be handled in relate_with_variance")
}
}
Ok(a)
}
}
impl<Infcx, I> PredicateEmittingRelation<Infcx> for SolverRelating<'_, Infcx, I>
where
Infcx: InferCtxtLike<Interner = I>,
I: Interner,
{
fn span(&self) -> I::Span {
Span::dummy()
}
fn param_env(&self) -> I::ParamEnv {
self.param_env
}
fn structurally_relate_aliases(&self) -> StructurallyRelateAliases {
self.structurally_relate_aliases
}
fn register_predicates(
&mut self,
obligations: impl IntoIterator<Item: ty::Upcast<I, I::Predicate>>,
) {
self.goals.extend(
obligations.into_iter().map(|pred| Goal::new(self.infcx.cx(), self.param_env, pred)),
);
}
fn register_goals(&mut self, obligations: impl IntoIterator<Item = Goal<I, I::Predicate>>) {
self.goals.extend(obligations);
}
fn register_alias_relate_predicate(&mut self, a: I::Ty, b: I::Ty) {
self.register_predicates([ty::Binder::dummy(match self.ambient_variance {
ty::Covariant => ty::PredicateKind::AliasRelate(
a.into(),
b.into(),
ty::AliasRelationDirection::Subtype,
),
// a :> b is b <: a
ty::Contravariant => ty::PredicateKind::AliasRelate(
b.into(),
a.into(),
ty::AliasRelationDirection::Subtype,
),
ty::Invariant => ty::PredicateKind::AliasRelate(
a.into(),
b.into(),
ty::AliasRelationDirection::Equate,
),
ty::Bivariant => {
unreachable!("Expected bivariance to be handled in relate_with_variance")
}
})]);
}
}

View File

@ -14,7 +14,6 @@ impl Foo for Baz {
//~^ ERROR `F` cannot be sent between threads safely
where
F: FnMut() + Send,
//~^ ERROR impl has stricter requirements than trait
{
()
}

View File

@ -16,18 +16,6 @@ LL | async fn bar<F>(&mut self, _func: F) -> ()
LL | F: FnMut() + Send,
| ^^^^ required by this bound in `<Baz as Foo>::bar`
error[E0276]: impl has stricter requirements than trait
--> $DIR/remove-invalid-type-bound-suggest-issue-127555.rs:16:22
|
LL | / fn bar<F>(&mut self, func: F) -> impl std::future::Future<Output = ()> + Send
LL | | where
LL | | F: FnMut();
| |___________________- definition of `bar` from trait
...
LL | F: FnMut() + Send,
| ^^^^ impl has extra requirement `F: Send`
error: aborting due to 1 previous error
error: aborting due to 2 previous errors
Some errors have detailed explanations: E0276, E0277.
For more information about an error, try `rustc --explain E0276`.
For more information about this error, try `rustc --explain E0277`.

View File

@ -73,32 +73,6 @@ help: consider further restricting this bound
LL | F: Callback<Self::CallbackArg> + MyFn<i32>,
| +++++++++++
error[E0277]: the trait bound `F: Callback<i32>` is not satisfied
--> $DIR/false-positive-predicate-entailment-error.rs:43:12
|
LL | F: Callback<Self::CallbackArg>,
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^ the trait `MyFn<i32>` is not implemented for `F`, which is required by `F: Callback<i32>`
|
note: required for `F` to implement `Callback<i32>`
--> $DIR/false-positive-predicate-entailment-error.rs:14:21
|
LL | impl<A, F: MyFn<A>> Callback<A> for F {
| ------- ^^^^^^^^^^^ ^
| |
| unsatisfied trait bound introduced here
note: the requirement `F: Callback<i32>` appears on the `impl`'s method `autobatch` but not on the corresponding trait's method
--> $DIR/false-positive-predicate-entailment-error.rs:25:8
|
LL | trait ChannelSender {
| ------------- in this trait
...
LL | fn autobatch<F>(self) -> impl Trait
| ^^^^^^^^^ this trait's method doesn't have the requirement `F: Callback<i32>`
help: consider further restricting this bound
|
LL | F: Callback<Self::CallbackArg> + MyFn<i32>,
| +++++++++++
error[E0277]: the trait bound `F: MyFn<i32>` is not satisfied
--> $DIR/false-positive-predicate-entailment-error.rs:36:30
|
@ -168,6 +142,6 @@ help: consider further restricting this bound
LL | F: Callback<Self::CallbackArg> + MyFn<i32>,
| +++++++++++
error: aborting due to 8 previous errors
error: aborting due to 7 previous errors
For more information about this error, try `rustc --explain E0277`.

View File

@ -41,8 +41,7 @@ impl ChannelSender for Sender {
//[current]~| ERROR the trait bound `F: MyFn<i32>` is not satisfied
where
F: Callback<Self::CallbackArg>,
//[current]~^ ERROR the trait bound `F: Callback<i32>` is not satisfied
//[current]~| ERROR the trait bound `F: MyFn<i32>` is not satisfied
//[current]~^ ERROR the trait bound `F: MyFn<i32>` is not satisfied
{
Thing
}

View File

@ -8,7 +8,6 @@ impl Foo<char> for Bar {
fn foo<F2: Foo<u8>>(self) -> impl Foo<u8> {
//~^ ERROR: the trait bound `impl Foo<u8>: Foo<char>` is not satisfied [E0277]
//~| ERROR: the trait bound `Bar: Foo<u8>` is not satisfied [E0277]
//~| ERROR: impl has stricter requirements than trait
//~| ERROR: the trait bound `F2: Foo<u8>` is not satisfied
self
}

View File

@ -23,15 +23,6 @@ note: required by a bound in `<Bar as Foo<char>>::foo`
LL | fn foo<F2: Foo<u8>>(self) -> impl Foo<u8> {
| ^^^^^^^ required by this bound in `<Bar as Foo<char>>::foo`
error[E0276]: impl has stricter requirements than trait
--> $DIR/return-dont-satisfy-bounds.rs:8:16
|
LL | fn foo<F2>(self) -> impl Foo<T>;
| -------------------------------- definition of `foo` from trait
...
LL | fn foo<F2: Foo<u8>>(self) -> impl Foo<u8> {
| ^^^^^^^ impl has extra requirement `F2: Foo<u8>`
error[E0277]: the trait bound `Bar: Foo<u8>` is not satisfied
--> $DIR/return-dont-satisfy-bounds.rs:8:34
|
@ -44,7 +35,6 @@ LL | self
= help: the trait `Foo<char>` is implemented for `Bar`
= help: for that trait implementation, expected `char`, found `u8`
error: aborting due to 4 previous errors
error: aborting due to 3 previous errors
Some errors have detailed explanations: E0276, E0277.
For more information about an error, try `rustc --explain E0276`.
For more information about this error, try `rustc --explain E0277`.

View File

@ -10,7 +10,6 @@ pub trait Foo {
impl Foo for () {
fn bar<'im: 'im>(&'im mut self) -> impl Sized + 'im {}
//~^ ERROR return type captures more lifetimes than trait definition
//~| WARN impl trait in impl method signature does not match trait method signature
}
fn main() {}

View File

@ -21,22 +21,5 @@ LL | fn bar<'tr: 'tr>(&'tr mut self) -> impl Sized + use<Self>;
| ^^^^^^^^^^^^^^^^^^^^^^
= note: hidden type inferred to be `impl Sized + 'im`
warning: impl trait in impl method signature does not match trait method signature
--> $DIR/rpitit-captures-more-method-lifetimes.rs:11:40
|
LL | fn bar<'tr: 'tr>(&'tr mut self) -> impl Sized + use<Self>;
| ---------------------- return type from trait method defined here
...
LL | fn bar<'im: 'im>(&'im mut self) -> impl Sized + 'im {}
| ^^^^^^^^^^^^^^^^
|
= note: add `#[allow(refining_impl_trait)]` if it is intended for this to be part of the public API of this crate
= note: we are soliciting feedback, see issue #121718 <https://github.com/rust-lang/rust/issues/121718> for more information
= note: `#[warn(refining_impl_trait_reachable)]` on by default
help: replace the return type so that it matches the trait
|
LL | fn bar<'im: 'im>(&'im mut self) -> impl Sized {}
| ~~~~~~~~~~
error: aborting due to 2 previous errors; 1 warning emitted
error: aborting due to 2 previous errors