mirror of
https://github.com/rust-lang/rust.git
synced 2024-11-25 08:13:41 +00:00
Auto merge of #108157 - scottmcm:tuple-gt-via-partialcmp, r=dtolnay
Use `partial_cmp` to implement tuple `lt`/`le`/`ge`/`gt` In today's implementation, `(A, B)::gt` contains calls to *both* `A::eq` *and* `A::gt`. That's fine for primitives, but for things like `String`s it's kinda weird -- `(String, usize)::gt` has a call to both `bcmp` and `memcmp` (<https://rust.godbolt.org/z/7jbbPMesf>) because when `bcmp` says the `String`s aren't equal, it turns around and calls `memcmp` to find out which one's bigger. This PR changes the implementation to instead implement `(A, …, C, Z)::gt` using `A::partial_cmp`, `…::partial_cmp`, `C::partial_cmp`, and `Z::gt`. (And analogously for `lt`, `le`, and `ge`.) That way expensive comparisons don't need to be repeated. Technically this is an observable change on stable, so I've marked it `needs-fcp` + `T-libs-api` and will r? rust-lang/libs-api I'm hoping that this will be non-controversial, however, since it's very similar to the observable changes that were made to the derives (#81384 #98655) -- like those, this only changes behaviour if a type overrode behaviour in a way inconsistent with the rules for the various traits involved. (The first commit here is #108156, adding the codegen test, which I used to make sure this doesn't regress behaviour for primitives.) Zulip conversation about this change: <https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/.60.3E.60.20on.20Tuples/near/328392927>.
This commit is contained in:
commit
816f958ac3
@ -20,6 +20,7 @@ mod ops;
|
||||
mod pattern;
|
||||
mod slice;
|
||||
mod str;
|
||||
mod tuple;
|
||||
|
||||
/// Returns a `rand::Rng` seeded with a consistent seed.
|
||||
///
|
||||
|
22
library/core/benches/tuple.rs
Normal file
22
library/core/benches/tuple.rs
Normal file
@ -0,0 +1,22 @@
|
||||
use rand::prelude::*;
|
||||
use test::{black_box, Bencher};
|
||||
|
||||
#[bench]
|
||||
fn bench_tuple_comparison(b: &mut Bencher) {
|
||||
let mut rng = black_box(super::bench_rng());
|
||||
|
||||
let data = black_box([
|
||||
("core::iter::adapters::Chain", 123_usize),
|
||||
("core::iter::adapters::Clone", 456_usize),
|
||||
("core::iter::adapters::Copie", 789_usize),
|
||||
("core::iter::adapters::Cycle", 123_usize),
|
||||
("core::iter::adapters::Flatt", 456_usize),
|
||||
("core::iter::adapters::TakeN", 789_usize),
|
||||
]);
|
||||
|
||||
b.iter(|| {
|
||||
let x = data.choose(&mut rng).unwrap();
|
||||
let y = data.choose(&mut rng).unwrap();
|
||||
[x < y, x <= y, x > y, x >= y]
|
||||
});
|
||||
}
|
@ -1,7 +1,7 @@
|
||||
// See src/libstd/primitive_docs.rs for documentation.
|
||||
|
||||
use crate::cmp::Ordering::*;
|
||||
use crate::cmp::*;
|
||||
use crate::cmp::Ordering::{self, *};
|
||||
use crate::mem::transmute;
|
||||
|
||||
// Recursive macro for implementing n-ary tuple functions and operations
|
||||
//
|
||||
@ -61,19 +61,19 @@ macro_rules! tuple_impls {
|
||||
}
|
||||
#[inline]
|
||||
fn lt(&self, other: &($($T,)+)) -> bool {
|
||||
lexical_ord!(lt, $( ${ignore(T)} self.${index()}, other.${index()} ),+)
|
||||
lexical_ord!(lt, Less, $( ${ignore(T)} self.${index()}, other.${index()} ),+)
|
||||
}
|
||||
#[inline]
|
||||
fn le(&self, other: &($($T,)+)) -> bool {
|
||||
lexical_ord!(le, $( ${ignore(T)} self.${index()}, other.${index()} ),+)
|
||||
lexical_ord!(le, Less, $( ${ignore(T)} self.${index()}, other.${index()} ),+)
|
||||
}
|
||||
#[inline]
|
||||
fn ge(&self, other: &($($T,)+)) -> bool {
|
||||
lexical_ord!(ge, $( ${ignore(T)} self.${index()}, other.${index()} ),+)
|
||||
lexical_ord!(ge, Greater, $( ${ignore(T)} self.${index()}, other.${index()} ),+)
|
||||
}
|
||||
#[inline]
|
||||
fn gt(&self, other: &($($T,)+)) -> bool {
|
||||
lexical_ord!(gt, $( ${ignore(T)} self.${index()}, other.${index()} ),+)
|
||||
lexical_ord!(gt, Greater, $( ${ignore(T)} self.${index()}, other.${index()} ),+)
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -123,16 +123,38 @@ macro_rules! maybe_tuple_doc {
|
||||
};
|
||||
}
|
||||
|
||||
// Constructs an expression that performs a lexical ordering using method $rel.
|
||||
#[inline]
|
||||
const fn ordering_is_some(c: Option<Ordering>, x: Ordering) -> bool {
|
||||
// FIXME: Just use `==` once that's const-stable on `Option`s.
|
||||
// This isn't using `match` because that optimizes worse due to
|
||||
// making a two-step check (`Some` *then* the inner value).
|
||||
|
||||
// SAFETY: There's no public guarantee for `Option<Ordering>`,
|
||||
// but we're core so we know that it's definitely a byte.
|
||||
unsafe {
|
||||
let c: i8 = transmute(c);
|
||||
let x: i8 = transmute(Some(x));
|
||||
c == x
|
||||
}
|
||||
}
|
||||
|
||||
// Constructs an expression that performs a lexical ordering using method `$rel`.
|
||||
// The values are interleaved, so the macro invocation for
|
||||
// `(a1, a2, a3) < (b1, b2, b3)` would be `lexical_ord!(lt, a1, b1, a2, b2,
|
||||
// a3, b3)` (and similarly for `lexical_cmp`)
|
||||
// `(a1, a2, a3) < (b1, b2, b3)` would be `lexical_ord!(lt, opt_is_lt, a1, b1,
|
||||
// a2, b2, a3, b3)` (and similarly for `lexical_cmp`)
|
||||
//
|
||||
// `$ne_rel` is only used to determine the result after checking that they're
|
||||
// not equal, so `lt` and `le` can both just use `Less`.
|
||||
macro_rules! lexical_ord {
|
||||
($rel: ident, $a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => {
|
||||
if $a != $b { lexical_ord!($rel, $a, $b) }
|
||||
else { lexical_ord!($rel, $($rest_a, $rest_b),+) }
|
||||
($rel: ident, $ne_rel: ident, $a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => {{
|
||||
let c = PartialOrd::partial_cmp(&$a, &$b);
|
||||
if !ordering_is_some(c, Equal) { ordering_is_some(c, $ne_rel) }
|
||||
else { lexical_ord!($rel, $ne_rel, $($rest_a, $rest_b),+) }
|
||||
}};
|
||||
($rel: ident, $ne_rel: ident, $a:expr, $b:expr) => {
|
||||
// Use the specific method for the last element
|
||||
PartialOrd::$rel(&$a, &$b)
|
||||
};
|
||||
($rel: ident, $a:expr, $b:expr) => { ($a) . $rel (& $b) };
|
||||
}
|
||||
|
||||
macro_rules! lexical_partial_cmp {
|
||||
|
121
tests/codegen/comparison-operators-2-tuple.rs
Normal file
121
tests/codegen/comparison-operators-2-tuple.rs
Normal file
@ -0,0 +1,121 @@
|
||||
// compile-flags: -C opt-level=1 -Z merge-functions=disabled
|
||||
// min-llvm-version: 15.0
|
||||
// only-x86_64
|
||||
|
||||
#![crate_type = "lib"]
|
||||
|
||||
use std::cmp::Ordering;
|
||||
|
||||
type TwoTuple = (i16, u16);
|
||||
|
||||
//
|
||||
// The operators are all overridden directly, so should optimize easily.
|
||||
//
|
||||
// Yes, the `s[lg]t` is correct for the `[lg]e` version because it's only used
|
||||
// in the side of the select where we know the values are *not* equal.
|
||||
//
|
||||
|
||||
// CHECK-LABEL: @check_lt_direct
|
||||
// CHECK-SAME: (i16 noundef %[[A0:.+]], i16 noundef %[[A1:.+]], i16 noundef %[[B0:.+]], i16 noundef %[[B1:.+]])
|
||||
#[no_mangle]
|
||||
pub fn check_lt_direct(a: TwoTuple, b: TwoTuple) -> bool {
|
||||
// CHECK-DAG: %[[EQ:.+]] = icmp eq i16 %[[A0]], %[[B0]]
|
||||
// CHECK-DAG: %[[CMP0:.+]] = icmp slt i16 %[[A0]], %[[B0]]
|
||||
// CHECK-DAG: %[[CMP1:.+]] = icmp ult i16 %[[A1]], %[[B1]]
|
||||
// CHECK: %[[R:.+]] = select i1 %[[EQ]], i1 %[[CMP1]], i1 %[[CMP0]]
|
||||
// CHECK: ret i1 %[[R]]
|
||||
a < b
|
||||
}
|
||||
|
||||
// CHECK-LABEL: @check_le_direct
|
||||
// CHECK-SAME: (i16 noundef %[[A0:.+]], i16 noundef %[[A1:.+]], i16 noundef %[[B0:.+]], i16 noundef %[[B1:.+]])
|
||||
#[no_mangle]
|
||||
pub fn check_le_direct(a: TwoTuple, b: TwoTuple) -> bool {
|
||||
// CHECK-DAG: %[[EQ:.+]] = icmp eq i16 %[[A0]], %[[B0]]
|
||||
// CHECK-DAG: %[[CMP0:.+]] = icmp slt i16 %[[A0]], %[[B0]]
|
||||
// CHECK-DAG: %[[CMP1:.+]] = icmp ule i16 %[[A1]], %[[B1]]
|
||||
// CHECK: %[[R:.+]] = select i1 %[[EQ]], i1 %[[CMP1]], i1 %[[CMP0]]
|
||||
// CHECK: ret i1 %[[R]]
|
||||
a <= b
|
||||
}
|
||||
|
||||
// CHECK-LABEL: @check_gt_direct
|
||||
// CHECK-SAME: (i16 noundef %[[A0:.+]], i16 noundef %[[A1:.+]], i16 noundef %[[B0:.+]], i16 noundef %[[B1:.+]])
|
||||
#[no_mangle]
|
||||
pub fn check_gt_direct(a: TwoTuple, b: TwoTuple) -> bool {
|
||||
// CHECK-DAG: %[[EQ:.+]] = icmp eq i16 %[[A0]], %[[B0]]
|
||||
// CHECK-DAG: %[[CMP0:.+]] = icmp sgt i16 %[[A0]], %[[B0]]
|
||||
// CHECK-DAG: %[[CMP1:.+]] = icmp ugt i16 %[[A1]], %[[B1]]
|
||||
// CHECK: %[[R:.+]] = select i1 %[[EQ]], i1 %[[CMP1]], i1 %[[CMP0]]
|
||||
// CHECK: ret i1 %[[R]]
|
||||
a > b
|
||||
}
|
||||
|
||||
// CHECK-LABEL: @check_ge_direct
|
||||
// CHECK-SAME: (i16 noundef %[[A0:.+]], i16 noundef %[[A1:.+]], i16 noundef %[[B0:.+]], i16 noundef %[[B1:.+]])
|
||||
#[no_mangle]
|
||||
pub fn check_ge_direct(a: TwoTuple, b: TwoTuple) -> bool {
|
||||
// CHECK-DAG: %[[EQ:.+]] = icmp eq i16 %[[A0]], %[[B0]]
|
||||
// CHECK-DAG: %[[CMP0:.+]] = icmp sgt i16 %[[A0]], %[[B0]]
|
||||
// CHECK-DAG: %[[CMP1:.+]] = icmp uge i16 %[[A1]], %[[B1]]
|
||||
// CHECK: %[[R:.+]] = select i1 %[[EQ]], i1 %[[CMP1]], i1 %[[CMP0]]
|
||||
// CHECK: ret i1 %[[R]]
|
||||
a >= b
|
||||
}
|
||||
|
||||
//
|
||||
// These ones are harder, since there are more intermediate values to remove.
|
||||
//
|
||||
// `<` seems to be getting lucky right now, so test that doesn't regress.
|
||||
//
|
||||
// The others, however, aren't managing to optimize away the extra `select`s yet.
|
||||
// See <https://github.com/rust-lang/rust/issues/106107> for more about this.
|
||||
//
|
||||
|
||||
// CHECK-LABEL: @check_lt_via_cmp
|
||||
// CHECK-SAME: (i16 noundef %[[A0:.+]], i16 noundef %[[A1:.+]], i16 noundef %[[B0:.+]], i16 noundef %[[B1:.+]])
|
||||
#[no_mangle]
|
||||
pub fn check_lt_via_cmp(a: TwoTuple, b: TwoTuple) -> bool {
|
||||
// CHECK-DAG: %[[EQ:.+]] = icmp eq i16 %[[A0]], %[[B0]]
|
||||
// CHECK-DAG: %[[CMP0:.+]] = icmp slt i16 %[[A0]], %[[B0]]
|
||||
// CHECK-DAG: %[[CMP1:.+]] = icmp ult i16 %[[A1]], %[[B1]]
|
||||
// CHECK: %[[R:.+]] = select i1 %[[EQ]], i1 %[[CMP1]], i1 %[[CMP0]]
|
||||
// CHECK: ret i1 %[[R]]
|
||||
Ord::cmp(&a, &b).is_lt()
|
||||
}
|
||||
|
||||
// CHECK-LABEL: @check_le_via_cmp
|
||||
// CHECK-SAME: (i16 noundef %[[A0:.+]], i16 noundef %[[A1:.+]], i16 noundef %[[B0:.+]], i16 noundef %[[B1:.+]])
|
||||
#[no_mangle]
|
||||
pub fn check_le_via_cmp(a: TwoTuple, b: TwoTuple) -> bool {
|
||||
// FIXME-CHECK-DAG: %[[EQ:.+]] = icmp eq i16 %[[A0]], %[[B0]]
|
||||
// FIXME-CHECK-DAG: %[[CMP0:.+]] = icmp sle i16 %[[A0]], %[[B0]]
|
||||
// FIXME-CHECK-DAG: %[[CMP1:.+]] = icmp ule i16 %[[A1]], %[[B1]]
|
||||
// FIXME-CHECK: %[[R:.+]] = select i1 %[[EQ]], i1 %[[CMP1]], i1 %[[CMP0]]
|
||||
// FIXME-CHECK: ret i1 %[[R]]
|
||||
Ord::cmp(&a, &b).is_le()
|
||||
}
|
||||
|
||||
// CHECK-LABEL: @check_gt_via_cmp
|
||||
// CHECK-SAME: (i16 noundef %[[A0:.+]], i16 noundef %[[A1:.+]], i16 noundef %[[B0:.+]], i16 noundef %[[B1:.+]])
|
||||
#[no_mangle]
|
||||
pub fn check_gt_via_cmp(a: TwoTuple, b: TwoTuple) -> bool {
|
||||
// FIXME-CHECK-DAG: %[[EQ:.+]] = icmp eq i16 %[[A0]], %[[B0]]
|
||||
// FIXME-CHECK-DAG: %[[CMP0:.+]] = icmp sgt i16 %[[A0]], %[[B0]]
|
||||
// FIXME-CHECK-DAG: %[[CMP1:.+]] = icmp ugt i16 %[[A1]], %[[B1]]
|
||||
// FIXME-CHECK: %[[R:.+]] = select i1 %[[EQ]], i1 %[[CMP1]], i1 %[[CMP0]]
|
||||
// FIXME-CHECK: ret i1 %[[R]]
|
||||
Ord::cmp(&a, &b).is_gt()
|
||||
}
|
||||
|
||||
// CHECK-LABEL: @check_ge_via_cmp
|
||||
// CHECK-SAME: (i16 noundef %[[A0:.+]], i16 noundef %[[A1:.+]], i16 noundef %[[B0:.+]], i16 noundef %[[B1:.+]])
|
||||
#[no_mangle]
|
||||
pub fn check_ge_via_cmp(a: TwoTuple, b: TwoTuple) -> bool {
|
||||
// FIXME-CHECK-DAG: %[[EQ:.+]] = icmp eq i16 %[[A0]], %[[B0]]
|
||||
// FIXME-CHECK-DAG: %[[CMP0:.+]] = icmp sge i16 %[[A0]], %[[B0]]
|
||||
// FIXME-CHECK-DAG: %[[CMP1:.+]] = icmp uge i16 %[[A1]], %[[B1]]
|
||||
// FIXME-CHECK: %[[R:.+]] = select i1 %[[EQ]], i1 %[[CMP1]], i1 %[[CMP0]]
|
||||
// FIXME-CHECK: ret i1 %[[R]]
|
||||
Ord::cmp(&a, &b).is_ge()
|
||||
}
|
Loading…
Reference in New Issue
Block a user