auto merge of #8446 : alexcrichton/rust/ifmt++, r=graydon

This includes a number of improvements to `ifmt!`

* Implements formatting arguments -- `{:0.5x}` works now
* Formatting now works on all integer widths, not just `int` and `uint`
* Added a large doc block to `std::fmt` which should help explain what `ifmt!` is all about
* Added floating point formatters, although they have the same pitfalls from before (they're just proof-of-concept now)

Closed a couple of issues along the way, yay! Once this gets into a snapshot, I'll start looking into removing all of `fmt`
This commit is contained in:
bors 2013-08-13 19:23:21 -07:00
commit 7585b34d31
8 changed files with 813 additions and 176 deletions

View File

@ -20,6 +20,15 @@ use unicode::{derived_property, general_category};
#[cfg(not(test))] use cmp::{Eq, Ord};
#[cfg(not(test))] use num::Zero;
// UTF-8 ranges and tags for encoding characters
static TAG_CONT: uint = 128u;
static MAX_ONE_B: uint = 128u;
static TAG_TWO_B: uint = 192u;
static MAX_TWO_B: uint = 2048u;
static TAG_THREE_B: uint = 224u;
static MAX_THREE_B: uint = 65536u;
static TAG_FOUR_B: uint = 240u;
/*
Lu Uppercase_Letter an uppercase letter
Ll Lowercase_Letter a lowercase letter
@ -278,6 +287,12 @@ pub trait Char {
fn escape_unicode(&self, f: &fn(char));
fn escape_default(&self, f: &fn(char));
fn len_utf8_bytes(&self) -> uint;
/// Encodes this character as utf-8 into the provided byte-buffer. The
/// buffer must be at least 4 bytes long or a runtime failure will occur.
///
/// This will then return the number of characters written to the slice.
fn encode_utf8(&self, dst: &mut [u8]) -> uint;
}
impl Char for char {
@ -308,6 +323,29 @@ impl Char for char {
fn escape_default(&self, f: &fn(char)) { escape_default(*self, f) }
fn len_utf8_bytes(&self) -> uint { len_utf8_bytes(*self) }
fn encode_utf8<'a>(&self, dst: &'a mut [u8]) -> uint {
let code = *self as uint;
if code < MAX_ONE_B {
dst[0] = code as u8;
return 1;
} else if code < MAX_TWO_B {
dst[0] = (code >> 6u & 31u | TAG_TWO_B) as u8;
dst[1] = (code & 63u | TAG_CONT) as u8;
return 2;
} else if code < MAX_THREE_B {
dst[0] = (code >> 12u & 15u | TAG_THREE_B) as u8;
dst[1] = (code >> 6u & 63u | TAG_CONT) as u8;
dst[2] = (code & 63u | TAG_CONT) as u8;
return 3;
} else {
dst[0] = (code >> 18u & 7u | TAG_FOUR_B) as u8;
dst[1] = (code >> 12u & 63u | TAG_CONT) as u8;
dst[2] = (code >> 6u & 63u | TAG_CONT) as u8;
dst[3] = (code & 63u | TAG_CONT) as u8;
return 4;
}
}
}
#[cfg(not(test))]

View File

@ -8,16 +8,317 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/**!
# The Formatting Module
This module contains the runtime support for the `ifmt!` syntax extension. This
macro is implemented in the compiler to emit calls to this module in order to
format arguments at runtime into strings and streams.
The functions contained in this module should not normally be used in everyday
use cases of `ifmt!`. The assumptions made by these functions are unsafe for all
inputs, and the compiler performs a large amount of validation on the arguments
to `ifmt!` in order to ensure safety at runtime. While it is possible to call
these functions directly, it is not recommended to do so in the general case.
## Usage
The `ifmt!` macro is intended to be familiar to those coming from C's
printf/sprintf functions or Python's `str.format` function. In its current
revision, the `ifmt!` macro returns a `~str` type which is the result of the
formatting. In the future it will also be able to pass in a stream to format
arguments directly while performing minimal allocations.
Some examples of the `ifmt!` extension are:
~~~{.rust}
ifmt!("Hello") // => ~"Hello"
ifmt!("Hello, {:s}!", "world") // => ~"Hello, world!"
ifmt!("The number is {:d}", 1) // => ~"The number is 1"
ifmt!("{}", ~[3, 4]) // => ~"~[3, 4]"
ifmt!("{value}", value=4) // => ~"4"
ifmt!("{} {}", 1, 2) // => ~"1 2"
~~~
From these, you can see that the first argument is a format string. It is
required by the compiler for this to be a string literal; it cannot be a
variable passed in (in order to perform validity checking). The compiler will
then parse the format string and determine if the list of arguments provided is
suitable to pass to this format string.
### Positional parameters
Each formatting argument is allowed to specify which value argument it's
referencing, and if omitted it is assumed to be "the next argument". For
example, the format string `{} {} {}` would take three parameters, and they
would be formatted in the same order as they're given. The format string
`{2} {1} {0}`, however, would format arguments in reverse order.
A format string is required to use all of its arguments, otherwise it is a
compile-time error. You may refer to the same argument more than once in the
format string, although it must always be referred to with the same type.
### Named parameters
Rust itself does not have a Python-like equivalent of named parameters to a
function, but the `ifmt!` macro is a syntax extension which allows it to
leverage named parameters. Named parameters are listed at the end of the
argument list and have the syntax:
~~~
identifier '=' expression
~~~
It is illegal to put positional parameters (those without names) after arguments
which have names. Like positional parameters, it is illegal to provided named
parameters that are unused by the format string.
### Argument types
Each argument's type is dictated by the format string. It is a requirement that
every argument is only ever referred to by one type. When specifying the format
of an argument, however, a string like `{}` indicates no type. This is allowed,
and if all references to one argument do not provide a type, then the format `?`
is used (the type's rust-representation is printed). For example, this is an
invalid format string:
~~~
{0:d} {0:s}
~~~
Because the first argument is both referred to as an integer as well as a
string.
Because formatting is done via traits, there is no requirement that the
`d` format actually takes an `int`, but rather it simply requires a type which
ascribes to the `Signed` formatting trait. There are various parameters which do
require a particular type, however. Namely if the sytnax `{:.*s}` is used, then
the number of characters to print from the string precedes the actual string and
must have the type `uint`. Although a `uint` can be printed with `{:u}`, it is
illegal to reference an argument as such. For example, this is another invalid
format string:
~~~
{:.*s} {0:u}
~~~
### Formatting traits
When requesting that an argument be formatted with a particular type, you are
actually requesting that an argument ascribes to a particular trait. This allows
multiple actual types to be formatted via `{:d}` (like `i8` as well as `int`).
The current mapping of types to traits is:
* `?` => Poly
* `d` => Signed
* `i` => Signed
* `u` => Unsigned
* `b` => Bool
* `c` => Char
* `o` => Octal
* `x` => LowerHex
* `X` => UpperHex
* `s` => String
* `p` => Pointer
* `t` => Binary
* `f` => Float
What this means is that any type of argument which implements the
`std::fmt::Binary` trait can then be formatted with `{:t}`. Implementations are
provided for these traits for a number of primitive types by the standard
library as well. Again, the default formatting type (if no other is specified)
is `?` which is defined for all types by default.
When implementing a format trait for your own time, you will have to implement a
method of the signature:
~~~
fn fmt(value: &T, f: &mut std::fmt::Formatter);
~~~
Your type will be passed by-reference in `value`, and then the function should
emit output into the `f.buf` stream. It is up to each format trait
implementation to correctly adhere to the requested formatting parameters. The
values of these parameters will be listed in the fields of the `Formatter`
struct. In order to help with this, the `Formatter` struct also provides some
helper methods.
## Internationalization
The formatting syntax supported by the `ifmt!` extension supports
internationalization by providing "methods" which execute various differnet
outputs depending on the input. The syntax and methods provided are similar to
other internationalization systems, so again nothing should seem alien.
Currently two methods are supported by this extension: "select" and "plural".
Each method will execute one of a number of clauses, and then the value of the
clause will become what's the result of the argument's format. Inside of the
cases, nested argument strings may be provided, but all formatting arguments
must not be done through implicit positional means. All arguments inside of each
case of a method must be explicitly selected by their name or their integer
position.
Furthermore, whenever a case is running, the special character `#` can be used
to reference the string value of the argument which was selected upon. As an
example:
~~~
ifmt!("{0, select, other{#}}", "hello") // => ~"hello"
~~~
This example is the equivalent of `{0:s}` essentially.
### Select
The select method is a switch over a `&str` parameter, and the parameter *must*
be of the type `&str`. An example of the syntax is:
~~~
{0, select, male{...} female{...} other{...}}
~~~
Breaking this down, the `0`-th argument is selected upon with the `select`
method, and then a number of cases follow. Each case is preceded by an
identifier which is the match-clause to execute the given arm. In this case,
there are two explicit cases, `male` and `female`. The case will be executed if
the string argument provided is an exact match to the case selected.
The `other` case is also a required case for all `select` methods. This arm will
be executed if none of the other arms matched the word being selected over.
### Plural
The plural method is a switch statement over a `uint` parameter, and the
parameter *must* be a `uint`. A plural method in its full glory can be specified
as:
~~~
{0, plural, offset=1 =1{...} two{...} many{...} other{...}}
~~~
To break this down, the first `0` indicates that this method is selecting over
the value of the first positional parameter to the format string. Next, the
`plural` method is being executed. An optionally-supplied `offset` is then given
which indicates a number to subtract from argument `0` when matching. This is
then followed by a list of cases.
Each case is allowed to supply a specific value to match upon with the syntax
`=N`. This case is executed if the value at argument `0` matches N exactly,
without taking the offset into account. A case may also be specified by one of
five keywords: `zero`, `one`, `two`, `few`, and `many`. These cases are matched
on after argument `0` has the offset taken into account. Currently the
definitions of `many` and `few` are hardcoded, but they are in theory defined by
the current locale.
Finally, all `plural` methods must have an `other` case supplied which will be
executed if none of the other cases match.
## Syntax
The syntax for the formatting language used is drawn from other languages, so it
should not be too alien. Arguments are formatted with python-like syntax,
meaning that arguments are surrounded by `{}` instead of the C-like `%`. The
actual grammar for the formatting syntax is:
~~~
format_string := <text> [ format <text> ] *
format := '{' [ argument ] [ ':' format_spec ] [ ',' function_spec ] '}'
argument := integer | identifier
format_spec := [[fill]align][sign]['#'][0][width]['.' precision][type]
fill := character
align := '<' | '>'
sign := '+' | '-'
width := count
precision := count | '*'
type := identifier | ''
count := parameter | integer
parameter := integer '$'
function_spec := plural | select
select := 'select' ',' ( identifier arm ) *
plural := 'plural' ',' [ 'offset:' integer ] ( selector arm ) *
selector := '=' integer | keyword
keyword := 'zero' | 'one' | 'two' | 'few' | 'many' | 'other'
arm := '{' format_string '}'
~~~
## Formatting Parameters
Each argument being formatted can be transformed by a number of formatting
parameters (corresponding to `format_spec` in the syntax above). These
parameters affect the string representation of what's being formatted. This
syntax draws heavily from Python's, so it may seem a bit familiar.
### Fill/Alignment
The fill character is provided normally in conjunction with the `width`
parameter. This indicates that if the value being formatted is smaller than
`width` some extra characters will be printed around it. The extra characters
are specified by `fill`, and the alignment can be one of two options:
* `<` - the argument is left-aligned in `width` columns
* `>` - the argument is right-aligned in `width` columns
### Sign/#/0
These can all be interpreted as flags for a particular formatter.
* '+' - This is intended for numeric types and indicates that the sign should
always be printed. Positive signs are never printed by default, and the
negative sign is only printed by default for the `Signed` trait. This
flag indicates that the correct sign (+ or -) should always be printed.
* '-' - Currently not used
* '#' - This flag is indicates that the "alternate" form of printing should be
used. By default, this only applies to the integer formatting traits and
performs like:
* `x` - precedes the argument with a "0x"
* `X` - precedes the argument with a "0x"
* `t` - precedes the argument with a "0b"
* `o` - precedes the argument with a "0o"
* '0' - This is used to indicate for integer formats that the padding should
both be done with a `0` character as well as be sign-aware. A format
like `{:08d}` would yield `00000001` for the integer `1`, while the same
format would yield `-0000001` for the integer `-1`. Notice that the
negative version has one fewer zero than the positive version.
### Width
This is a parameter for the "minimum width" that the format should take up. If
the value's string does not fill up this many characters, then the padding
specified by fill/alignment will be used to take up the required space.
The default fill/alignment for non-numerics is a space and left-aligned. The
defaults for numeric formatters is also a space but with right-alignment. If the
'0' flag is specified for numerics, then the implicit fill character is '0'.
The value for the width can also be provided as a `uint` in the list of
parameters by using the `2$` syntax indicating that the second argument is a
`uint` specifying the width.
### Precision
For non-numeric types, this can be considered a "maximum width". If the
resulting string is longer than this width, then it is truncated down to this
many characters and only those are emitted.
For integral types, this has no meaning currently.
For floating-point types, this indicates how many digits after the decimal point
should be printed.
*/
use prelude::*;
use cast;
use int;
use char::Char;
use rt::io::Decorator;
use rt::io::mem::MemWriter;
use rt::io;
use str;
use sys;
use uint;
use util;
use vec;
@ -33,7 +334,7 @@ pub struct Formatter<'self> {
/// Character used as 'fill' whenever there is alignment
fill: char,
/// Boolean indication of whether the output should be left-aligned
alignleft: bool,
align: parse::Alignment,
/// Optionally specified integer width that the output should be
width: Option<uint>,
/// Optionally specified precision for numeric types
@ -77,6 +378,8 @@ pub trait String { fn fmt(&Self, &mut Formatter); }
pub trait Poly { fn fmt(&Self, &mut Formatter); }
#[allow(missing_doc)]
pub trait Pointer { fn fmt(&Self, &mut Formatter); }
#[allow(missing_doc)]
pub trait Float { fn fmt(&Self, &mut Formatter); }
/// The sprintf function takes a precompiled format string and a list of
/// arguments, to return the resulting formatted string.
@ -109,7 +412,7 @@ pub unsafe fn sprintf(fmt: &[rt::Piece], args: &[Argument]) -> ~str {
precision: None,
// FIXME(#8248): shouldn't need a transmute
buf: cast::transmute(&output as &io::Writer),
alignleft: false,
align: parse::AlignUnknown,
fill: ' ',
args: args,
curarg: args.iter(),
@ -122,6 +425,11 @@ pub unsafe fn sprintf(fmt: &[rt::Piece], args: &[Argument]) -> ~str {
}
impl<'self> Formatter<'self> {
// First up is the collection of functions used to execute a format string
// at runtime. This consumes all of the compile-time statics generated by
// the ifmt! syntax extension.
fn run(&mut self, piece: &rt::Piece, cur: Option<&str>) {
let setcount = |slot: &mut Option<uint>, cnt: &parse::Count| {
match *cnt {
@ -144,7 +452,7 @@ impl<'self> Formatter<'self> {
rt::Argument(ref arg) => {
// Fill in the format parameters into the formatter
self.fill = arg.format.fill;
self.alignleft = arg.format.alignleft;
self.align = arg.format.align;
self.flags = arg.format.flags;
setcount(&mut self.width, &arg.format.width);
setcount(&mut self.precision, &arg.format.precision);
@ -233,13 +541,154 @@ impl<'self> Formatter<'self> {
}
fn runplural(&mut self, value: uint, pieces: &[rt::Piece]) {
do uint::to_str_bytes(value, 10) |buf| {
do ::uint::to_str_bytes(value, 10) |buf| {
let valuestr = str::from_bytes_slice(buf);
for piece in pieces.iter() {
self.run(piece, Some(valuestr));
}
}
}
// Helper methods used for padding and processing formatting arguments that
// all formatting traits can use.
/// Performs the correct padding for an integer which has already been
/// emitted into a byte-array. The byte-array should *not* contain the sign
/// for the integer, that will be added by this method.
///
/// # Arguments
///
/// * s - the byte array that the number has been formatted into
/// * alternate_prefix - if the '#' character (FlagAlternate) is
/// provided, this is the prefix to put in front of the number.
/// Currently this is 0x/0o/0b/etc.
/// * positive - whether the original integer was positive or not.
///
/// This function will correctly account for the flags provided as well as
/// the minimum width. It will not take precision into account.
pub fn pad_integral(&mut self, s: &[u8], alternate_prefix: &str,
positive: bool) {
use fmt::parse::{FlagAlternate, FlagSignPlus, FlagSignAwareZeroPad};
let mut actual_len = s.len();
if self.flags & 1 << (FlagAlternate as uint) != 0 {
actual_len += alternate_prefix.len();
}
if self.flags & 1 << (FlagSignPlus as uint) != 0 {
actual_len += 1;
} else if !positive {
actual_len += 1;
}
let mut signprinted = false;
let sign = |this: &mut Formatter| {
if !signprinted {
if this.flags & 1 << (FlagSignPlus as uint) != 0 && positive {
this.buf.write(['+' as u8]);
} else if !positive {
this.buf.write(['-' as u8]);
}
if this.flags & 1 << (FlagAlternate as uint) != 0 {
this.buf.write(alternate_prefix.as_bytes());
}
signprinted = true;
}
};
let emit = |this: &mut Formatter| {
sign(this);
this.buf.write(s);
};
match self.width {
None => { emit(self) }
Some(min) if actual_len >= min => { emit(self) }
Some(min) => {
if self.flags & 1 << (FlagSignAwareZeroPad as uint) != 0 {
self.fill = '0';
sign(self);
}
do self.with_padding(min - actual_len, parse::AlignRight) |me| {
emit(me);
}
}
}
}
/// This function takes a string slice and emits it to the internal buffer
/// after applying the relevant formatting flags specified. The flags
/// recognized for generic strings are:
///
/// * width - the minimum width of what to emit
/// * fill/align - what to emit and where to emit it if the string
/// provided needs to be padded
/// * precision - the maximum length to emit, the string is truncated if it
/// is longer than this length
///
/// Notably this function ignored the `flag` parameters
pub fn pad(&mut self, s: &str) {
// Make sure there's a fast path up front
if self.width.is_none() && self.precision.is_none() {
self.buf.write(s.as_bytes());
return
}
// The `precision` field can be interpreted as a `max-width` for the
// string being formatted
match self.precision {
Some(max) => {
// If there's a maximum width and our string is longer than
// that, then we must always have truncation. This is the only
// case where the maximum length will matter.
let char_len = s.char_len();
if char_len >= max {
let nchars = ::uint::min(max, char_len);
self.buf.write(s.slice_chars(0, nchars).as_bytes());
return
}
}
None => {}
}
// The `width` field is more of a `min-width` parameter at this point.
match self.width {
// If we're under the maximum length, and there's no minimum length
// requirements, then we can just emit the string
None => { self.buf.write(s.as_bytes()) }
// If we're under the maximum width, check if we're over the minimum
// width, if so it's as easy as just emitting the string.
Some(width) if s.char_len() >= width => {
self.buf.write(s.as_bytes())
}
// If we're under both the maximum and the minimum width, then fill
// up the minimum width with the specified string + some alignment.
Some(width) => {
do self.with_padding(width - s.len(), parse::AlignLeft) |me| {
me.buf.write(s.as_bytes());
}
}
}
}
fn with_padding(&mut self, padding: uint,
default: parse::Alignment, f: &fn(&mut Formatter)) {
let align = match self.align {
parse::AlignUnknown => default,
parse::AlignLeft | parse::AlignRight => self.align
};
if align == parse::AlignLeft {
f(self);
}
let mut fill = [0u8, ..4];
let len = self.fill.encode_utf8(fill);
for _ in range(0, padding) {
self.buf.write(fill.slice_to(len));
}
if align == parse::AlignRight {
f(self);
}
}
}
/// This is a function which calls are emitted to by the compiler itself to
@ -279,78 +728,119 @@ impl Bool for bool {
impl<'self> String for &'self str {
fn fmt(s: & &'self str, f: &mut Formatter) {
// XXX: formatting args
f.buf.write(s.as_bytes())
f.pad(*s);
}
}
impl Char for char {
fn fmt(c: &char, f: &mut Formatter) {
// XXX: formatting args
// XXX: shouldn't require an allocation
let mut s = ~"";
s.push_char(*c);
f.buf.write(s.as_bytes());
let mut utf8 = [0u8, ..4];
let amt = c.encode_utf8(utf8);
let s: &str = unsafe { cast::transmute(utf8.slice_to(amt)) };
String::fmt(&s, f);
}
}
impl Signed for int {
fn fmt(c: &int, f: &mut Formatter) {
// XXX: formatting args
do int::to_str_bytes(*c, 10) |buf| {
f.buf.write(buf);
}
}
}
impl Unsigned for uint {
fn fmt(c: &uint, f: &mut Formatter) {
// XXX: formatting args
do uint::to_str_bytes(*c, 10) |buf| {
f.buf.write(buf);
}
}
}
impl Octal for uint {
fn fmt(c: &uint, f: &mut Formatter) {
// XXX: formatting args
do uint::to_str_bytes(*c, 8) |buf| {
f.buf.write(buf);
}
}
}
impl LowerHex for uint {
fn fmt(c: &uint, f: &mut Formatter) {
// XXX: formatting args
do uint::to_str_bytes(*c, 16) |buf| {
f.buf.write(buf);
}
}
}
impl UpperHex for uint {
fn fmt(c: &uint, f: &mut Formatter) {
// XXX: formatting args
do uint::to_str_bytes(*c, 16) |buf| {
let mut local = [0u8, ..16];
for (l, &b) in local.mut_iter().zip(buf.iter()) {
*l = match b as char {
'a' .. 'f' => (b - 'a' as u8) + 'A' as u8,
_ => b,
};
macro_rules! int_base(($ty:ident, $into:ident, $base:expr,
$name:ident, $prefix:expr) => {
impl $name for $ty {
fn fmt(c: &$ty, f: &mut Formatter) {
do ::$into::to_str_bytes(*c as $into, $base) |buf| {
f.pad_integral(buf, $prefix, true);
}
f.buf.write(local.slice_to(buf.len()));
}
}
})
macro_rules! upper_hex(($ty:ident, $into:ident) => {
impl UpperHex for $ty {
fn fmt(c: &$ty, f: &mut Formatter) {
do ::$into::to_str_bytes(*c as $into, 16) |buf| {
upperhex(buf, f);
}
}
}
})
// Not sure why, but this causes an "unresolved enum variant, struct or const"
// when inlined into the above macro...
#[doc(hidden)]
pub fn upperhex(buf: &[u8], f: &mut Formatter) {
let mut local = [0u8, ..16];
for i in ::iterator::range(0, buf.len()) {
local[i] = match buf[i] as char {
'a' .. 'f' => (buf[i] - 'a' as u8) + 'A' as u8,
c => c as u8,
}
}
f.pad_integral(local.slice_to(buf.len()), "0x", true);
}
// FIXME(#4375) shouldn't need an inner module
macro_rules! integer(($signed:ident, $unsigned:ident) => {
mod $signed {
use super::*;
// Signed is special because it actuall emits the negative sign,
// nothing else should do that, however.
impl Signed for $signed {
fn fmt(c: &$signed, f: &mut Formatter) {
do ::$unsigned::to_str_bytes(c.abs() as $unsigned, 10) |buf| {
f.pad_integral(buf, "", *c >= 0);
}
}
}
int_base!($signed, $unsigned, 2, Binary, "0b")
int_base!($signed, $unsigned, 8, Octal, "0o")
int_base!($signed, $unsigned, 16, LowerHex, "0x")
upper_hex!($signed, $unsigned)
int_base!($unsigned, $unsigned, 2, Binary, "0b")
int_base!($unsigned, $unsigned, 8, Octal, "0o")
int_base!($unsigned, $unsigned, 10, Unsigned, "")
int_base!($unsigned, $unsigned, 16, LowerHex, "0x")
upper_hex!($unsigned, $unsigned)
}
})
integer!(int, uint)
integer!(i8, u8)
integer!(i16, u16)
integer!(i32, u32)
integer!(i64, u64)
macro_rules! floating(($ty:ident) => {
impl Float for $ty {
fn fmt(f: &$ty, fmt: &mut Formatter) {
// XXX: this shouldn't perform an allocation
let s = match fmt.precision {
Some(i) => ::$ty::to_str_exact(f.abs(), i),
None => ::$ty::to_str_digits(f.abs(), 6)
};
fmt.pad_integral(s.as_bytes(), "", *f >= 0.0);
}
}
})
floating!(float)
floating!(f32)
floating!(f64)
impl<T> Poly for T {
fn fmt(t: &T, f: &mut Formatter) {
// XXX: formatting args
let s = sys::log_str(t);
f.buf.write(s.as_bytes());
match (f.width, f.precision) {
(None, None) => {
// XXX: sys::log_str should have a variant which takes a stream
// and we should directly call that (avoids unnecessary
// allocations)
let s = sys::log_str(t);
f.buf.write(s.as_bytes());
}
// If we have a specified width for formatting, then we have to make
// this allocation of a new string
_ => {
let s = sys::log_str(t);
f.pad(s);
}
}
}
}
@ -358,9 +848,10 @@ impl<T> Poly for T {
// time.
impl<T> Pointer for *const T {
fn fmt(t: &*const T, f: &mut Formatter) {
// XXX: formatting args
f.buf.write("0x".as_bytes());
LowerHex::fmt(&(*t as uint), f);
f.flags |= 1 << (parse::FlagAlternate as uint);
do ::uint::to_str_bytes(*t as uint, 16) |buf| {
f.pad_integral(buf, "0x", true);
}
}
}

View File

@ -47,7 +47,7 @@ pub struct FormatSpec<'self> {
/// Optionally specified character to fill alignment with
fill: Option<char>,
/// Optionally specified alignment
align: Option<Alignment>,
align: Alignment,
/// Packed version of various flags provided
flags: uint,
/// The integer precision to use
@ -68,7 +68,7 @@ pub enum Position<'self> {
/// Enum of alignments which are supoprted.
#[deriving(Eq)]
pub enum Alignment { AlignLeft, AlignRight }
pub enum Alignment { AlignLeft, AlignRight, AlignUnknown }
/// Various flags which can be applied to format strings, the meaning of these
/// flags is defined by the formatters themselves.
@ -77,6 +77,7 @@ pub enum Flag {
FlagSignPlus,
FlagSignMinus,
FlagAlternate,
FlagSignAwareZeroPad,
}
/// A count is used for the precision and width parameters of an integer, and
@ -288,7 +289,7 @@ impl<'self> Parser<'self> {
fn format(&mut self) -> FormatSpec<'self> {
let mut spec = FormatSpec {
fill: None,
align: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountImplied,
@ -311,9 +312,9 @@ impl<'self> Parser<'self> {
}
// Alignment
if self.consume('<') {
spec.align = Some(AlignLeft);
spec.align = AlignLeft;
} else if self.consume('>') {
spec.align = Some(AlignRight);
spec.align = AlignRight;
}
// Sign flags
if self.consume('+') {
@ -326,6 +327,9 @@ impl<'self> Parser<'self> {
spec.flags |= 1 << (FlagAlternate as uint);
}
// Width and precision
if self.consume('0') {
spec.flags |= 1 << (FlagSignAwareZeroPad as uint);
}
spec.width = self.count();
if self.consume('.') {
if self.consume('*') {
@ -597,7 +601,7 @@ mod tests {
fn fmtdflt() -> FormatSpec<'static> {
return FormatSpec {
fill: None,
align: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountImplied,
@ -656,7 +660,7 @@ mod tests {
position: ArgumentIs(3),
format: FormatSpec {
fill: None,
align: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountImplied,
@ -671,7 +675,7 @@ mod tests {
position: ArgumentIs(3),
format: FormatSpec {
fill: None,
align: Some(AlignRight),
align: AlignRight,
flags: 0,
precision: CountImplied,
width: CountImplied,
@ -683,7 +687,7 @@ mod tests {
position: ArgumentIs(3),
format: FormatSpec {
fill: Some('0'),
align: Some(AlignLeft),
align: AlignLeft,
flags: 0,
precision: CountImplied,
width: CountImplied,
@ -695,7 +699,7 @@ mod tests {
position: ArgumentIs(3),
format: FormatSpec {
fill: Some('*'),
align: Some(AlignLeft),
align: AlignLeft,
flags: 0,
precision: CountImplied,
width: CountImplied,
@ -710,7 +714,7 @@ mod tests {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountIs(10),
@ -722,7 +726,7 @@ mod tests {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: None,
align: AlignUnknown,
flags: 0,
precision: CountIs(10),
width: CountIsParam(10),
@ -734,7 +738,7 @@ mod tests {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: None,
align: AlignUnknown,
flags: 0,
precision: CountIsNextParam,
width: CountImplied,
@ -746,7 +750,7 @@ mod tests {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: None,
align: AlignUnknown,
flags: 0,
precision: CountIsParam(10),
width: CountImplied,
@ -761,7 +765,7 @@ mod tests {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: None,
align: AlignUnknown,
flags: (1 << FlagSignMinus as uint),
precision: CountImplied,
width: CountImplied,
@ -773,7 +777,7 @@ mod tests {
position: ArgumentNext,
format: FormatSpec {
fill: None,
align: None,
align: AlignUnknown,
flags: (1 << FlagSignPlus as uint) | (1 << FlagAlternate as uint),
precision: CountImplied,
width: CountImplied,
@ -788,7 +792,7 @@ mod tests {
position: ArgumentIs(3),
format: FormatSpec {
fill: None,
align: None,
align: AlignUnknown,
flags: 0,
precision: CountImplied,
width: CountImplied,

View File

@ -36,7 +36,7 @@ pub struct Argument<'self> {
pub struct FormatSpec {
fill: char,
alignleft: bool,
align: parse::Alignment,
flags: uint,
precision: parse::Count,
width: parse::Count,

View File

@ -33,6 +33,7 @@ use ptr;
use ptr::RawPtr;
use to_str::ToStr;
use uint;
use unstable::raw::{Repr, Slice};
use vec;
use vec::{OwnedVector, OwnedCopyableVector, ImmutableVector, MutableVector};
@ -758,15 +759,7 @@ macro_rules! utf8_acc_cont_byte(
($ch:expr, $byte:expr) => (($ch << 6) | ($byte & 63u8) as uint)
)
// UTF-8 tags and ranges
static TAG_CONT_U8: u8 = 128u8;
static TAG_CONT: uint = 128u;
static MAX_ONE_B: uint = 128u;
static TAG_TWO_B: uint = 192u;
static MAX_TWO_B: uint = 2048u;
static TAG_THREE_B: uint = 224u;
static MAX_THREE_B: uint = 65536u;
static TAG_FOUR_B: uint = 240u;
static MAX_UNICODE: uint = 1114112u;
/// Unsafe operations
@ -1988,40 +1981,18 @@ impl OwnedStr for ~str {
#[inline]
fn push_char(&mut self, c: char) {
assert!((c as uint) < MAX_UNICODE); // FIXME: #7609: should be enforced on all `char`
let cur_len = self.len();
self.reserve_at_least(cur_len + 4); // may use up to 4 bytes
// Attempt to not use an intermediate buffer by just pushing bytes
// directly onto this string.
unsafe {
let code = c as uint;
let nb = if code < MAX_ONE_B { 1u }
else if code < MAX_TWO_B { 2u }
else if code < MAX_THREE_B { 3u }
else { 4u };
let len = self.len();
let new_len = len + nb;
self.reserve_at_least(new_len);
let off = len as int;
do self.as_mut_buf |buf, _len| {
match nb {
1u => {
*ptr::mut_offset(buf, off) = code as u8;
}
2u => {
*ptr::mut_offset(buf, off) = (code >> 6u & 31u | TAG_TWO_B) as u8;
*ptr::mut_offset(buf, off + 1) = (code & 63u | TAG_CONT) as u8;
}
3u => {
*ptr::mut_offset(buf, off) = (code >> 12u & 15u | TAG_THREE_B) as u8;
*ptr::mut_offset(buf, off + 1) = (code >> 6u & 63u | TAG_CONT) as u8;
*ptr::mut_offset(buf, off + 2) = (code & 63u | TAG_CONT) as u8;
}
4u => {
*ptr::mut_offset(buf, off) = (code >> 18u & 7u | TAG_FOUR_B) as u8;
*ptr::mut_offset(buf, off + 1) = (code >> 12u & 63u | TAG_CONT) as u8;
*ptr::mut_offset(buf, off + 2) = (code >> 6u & 63u | TAG_CONT) as u8;
*ptr::mut_offset(buf, off + 3) = (code & 63u | TAG_CONT) as u8;
}
_ => {}
}
}
raw::set_len(self, new_len);
let v = self.repr();
let len = c.encode_utf8(cast::transmute(Slice {
data: ((&(*v).data) as *u8).offset(cur_len as int),
len: 4,
}));
raw::set_len(self, cur_len + len);
}
}

View File

@ -56,6 +56,7 @@ impl<'self, T> Repr<Slice<T>> for &'self [T] {}
impl<'self> Repr<Slice<u8>> for &'self str {}
impl<T> Repr<*Box<T>> for @T {}
impl<T> Repr<*Box<Vec<T>>> for @[T] {}
impl Repr<*String> for ~str {}
// sure would be nice to have this
// impl<T> Repr<*Vec<T>> for ~[T] {}

View File

@ -127,7 +127,13 @@ impl Context {
}
}
parse::Argument(ref arg) => {
// argument first (it's first in the format string)
// width/precision first, if they have implicit positional
// parameters it makes more sense to consume them first.
self.verify_count(arg.format.width);
self.verify_count(arg.format.precision);
// argument second, if it's an implicit positional parameter
// it's written second, so it should come after width/precision.
let pos = match arg.position {
parse::ArgumentNext => {
let i = self.next_arg;
@ -144,10 +150,6 @@ impl Context {
} else { Known(arg.format.ty.to_managed()) };
self.verify_arg_type(pos, ty);
// width/precision next
self.verify_count(arg.format.width);
self.verify_count(arg.format.precision);
// and finally the method being applied
match arg.method {
None => {}
@ -315,6 +317,10 @@ impl Context {
/// Translate a `parse::Piece` to a static `rt::Piece`
fn trans_piece(&mut self, piece: &parse::Piece) -> @ast::expr {
let sp = self.fmtsp;
let parsepath = |s: &str| {
~[self.ecx.ident_of("std"), self.ecx.ident_of("fmt"),
self.ecx.ident_of("parse"), self.ecx.ident_of(s)]
};
let rtpath = |s: &str| {
~[self.ecx.ident_of("std"), self.ecx.ident_of("fmt"),
self.ecx.ident_of("rt"), self.ecx.ident_of(s)]
@ -480,20 +486,24 @@ impl Context {
let fill = self.ecx.expr_lit(sp, ast::lit_int(fill as i64,
ast::ty_char));
let align = match arg.format.align {
None | Some(parse::AlignLeft) => {
self.ecx.expr_bool(sp, true)
parse::AlignLeft => {
self.ecx.path_global(sp, parsepath("AlignLeft"))
}
Some(parse::AlignRight) => {
self.ecx.expr_bool(sp, false)
parse::AlignRight => {
self.ecx.path_global(sp, parsepath("AlignRight"))
}
parse::AlignUnknown => {
self.ecx.path_global(sp, parsepath("AlignUnknown"))
}
};
let align = self.ecx.expr_path(align);
let flags = self.ecx.expr_uint(sp, arg.format.flags);
let prec = trans_count(arg.format.precision);
let width = trans_count(arg.format.width);
let path = self.ecx.path_global(sp, rtpath("FormatSpec"));
let fmt = self.ecx.expr_struct(sp, path, ~[
self.ecx.field_imm(sp, self.ecx.ident_of("fill"), fill),
self.ecx.field_imm(sp, self.ecx.ident_of("alignleft"), align),
self.ecx.field_imm(sp, self.ecx.ident_of("align"), align),
self.ecx.field_imm(sp, self.ecx.ident_of("flags"), flags),
self.ecx.field_imm(sp, self.ecx.ident_of("precision"), prec),
self.ecx.field_imm(sp, self.ecx.ident_of("width"), width),
@ -627,15 +637,17 @@ impl Context {
Known(tyname) => {
let fmt_trait = match tyname.as_slice() {
"?" => "Poly",
"d" | "i" => "Signed",
"u" => "Unsigned",
"b" => "Bool",
"c" => "Char",
"d" | "i" => "Signed",
"f" => "Float",
"o" => "Octal",
"p" => "Pointer",
"s" => "String",
"t" => "Binary",
"u" => "Unsigned",
"x" => "LowerHex",
"X" => "UpperHex",
"s" => "String",
"p" => "Pointer",
_ => {
self.ecx.span_err(sp, fmt!("unknown format trait \
`%s`", tyname));

View File

@ -22,50 +22,170 @@ impl fmt::Signed for B {
}
pub fn main() {
fn t(a: ~str, b: &str) { assert_eq!(a, b.to_owned()); }
macro_rules! t(($a:expr, $b:expr) => { assert_eq!($a, $b.to_owned()) })
// Make sure there's a poly formatter that takes anything
t(ifmt!("{}", 1), "1");
t(ifmt!("{}", A), "{}");
t(ifmt!("{}", ()), "()");
t(ifmt!("{}", @(~1, "foo")), "@(~1, \"foo\")");
t!(ifmt!("{}", 1), "1");
t!(ifmt!("{}", A), "{}");
t!(ifmt!("{}", ()), "()");
t!(ifmt!("{}", @(~1, "foo")), "@(~1, \"foo\")");
// Various edge cases without formats
t(ifmt!(""), "");
t(ifmt!("hello"), "hello");
t(ifmt!("hello \\{"), "hello {");
t!(ifmt!(""), "");
t!(ifmt!("hello"), "hello");
t!(ifmt!("hello \\{"), "hello {");
// At least exercise all the formats
t(ifmt!("{:b}", true), "true");
t(ifmt!("{:c}", '☃'), "");
t(ifmt!("{:d}", 10), "10");
t(ifmt!("{:i}", 10), "10");
t(ifmt!("{:u}", 10u), "10");
t(ifmt!("{:o}", 10u), "12");
t(ifmt!("{:x}", 10u), "a");
t(ifmt!("{:X}", 10u), "A");
t(ifmt!("{:s}", "foo"), "foo");
t(ifmt!("{:p}", 0x1234 as *int), "0x1234");
t(ifmt!("{:p}", 0x1234 as *mut int), "0x1234");
t(ifmt!("{:d}", A), "aloha");
t(ifmt!("{:d}", B), "adios");
t(ifmt!("foo {:s} ☃☃☃☃☃☃", "bar"), "foo bar ☃☃☃☃☃☃");
t(ifmt!("{1} {0}", 0, 1), "1 0");
t(ifmt!("{foo} {bar}", foo=0, bar=1), "0 1");
t(ifmt!("{foo} {1} {bar} {0}", 0, 1, foo=2, bar=3), "2 1 3 0");
t(ifmt!("{} {0:s}", "a"), "a a");
t(ifmt!("{} {0}", "a"), "\"a\" \"a\"");
t!(ifmt!("{:b}", true), "true");
t!(ifmt!("{:c}", '☃'), "");
t!(ifmt!("{:d}", 10), "10");
t!(ifmt!("{:i}", 10), "10");
t!(ifmt!("{:u}", 10u), "10");
t!(ifmt!("{:o}", 10u), "12");
t!(ifmt!("{:x}", 10u), "a");
t!(ifmt!("{:X}", 10u), "A");
t!(ifmt!("{:s}", "foo"), "foo");
t!(ifmt!("{:p}", 0x1234 as *int), "0x1234");
t!(ifmt!("{:p}", 0x1234 as *mut int), "0x1234");
t!(ifmt!("{:d}", A), "aloha");
t!(ifmt!("{:d}", B), "adios");
t!(ifmt!("foo {:s} ☃☃☃☃☃☃", "bar"), "foo bar ☃☃☃☃☃☃");
t!(ifmt!("{1} {0}", 0, 1), "1 0");
t!(ifmt!("{foo} {bar}", foo=0, bar=1), "0 1");
t!(ifmt!("{foo} {1} {bar} {0}", 0, 1, foo=2, bar=3), "2 1 3 0");
t!(ifmt!("{} {0:s}", "a"), "a a");
t!(ifmt!("{} {0}", "a"), "\"a\" \"a\"");
// Methods should probably work
t(ifmt!("{0, plural, =1{a#} =2{b#} zero{c#} other{d#}}", 0u), "c0");
t(ifmt!("{0, plural, =1{a#} =2{b#} zero{c#} other{d#}}", 1u), "a1");
t(ifmt!("{0, plural, =1{a#} =2{b#} zero{c#} other{d#}}", 2u), "b2");
t(ifmt!("{0, plural, =1{a#} =2{b#} zero{c#} other{d#}}", 3u), "d3");
t(ifmt!("{0, select, a{a#} b{b#} c{c#} other{d#}}", "a"), "aa");
t(ifmt!("{0, select, a{a#} b{b#} c{c#} other{d#}}", "b"), "bb");
t(ifmt!("{0, select, a{a#} b{b#} c{c#} other{d#}}", "c"), "cc");
t(ifmt!("{0, select, a{a#} b{b#} c{c#} other{d#}}", "d"), "dd");
t(ifmt!("{1, select, a{#{0:s}} other{#{1}}}", "b", "a"), "ab");
t(ifmt!("{1, select, a{#{0}} other{#{1}}}", "c", "b"), "bb");
t!(ifmt!("{0, plural, =1{a#} =2{b#} zero{c#} other{d#}}", 0u), "c0");
t!(ifmt!("{0, plural, =1{a#} =2{b#} zero{c#} other{d#}}", 1u), "a1");
t!(ifmt!("{0, plural, =1{a#} =2{b#} zero{c#} other{d#}}", 2u), "b2");
t!(ifmt!("{0, plural, =1{a#} =2{b#} zero{c#} other{d#}}", 3u), "d3");
t!(ifmt!("{0, select, a{a#} b{b#} c{c#} other{d#}}", "a"), "aa");
t!(ifmt!("{0, select, a{a#} b{b#} c{c#} other{d#}}", "b"), "bb");
t!(ifmt!("{0, select, a{a#} b{b#} c{c#} other{d#}}", "c"), "cc");
t!(ifmt!("{0, select, a{a#} b{b#} c{c#} other{d#}}", "d"), "dd");
t!(ifmt!("{1, select, a{#{0:s}} other{#{1}}}", "b", "a"), "ab");
t!(ifmt!("{1, select, a{#{0}} other{#{1}}}", "c", "b"), "bb");
// Formatting strings and their arguments
t!(ifmt!("{:s}", "a"), "a");
t!(ifmt!("{:4s}", "a"), "a ");
t!(ifmt!("{:>4s}", "a"), " a");
t!(ifmt!("{:<4s}", "a"), "a ");
t!(ifmt!("{:.4s}", "a"), "a");
t!(ifmt!("{:4.4s}", "a"), "a ");
t!(ifmt!("{:4.4s}", "aaaaaaaaaaaaaaaaaa"), "aaaa");
t!(ifmt!("{:<4.4s}", "aaaaaaaaaaaaaaaaaa"), "aaaa");
t!(ifmt!("{:>4.4s}", "aaaaaaaaaaaaaaaaaa"), "aaaa");
t!(ifmt!("{:>10.4s}", "aaaaaaaaaaaaaaaaaa"), "aaaa");
t!(ifmt!("{:2.4s}", "aaaaa"), "aaaa");
t!(ifmt!("{:2.4s}", "aaaa"), "aaaa");
t!(ifmt!("{:2.4s}", "aaa"), "aaa");
t!(ifmt!("{:2.4s}", "aa"), "aa");
t!(ifmt!("{:2.4s}", "a"), "a ");
t!(ifmt!("{:0>2s}", "a"), "0a");
t!(ifmt!("{:.*s}", 4, "aaaaaaaaaaaaaaaaaa"), "aaaa");
t!(ifmt!("{:.1$s}", "aaaaaaaaaaaaaaaaaa", 4), "aaaa");
t!(ifmt!("{:1$s}", "a", 4), "a ");
t!(ifmt!("{:-#s}", "a"), "a");
t!(ifmt!("{:+#s}", "a"), "a");
// Formatting integers should select the right implementation based off the
// type of the argument. Also, hex/octal/binary should be defined for
// integers, but they shouldn't emit the negative sign.
t!(ifmt!("{:d}", -1i), "-1");
t!(ifmt!("{:d}", -1i8), "-1");
t!(ifmt!("{:d}", -1i16), "-1");
t!(ifmt!("{:d}", -1i32), "-1");
t!(ifmt!("{:d}", -1i64), "-1");
t!(ifmt!("{:t}", 1i), "1");
t!(ifmt!("{:t}", 1i8), "1");
t!(ifmt!("{:t}", 1i16), "1");
t!(ifmt!("{:t}", 1i32), "1");
t!(ifmt!("{:t}", 1i64), "1");
t!(ifmt!("{:x}", 1i), "1");
t!(ifmt!("{:x}", 1i8), "1");
t!(ifmt!("{:x}", 1i16), "1");
t!(ifmt!("{:x}", 1i32), "1");
t!(ifmt!("{:x}", 1i64), "1");
t!(ifmt!("{:X}", 1i), "1");
t!(ifmt!("{:X}", 1i8), "1");
t!(ifmt!("{:X}", 1i16), "1");
t!(ifmt!("{:X}", 1i32), "1");
t!(ifmt!("{:X}", 1i64), "1");
t!(ifmt!("{:o}", 1i), "1");
t!(ifmt!("{:o}", 1i8), "1");
t!(ifmt!("{:o}", 1i16), "1");
t!(ifmt!("{:o}", 1i32), "1");
t!(ifmt!("{:o}", 1i64), "1");
t!(ifmt!("{:u}", 1u), "1");
t!(ifmt!("{:u}", 1u8), "1");
t!(ifmt!("{:u}", 1u16), "1");
t!(ifmt!("{:u}", 1u32), "1");
t!(ifmt!("{:u}", 1u64), "1");
t!(ifmt!("{:t}", 1u), "1");
t!(ifmt!("{:t}", 1u8), "1");
t!(ifmt!("{:t}", 1u16), "1");
t!(ifmt!("{:t}", 1u32), "1");
t!(ifmt!("{:t}", 1u64), "1");
t!(ifmt!("{:x}", 1u), "1");
t!(ifmt!("{:x}", 1u8), "1");
t!(ifmt!("{:x}", 1u16), "1");
t!(ifmt!("{:x}", 1u32), "1");
t!(ifmt!("{:x}", 1u64), "1");
t!(ifmt!("{:X}", 1u), "1");
t!(ifmt!("{:X}", 1u8), "1");
t!(ifmt!("{:X}", 1u16), "1");
t!(ifmt!("{:X}", 1u32), "1");
t!(ifmt!("{:X}", 1u64), "1");
t!(ifmt!("{:o}", 1u), "1");
t!(ifmt!("{:o}", 1u8), "1");
t!(ifmt!("{:o}", 1u16), "1");
t!(ifmt!("{:o}", 1u32), "1");
t!(ifmt!("{:o}", 1u64), "1");
// Test the flags for formatting integers
t!(ifmt!("{:3d}", 1), " 1");
t!(ifmt!("{:>3d}", 1), " 1");
t!(ifmt!("{:>+3d}", 1), " +1");
t!(ifmt!("{:<3d}", 1), "1 ");
t!(ifmt!("{:#d}", 1), "1");
t!(ifmt!("{:#x}", 10), "0xa");
t!(ifmt!("{:#X}", 10), "0xA");
t!(ifmt!("{:#5x}", 10), " 0xa");
t!(ifmt!("{:#o}", 10), "0o12");
t!(ifmt!("{:08x}", 10), "0000000a");
t!(ifmt!("{:8x}", 10), " a");
t!(ifmt!("{:<8x}", 10), "a ");
t!(ifmt!("{:>8x}", 10), " a");
t!(ifmt!("{:#08x}", 10), "0x00000a");
t!(ifmt!("{:08d}", -10), "-0000010");
t!(ifmt!("{:x}", -1u8), "ff");
t!(ifmt!("{:X}", -1u8), "FF");
t!(ifmt!("{:t}", -1u8), "11111111");
t!(ifmt!("{:o}", -1u8), "377");
t!(ifmt!("{:#x}", -1u8), "0xff");
t!(ifmt!("{:#X}", -1u8), "0xFF");
t!(ifmt!("{:#t}", -1u8), "0b11111111");
t!(ifmt!("{:#o}", -1u8), "0o377");
// Signed combinations
t!(ifmt!("{:+5d}", 1), " +1");
t!(ifmt!("{:+5d}", -1), " -1");
t!(ifmt!("{:05d}", 1), "00001");
t!(ifmt!("{:05d}", -1), "-0001");
t!(ifmt!("{:+05d}", 1), "+0001");
t!(ifmt!("{:+05d}", -1), "-0001");
// Some float stuff
t!(ifmt!("{:f}", 1.0f), "1");
t!(ifmt!("{:f}", 1.0f32), "1");
t!(ifmt!("{:f}", 1.0f64), "1");
t!(ifmt!("{:.3f}", 1.0f), "1.000");
t!(ifmt!("{:10.3f}", 1.0f), " 1.000");
t!(ifmt!("{:+10.3f}", 1.0f), " +1.000");
t!(ifmt!("{:+10.3f}", -1.0f), " -1.000");
}