Auto merge of #103454 - camsteffen:remove-conservatively-uninhabited, r=oli-obk

Factor out `conservative_is_privately_uninhabited`

After #102660 there is no more need for `conservative_is_privately_uninhabited`.

r? `@oli-obk`
This commit is contained in:
bors 2022-11-21 04:42:43 +00:00
commit 736c675d2a
19 changed files with 99 additions and 163 deletions

View File

@ -1564,10 +1564,7 @@ impl<'a, 'tcx> TypeChecker<'a, 'tcx> {
} }
} }
None => { None => {
if !self if !sig.output().is_privately_uninhabited(self.tcx(), self.param_env) {
.tcx()
.conservative_is_privately_uninhabited(self.param_env.and(sig.output()))
{
span_mirbug!(self, term, "call to converging function {:?} w/o dest", sig); span_mirbug!(self, term, "call to converging function {:?} w/o dest", sig);
} }
} }

View File

@ -217,7 +217,7 @@ impl<'a, 'tcx> DropRangeVisitor<'a, 'tcx> {
let ty = self.tcx.erase_regions(ty); let ty = self.tcx.erase_regions(ty);
let m = self.tcx.parent_module(expr.hir_id).to_def_id(); let m = self.tcx.parent_module(expr.hir_id).to_def_id();
let param_env = self.tcx.param_env(m.expect_local()); let param_env = self.tcx.param_env(m.expect_local());
if self.tcx.is_ty_uninhabited_from(m, ty, param_env) { if !ty.is_inhabited_from(self.tcx, m, param_env) {
// This function will not return. We model this fact as an infinite loop. // This function will not return. We model this fact as an infinite loop.
self.drop_ranges.add_control_edge(self.expr_index + 1, self.expr_index + 1); self.drop_ranges.add_control_edge(self.expr_index + 1, self.expr_index + 1);
} }

View File

@ -542,10 +542,10 @@ fn check_must_not_suspend_ty<'tcx>(
data: SuspendCheckData<'_, 'tcx>, data: SuspendCheckData<'_, 'tcx>,
) -> bool { ) -> bool {
if ty.is_unit() if ty.is_unit()
// FIXME: should this check `is_ty_uninhabited_from`. This query is not available in this stage // FIXME: should this check `Ty::is_inhabited_from`. This query is not available in this stage
// of typeck (before ReVar and RePlaceholder are removed), but may remove noise, like in // of typeck (before ReVar and RePlaceholder are removed), but may remove noise, like in
// `must_use` // `must_use`
// || fcx.tcx.is_ty_uninhabited_from(fcx.tcx.parent_module(hir_id).to_def_id(), ty, fcx.param_env) // || !ty.is_inhabited_from(fcx.tcx, fcx.tcx.parent_module(hir_id).to_def_id(), fcx.param_env)
{ {
return false; return false;
} }

View File

@ -201,9 +201,9 @@ impl<'tcx> LateLintPass<'tcx> for UnusedResults {
plural_len: usize, plural_len: usize,
) -> bool { ) -> bool {
if ty.is_unit() if ty.is_unit()
|| cx.tcx.is_ty_uninhabited_from( || !ty.is_inhabited_from(
cx.tcx,
cx.tcx.parent_module(expr.hir_id).to_def_id(), cx.tcx.parent_module(expr.hir_id).to_def_id(),
ty,
cx.param_env, cx.param_env,
) )
{ {

View File

@ -2078,17 +2078,6 @@ rustc_queries! {
desc { "normalizing opaque types in `{:?}`", key } desc { "normalizing opaque types in `{:?}`", key }
} }
/// Checks whether a type is definitely uninhabited. This is
/// conservative: for some types that are uninhabited we return `false`,
/// but we only return `true` for types that are definitely uninhabited.
/// `ty.conservative_is_privately_uninhabited` implies that any value of type `ty`
/// will be `Abi::Uninhabited`. (Note that uninhabited types may have nonzero
/// size, to account for partial initialisation. See #49298 for details.)
query conservative_is_privately_uninhabited(key: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
desc { "conservatively checking if `{}` is privately uninhabited", key.value }
remap_env_constness
}
query limits(key: ()) -> Limits { query limits(key: ()) -> Limits {
desc { "looking up limits" } desc { "looking up limits" }
} }

View File

@ -41,6 +41,13 @@ impl<'tcx> InhabitedPredicate<'tcx> {
self.apply_inner(tcx, param_env, &|_| Err(())).ok() self.apply_inner(tcx, param_env, &|_| Err(())).ok()
} }
/// Same as `apply`, but `NotInModule(_)` predicates yield `false`. That is,
/// privately uninhabited types are considered always uninhabited.
pub fn apply_ignore_module(self, tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>) -> bool {
let Ok(result) = self.apply_inner::<!>(tcx, param_env, &|_| Ok(true));
result
}
fn apply_inner<E>( fn apply_inner<E>(
self, self,
tcx: TyCtxt<'tcx>, tcx: TyCtxt<'tcx>,

View File

@ -29,7 +29,7 @@
//! } //! }
//! ``` //! ```
//! In this code, the type `Foo` will only be visibly uninhabited inside the //! In this code, the type `Foo` will only be visibly uninhabited inside the
//! modules `b`, `c` and `d`. Calling `uninhabited_predicate` on `Foo` will //! modules `b`, `c` and `d`. Calling `inhabited_predicate` on `Foo` will
//! return `NotInModule(b) AND NotInModule(c)`. //! return `NotInModule(b) AND NotInModule(c)`.
//! //!
//! We need this information for pattern-matching on `Foo` or types that contain //! We need this information for pattern-matching on `Foo` or types that contain
@ -57,57 +57,6 @@ pub(crate) fn provide(providers: &mut ty::query::Providers) {
ty::query::Providers { inhabited_predicate_adt, inhabited_predicate_type, ..*providers }; ty::query::Providers { inhabited_predicate_adt, inhabited_predicate_type, ..*providers };
} }
impl<'tcx> TyCtxt<'tcx> {
/// Checks whether a type is visibly uninhabited from a particular module.
///
/// # Example
/// ```
/// #![feature(never_type)]
/// # fn main() {}
/// enum Void {}
/// mod a {
/// pub mod b {
/// pub struct SecretlyUninhabited {
/// _priv: !,
/// }
/// }
/// }
///
/// mod c {
/// use super::Void;
/// pub struct AlsoSecretlyUninhabited {
/// _priv: Void,
/// }
/// mod d {
/// }
/// }
///
/// struct Foo {
/// x: a::b::SecretlyUninhabited,
/// y: c::AlsoSecretlyUninhabited,
/// }
/// ```
/// In this code, the type `Foo` will only be visibly uninhabited inside the
/// modules b, c and d. This effects pattern-matching on `Foo` or types that
/// contain `Foo`.
///
/// # Example
/// ```ignore (illustrative)
/// let foo_result: Result<T, Foo> = ... ;
/// let Ok(t) = foo_result;
/// ```
/// This code should only compile in modules where the uninhabitedness of Foo is
/// visible.
pub fn is_ty_uninhabited_from(
self,
module: DefId,
ty: Ty<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> bool {
!ty.inhabited_predicate(self).apply(self, param_env, module)
}
}
/// Returns an `InhabitedPredicate` that is generic over type parameters and /// Returns an `InhabitedPredicate` that is generic over type parameters and
/// requires calling [`InhabitedPredicate::subst`] /// requires calling [`InhabitedPredicate::subst`]
fn inhabited_predicate_adt(tcx: TyCtxt<'_>, def_id: DefId) -> InhabitedPredicate<'_> { fn inhabited_predicate_adt(tcx: TyCtxt<'_>, def_id: DefId) -> InhabitedPredicate<'_> {
@ -171,6 +120,64 @@ impl<'tcx> Ty<'tcx> {
_ => InhabitedPredicate::True, _ => InhabitedPredicate::True,
} }
} }
/// Checks whether a type is visibly uninhabited from a particular module.
///
/// # Example
/// ```
/// #![feature(never_type)]
/// # fn main() {}
/// enum Void {}
/// mod a {
/// pub mod b {
/// pub struct SecretlyUninhabited {
/// _priv: !,
/// }
/// }
/// }
///
/// mod c {
/// use super::Void;
/// pub struct AlsoSecretlyUninhabited {
/// _priv: Void,
/// }
/// mod d {
/// }
/// }
///
/// struct Foo {
/// x: a::b::SecretlyUninhabited,
/// y: c::AlsoSecretlyUninhabited,
/// }
/// ```
/// In this code, the type `Foo` will only be visibly uninhabited inside the
/// modules b, c and d. This effects pattern-matching on `Foo` or types that
/// contain `Foo`.
///
/// # Example
/// ```ignore (illustrative)
/// let foo_result: Result<T, Foo> = ... ;
/// let Ok(t) = foo_result;
/// ```
/// This code should only compile in modules where the uninhabitedness of Foo is
/// visible.
pub fn is_inhabited_from(
self,
tcx: TyCtxt<'tcx>,
module: DefId,
param_env: ty::ParamEnv<'tcx>,
) -> bool {
self.inhabited_predicate(tcx).apply(tcx, param_env, module)
}
/// Returns true if the type is uninhabited without regard to visibility
pub fn is_privately_uninhabited(
self,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> bool {
!self.inhabited_predicate(tcx).apply_ignore_module(tcx, param_env)
}
} }
/// N.B. this query should only be called through `Ty::inhabited_predicate` /// N.B. this query should only be called through `Ty::inhabited_predicate`

View File

@ -271,15 +271,10 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
// MIR checks and ultimately whether code is accepted or not. We can only // MIR checks and ultimately whether code is accepted or not. We can only
// omit the return edge if a return type is visibly uninhabited to a module // omit the return edge if a return type is visibly uninhabited to a module
// that makes the call. // that makes the call.
target: if this.tcx.is_ty_uninhabited_from( target: expr
this.parent_module, .ty
expr.ty, .is_inhabited_from(this.tcx, this.parent_module, this.param_env)
this.param_env, .then_some(success),
) {
None
} else {
Some(success)
},
from_hir_call, from_hir_call,
fn_span, fn_span,
}, },

View File

@ -264,10 +264,10 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
let irrefutable = adt_def.variants().iter_enumerated().all(|(i, v)| { let irrefutable = adt_def.variants().iter_enumerated().all(|(i, v)| {
i == variant_index || { i == variant_index || {
self.tcx.features().exhaustive_patterns self.tcx.features().exhaustive_patterns
&& v.inhabited_predicate(self.tcx, adt_def) && !v
.inhabited_predicate(self.tcx, adt_def)
.subst(self.tcx, substs) .subst(self.tcx, substs)
.apply_any_module(self.tcx, self.param_env) .apply_ignore_module(self.tcx, self.param_env)
!= Some(true)
} }
}) && (adt_def.did().is_local() }) && (adt_def.did().is_local()
|| !adt_def.is_variant_list_non_exhaustive()); || !adt_def.is_variant_list_non_exhaustive());

View File

@ -818,7 +818,7 @@ fn non_exhaustive_match<'p, 'tcx>(
} }
} }
if let ty::Ref(_, sub_ty, _) = scrut_ty.kind() { if let ty::Ref(_, sub_ty, _) = scrut_ty.kind() {
if cx.tcx.is_ty_uninhabited_from(cx.module, *sub_ty, cx.param_env) { if !sub_ty.is_inhabited_from(cx.tcx, cx.module, cx.param_env) {
err.note("references are always considered inhabited"); err.note("references are always considered inhabited");
} }
} }

View File

@ -324,7 +324,7 @@ pub(crate) struct MatchCheckCtxt<'p, 'tcx> {
impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> { impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
pub(super) fn is_uninhabited(&self, ty: Ty<'tcx>) -> bool { pub(super) fn is_uninhabited(&self, ty: Ty<'tcx>) -> bool {
if self.tcx.features().exhaustive_patterns { if self.tcx.features().exhaustive_patterns {
self.tcx.is_ty_uninhabited_from(self.module, ty, self.param_env) !ty.is_inhabited_from(self.tcx, self.module, self.param_env)
} else { } else {
false false
} }

View File

@ -1015,7 +1015,7 @@ fn insert_panic_block<'tcx>(
fn can_return<'tcx>(tcx: TyCtxt<'tcx>, body: &Body<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool { fn can_return<'tcx>(tcx: TyCtxt<'tcx>, body: &Body<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
// Returning from a function with an uninhabited return type is undefined behavior. // Returning from a function with an uninhabited return type is undefined behavior.
if tcx.conservative_is_privately_uninhabited(param_env.and(body.return_ty())) { if body.return_ty().is_privately_uninhabited(tcx, param_env) {
return false; return false;
} }

View File

@ -1284,7 +1284,9 @@ impl<'a, 'tcx> Liveness<'a, 'tcx> {
fn check_is_ty_uninhabited(&mut self, expr: &Expr<'_>, succ: LiveNode) -> LiveNode { fn check_is_ty_uninhabited(&mut self, expr: &Expr<'_>, succ: LiveNode) -> LiveNode {
let ty = self.typeck_results.expr_ty(expr); let ty = self.typeck_results.expr_ty(expr);
let m = self.ir.tcx.parent_module(expr.hir_id).to_def_id(); let m = self.ir.tcx.parent_module(expr.hir_id).to_def_id();
if self.ir.tcx.is_ty_uninhabited_from(m, ty, self.param_env) { if ty.is_inhabited_from(self.ir.tcx, m, self.param_env) {
return succ;
}
match self.ir.lnks[succ] { match self.ir.lnks[succ] {
LiveNodeKind::ExprNode(succ_span, succ_id) => { LiveNodeKind::ExprNode(succ_span, succ_id) => {
self.warn_about_unreachable(expr.span, ty, succ_span, succ_id, "expression"); self.warn_about_unreachable(expr.span, ty, succ_span, succ_id, "expression");
@ -1295,9 +1297,6 @@ impl<'a, 'tcx> Liveness<'a, 'tcx> {
_ => {} _ => {}
}; };
self.exit_ln self.exit_ln
} else {
succ
}
} }
fn warn_about_unreachable( fn warn_about_unreachable(

View File

@ -442,8 +442,7 @@ fn layout_of_uncached<'tcx>(
let element = cx.layout_of(element)?; let element = cx.layout_of(element)?;
let size = element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow(ty))?; let size = element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow(ty))?;
let abi = if count != 0 && tcx.conservative_is_privately_uninhabited(param_env.and(ty)) let abi = if count != 0 && ty.is_privately_uninhabited(tcx, param_env) {
{
Abi::Uninhabited Abi::Uninhabited
} else { } else {
Abi::Aggregate { sized: true } Abi::Aggregate { sized: true }

View File

@ -12,7 +12,7 @@ pub(super) fn sanity_check_layout<'tcx>(
layout: &TyAndLayout<'tcx>, layout: &TyAndLayout<'tcx>,
) { ) {
// Type-level uninhabitedness should always imply ABI uninhabitedness. // Type-level uninhabitedness should always imply ABI uninhabitedness.
if cx.tcx.conservative_is_privately_uninhabited(cx.param_env.and(layout.ty)) { if layout.ty.is_privately_uninhabited(cx.tcx, cx.param_env) {
assert!(layout.abi.is_uninhabited()); assert!(layout.abi.is_uninhabited());
} }

View File

@ -416,62 +416,6 @@ fn asyncness(tcx: TyCtxt<'_>, def_id: DefId) -> hir::IsAsync {
node.fn_sig().map_or(hir::IsAsync::NotAsync, |sig| sig.header.asyncness) node.fn_sig().map_or(hir::IsAsync::NotAsync, |sig| sig.header.asyncness)
} }
/// Don't call this directly: use ``tcx.conservative_is_privately_uninhabited`` instead.
pub fn conservative_is_privately_uninhabited_raw<'tcx>(
tcx: TyCtxt<'tcx>,
param_env_and: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
) -> bool {
let (param_env, ty) = param_env_and.into_parts();
match ty.kind() {
ty::Never => {
debug!("ty::Never =>");
true
}
ty::Adt(def, _) if def.is_union() => {
debug!("ty::Adt(def, _) if def.is_union() =>");
// For now, `union`s are never considered uninhabited.
false
}
ty::Adt(def, substs) => {
debug!("ty::Adt(def, _) if def.is_not_union() =>");
// Any ADT is uninhabited if either:
// (a) It has no variants (i.e. an empty `enum`);
// (b) Each of its variants (a single one in the case of a `struct`) has at least
// one uninhabited field.
def.variants().iter().all(|var| {
var.fields.iter().any(|field| {
let ty = tcx.bound_type_of(field.did).subst(tcx, substs);
tcx.conservative_is_privately_uninhabited(param_env.and(ty))
})
})
}
ty::Tuple(fields) => {
debug!("ty::Tuple(..) =>");
fields.iter().any(|ty| tcx.conservative_is_privately_uninhabited(param_env.and(ty)))
}
ty::Array(ty, len) => {
debug!("ty::Array(ty, len) =>");
match len.try_eval_usize(tcx, param_env) {
Some(0) | None => false,
// If the array is definitely non-empty, it's uninhabited if
// the type of its elements is uninhabited.
Some(1..) => tcx.conservative_is_privately_uninhabited(param_env.and(*ty)),
}
}
ty::Ref(..) => {
debug!("ty::Ref(..) =>");
// References to uninitialised memory is valid for any type, including
// uninhabited types, in unsafe code, so we treat all references as
// inhabited.
false
}
_ => {
debug!("_ =>");
false
}
}
}
pub fn provide(providers: &mut ty::query::Providers) { pub fn provide(providers: &mut ty::query::Providers) {
*providers = ty::query::Providers { *providers = ty::query::Providers {
asyncness, asyncness,
@ -481,7 +425,6 @@ pub fn provide(providers: &mut ty::query::Providers) {
instance_def_size_estimate, instance_def_size_estimate,
issue33140_self_ty, issue33140_self_ty,
impl_defaultness, impl_defaultness,
conservative_is_privately_uninhabited: conservative_is_privately_uninhabited_raw,
..*providers ..*providers
}; };
} }

View File

@ -2,7 +2,7 @@
#![feature(generic_const_exprs)] #![feature(generic_const_exprs)]
#![allow(incomplete_features)] #![allow(incomplete_features)]
// This tests that the `conservative_is_privately_uninhabited` fn doesn't cause // This tests that the inhabited check doesn't cause
// ICEs by trying to evaluate `T::ASSOC` with an incorrect `ParamEnv`. // ICEs by trying to evaluate `T::ASSOC` with an incorrect `ParamEnv`.
trait Foo { trait Foo {

View File

@ -2,7 +2,7 @@
#![feature(generic_const_exprs)] #![feature(generic_const_exprs)]
#![allow(incomplete_features)] #![allow(incomplete_features)]
// This tests that the `conservative_is_privately_uninhabited` fn doesn't cause // This tests that the inhabited check doesn't cause
// ICEs by trying to evaluate `T::ASSOC` with an incorrect `ParamEnv`. // ICEs by trying to evaluate `T::ASSOC` with an incorrect `ParamEnv`.
trait Foo { trait Foo {

View File

@ -2,7 +2,7 @@
// aux-build:empty.rs // aux-build:empty.rs
// //
// This tests plays with matching and uninhabited types. This also serves as a test for the // This tests plays with matching and uninhabited types. This also serves as a test for the
// `tcx.is_ty_uninhabited_from()` function. // `Ty::is_inhabited_from` function.
#![feature(never_type)] #![feature(never_type)]
#![feature(never_type_fallback)] #![feature(never_type_fallback)]
#![feature(exhaustive_patterns)] #![feature(exhaustive_patterns)]