Remove fNN::lerp - consensus unlikely

This commit is contained in:
CAD97 2021-10-25 22:22:17 -05:00
parent ffba430924
commit 6b449b49bb
5 changed files with 0 additions and 191 deletions

View File

@ -878,40 +878,4 @@ impl f32 {
pub fn atanh(self) -> f32 {
0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
}
/// Linear interpolation between `start` and `end`.
///
/// This enables linear interpolation between `start` and `end`, where start is represented by
/// `self == 0.0` and `end` is represented by `self == 1.0`. This is the basis of all
/// "transition", "easing", or "step" functions; if you change `self` from 0.0 to 1.0
/// at a given rate, the result will change from `start` to `end` at a similar rate.
///
/// Values below 0.0 or above 1.0 are allowed, allowing you to extrapolate values outside the
/// range from `start` to `end`. This also is useful for transition functions which might
/// move slightly past the end or start for a desired effect. Mathematically, the values
/// returned are equivalent to `start + self * (end - start)`, although we make a few specific
/// guarantees that are useful specifically to linear interpolation.
///
/// These guarantees are:
///
/// * If `start` and `end` are [finite], the value at 0.0 is always `start` and the
/// value at 1.0 is always `end`. (exactness)
/// * If `start` and `end` are [finite], the values will always move in the direction from
/// `start` to `end` (monotonicity)
/// * If `self` is [finite] and `start == end`, the value at any point will always be
/// `start == end`. (consistency)
///
/// [finite]: #method.is_finite
#[must_use = "method returns a new number and does not mutate the original value"]
#[unstable(feature = "float_interpolation", issue = "86269")]
pub fn lerp(self, start: f32, end: f32) -> f32 {
// consistent
if start == end {
start
// exact/monotonic
} else {
self.mul_add(end, (-self).mul_add(start, start))
}
}
}

View File

@ -757,66 +757,3 @@ fn test_total_cmp() {
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f32::INFINITY));
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan()));
}
#[test]
fn test_lerp_exact() {
// simple values
assert_eq!(f32::lerp(0.0, 2.0, 4.0), 2.0);
assert_eq!(f32::lerp(1.0, 2.0, 4.0), 4.0);
// boundary values
assert_eq!(f32::lerp(0.0, f32::MIN, f32::MAX), f32::MIN);
assert_eq!(f32::lerp(1.0, f32::MIN, f32::MAX), f32::MAX);
}
#[test]
fn test_lerp_consistent() {
assert_eq!(f32::lerp(f32::MAX, f32::MIN, f32::MIN), f32::MIN);
assert_eq!(f32::lerp(f32::MIN, f32::MAX, f32::MAX), f32::MAX);
// as long as t is finite, a/b can be infinite
assert_eq!(f32::lerp(f32::MAX, f32::NEG_INFINITY, f32::NEG_INFINITY), f32::NEG_INFINITY);
assert_eq!(f32::lerp(f32::MIN, f32::INFINITY, f32::INFINITY), f32::INFINITY);
}
#[test]
fn test_lerp_nan_infinite() {
// non-finite t is not NaN if a/b different
assert!(!f32::lerp(f32::INFINITY, f32::MIN, f32::MAX).is_nan());
assert!(!f32::lerp(f32::NEG_INFINITY, f32::MIN, f32::MAX).is_nan());
}
#[test]
fn test_lerp_values() {
// just a few basic values
assert_eq!(f32::lerp(0.25, 1.0, 2.0), 1.25);
assert_eq!(f32::lerp(0.50, 1.0, 2.0), 1.50);
assert_eq!(f32::lerp(0.75, 1.0, 2.0), 1.75);
}
#[test]
fn test_lerp_monotonic() {
// near 0
let below_zero = f32::lerp(-f32::EPSILON, f32::MIN, f32::MAX);
let zero = f32::lerp(0.0, f32::MIN, f32::MAX);
let above_zero = f32::lerp(f32::EPSILON, f32::MIN, f32::MAX);
assert!(below_zero <= zero);
assert!(zero <= above_zero);
assert!(below_zero <= above_zero);
// near 0.5
let below_half = f32::lerp(0.5 - f32::EPSILON, f32::MIN, f32::MAX);
let half = f32::lerp(0.5, f32::MIN, f32::MAX);
let above_half = f32::lerp(0.5 + f32::EPSILON, f32::MIN, f32::MAX);
assert!(below_half <= half);
assert!(half <= above_half);
assert!(below_half <= above_half);
// near 1
let below_one = f32::lerp(1.0 - f32::EPSILON, f32::MIN, f32::MAX);
let one = f32::lerp(1.0, f32::MIN, f32::MAX);
let above_one = f32::lerp(1.0 + f32::EPSILON, f32::MIN, f32::MAX);
assert!(below_one <= one);
assert!(one <= above_one);
assert!(below_one <= above_one);
}

View File

@ -881,42 +881,6 @@ impl f64 {
0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
}
/// Linear interpolation between `start` and `end`.
///
/// This enables linear interpolation between `start` and `end`, where start is represented by
/// `self == 0.0` and `end` is represented by `self == 1.0`. This is the basis of all
/// "transition", "easing", or "step" functions; if you change `self` from 0.0 to 1.0
/// at a given rate, the result will change from `start` to `end` at a similar rate.
///
/// Values below 0.0 or above 1.0 are allowed, allowing you to extrapolate values outside the
/// range from `start` to `end`. This also is useful for transition functions which might
/// move slightly past the end or start for a desired effect. Mathematically, the values
/// returned are equivalent to `start + self * (end - start)`, although we make a few specific
/// guarantees that are useful specifically to linear interpolation.
///
/// These guarantees are:
///
/// * If `start` and `end` are [finite], the value at 0.0 is always `start` and the
/// value at 1.0 is always `end`. (exactness)
/// * If `start` and `end` are [finite], the values will always move in the direction from
/// `start` to `end` (monotonicity)
/// * If `self` is [finite] and `start == end`, the value at any point will always be
/// `start == end`. (consistency)
///
/// [finite]: #method.is_finite
#[must_use = "method returns a new number and does not mutate the original value"]
#[unstable(feature = "float_interpolation", issue = "86269")]
pub fn lerp(self, start: f64, end: f64) -> f64 {
// consistent
if start == end {
start
// exact/monotonic
} else {
self.mul_add(end, (-self).mul_add(start, start))
}
}
// Solaris/Illumos requires a wrapper around log, log2, and log10 functions
// because of their non-standard behavior (e.g., log(-n) returns -Inf instead
// of expected NaN).

View File

@ -753,58 +753,3 @@ fn test_total_cmp() {
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f64::INFINITY));
assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan()));
}
#[test]
fn test_lerp_exact() {
// simple values
assert_eq!(f64::lerp(0.0, 2.0, 4.0), 2.0);
assert_eq!(f64::lerp(1.0, 2.0, 4.0), 4.0);
// boundary values
assert_eq!(f64::lerp(0.0, f64::MIN, f64::MAX), f64::MIN);
assert_eq!(f64::lerp(1.0, f64::MIN, f64::MAX), f64::MAX);
}
#[test]
fn test_lerp_consistent() {
assert_eq!(f64::lerp(f64::MAX, f64::MIN, f64::MIN), f64::MIN);
assert_eq!(f64::lerp(f64::MIN, f64::MAX, f64::MAX), f64::MAX);
// as long as t is finite, a/b can be infinite
assert_eq!(f64::lerp(f64::MAX, f64::NEG_INFINITY, f64::NEG_INFINITY), f64::NEG_INFINITY);
assert_eq!(f64::lerp(f64::MIN, f64::INFINITY, f64::INFINITY), f64::INFINITY);
}
#[test]
fn test_lerp_nan_infinite() {
// non-finite t is not NaN if a/b different
assert!(!f64::lerp(f64::INFINITY, f64::MIN, f64::MAX).is_nan());
assert!(!f64::lerp(f64::NEG_INFINITY, f64::MIN, f64::MAX).is_nan());
}
#[test]
fn test_lerp_values() {
// just a few basic values
assert_eq!(f64::lerp(0.25, 1.0, 2.0), 1.25);
assert_eq!(f64::lerp(0.50, 1.0, 2.0), 1.50);
assert_eq!(f64::lerp(0.75, 1.0, 2.0), 1.75);
}
#[test]
fn test_lerp_monotonic() {
// near 0
let below_zero = f64::lerp(-f64::EPSILON, f64::MIN, f64::MAX);
let zero = f64::lerp(0.0, f64::MIN, f64::MAX);
let above_zero = f64::lerp(f64::EPSILON, f64::MIN, f64::MAX);
assert!(below_zero <= zero);
assert!(zero <= above_zero);
assert!(below_zero <= above_zero);
// near 1
let below_one = f64::lerp(1.0 - f64::EPSILON, f64::MIN, f64::MAX);
let one = f64::lerp(1.0, f64::MIN, f64::MAX);
let above_one = f64::lerp(1.0 + f64::EPSILON, f64::MIN, f64::MAX);
assert!(below_one <= one);
assert!(one <= above_one);
assert!(below_one <= above_one);
}

View File

@ -284,7 +284,6 @@
#![feature(exact_size_is_empty)]
#![feature(exhaustive_patterns)]
#![feature(extend_one)]
#![feature(float_interpolation)]
#![feature(fn_traits)]
#![feature(format_args_nl)]
#![feature(gen_future)]