Auto merge of #117517 - klinvill:smir-projections, r=ouz-a

Add richer structure for Stable MIR Projections

Resolves https://github.com/rust-lang/project-stable-mir/issues/49.

Projections in Stable MIR are currently just strings. This PR replaces that representation with a richer structure, namely projections become vectors of `ProjectionElem`s, just as in MIR. The `ProjectionElem` enum is heavily based off of the MIR `ProjectionElem`.

This PR is a draft since there are several outstanding issues to resolve, including:

- How should `UserTypeProjection`s be represented in Stable MIR? In MIR, the projections are just a vector of `ProjectionElem<(),()>`, meaning `ProjectionElem`s that don't have Local or Type arguments (for `Index`, `Field`, etc. objects). Should `UserTypeProjection`s be represented this way in Stable MIR as well? Or is there a more user-friendly representation that wouldn't drag along all the `ProjectionElem` variants that presumably can't appear?
- What is the expected behavior of a `Place`'s `ty` function? Should it resolve down the chain of projections so that something like `*_1.f` would return the type referenced by field `f`?
- Tests should be added for `UserTypeProjection`
This commit is contained in:
bors 2023-11-15 06:05:54 +00:00
commit 698fcc8219
4 changed files with 355 additions and 7 deletions

View File

@ -682,10 +682,44 @@ impl<'tcx> Stable<'tcx> for mir::ConstOperand<'tcx> {
impl<'tcx> Stable<'tcx> for mir::Place<'tcx> { impl<'tcx> Stable<'tcx> for mir::Place<'tcx> {
type T = stable_mir::mir::Place; type T = stable_mir::mir::Place;
fn stable(&self, _: &mut Tables<'tcx>) -> Self::T { fn stable(&self, tables: &mut Tables<'tcx>) -> Self::T {
stable_mir::mir::Place { stable_mir::mir::Place {
local: self.local.as_usize(), local: self.local.as_usize(),
projection: format!("{:?}", self.projection), projection: self.projection.iter().map(|e| e.stable(tables)).collect(),
}
}
}
impl<'tcx> Stable<'tcx> for mir::PlaceElem<'tcx> {
type T = stable_mir::mir::ProjectionElem;
fn stable(&self, tables: &mut Tables<'tcx>) -> Self::T {
use mir::ProjectionElem::*;
match self {
Deref => stable_mir::mir::ProjectionElem::Deref,
Field(idx, ty) => {
stable_mir::mir::ProjectionElem::Field(idx.stable(tables), ty.stable(tables))
}
Index(local) => stable_mir::mir::ProjectionElem::Index(local.stable(tables)),
ConstantIndex { offset, min_length, from_end } => {
stable_mir::mir::ProjectionElem::ConstantIndex {
offset: *offset,
min_length: *min_length,
from_end: *from_end,
}
}
Subslice { from, to, from_end } => stable_mir::mir::ProjectionElem::Subslice {
from: *from,
to: *to,
from_end: *from_end,
},
// MIR includes an `Option<Symbol>` argument for `Downcast` that is the name of the
// variant, used for printing MIR. However this information should also be accessible
// via a lookup using the `VariantIdx`. The `Option<Symbol>` argument is therefore
// dropped when converting to Stable MIR. A brief justification for this decision can be
// found at https://github.com/rust-lang/rust/pull/117517#issuecomment-1811683486
Downcast(_, idx) => stable_mir::mir::ProjectionElem::Downcast(idx.stable(tables)),
OpaqueCast(ty) => stable_mir::mir::ProjectionElem::OpaqueCast(ty.stable(tables)),
Subtype(ty) => stable_mir::mir::ProjectionElem::Subtype(ty.stable(tables)),
} }
} }
} }
@ -693,8 +727,8 @@ impl<'tcx> Stable<'tcx> for mir::Place<'tcx> {
impl<'tcx> Stable<'tcx> for mir::UserTypeProjection { impl<'tcx> Stable<'tcx> for mir::UserTypeProjection {
type T = stable_mir::mir::UserTypeProjection; type T = stable_mir::mir::UserTypeProjection;
fn stable(&self, _: &mut Tables<'tcx>) -> Self::T { fn stable(&self, _tables: &mut Tables<'tcx>) -> Self::T {
UserTypeProjection { base: self.base.as_usize(), projection: format!("{:?}", self.projs) } UserTypeProjection { base: self.base.as_usize(), projection: opaque(&self.projs) }
} }
} }

View File

@ -398,22 +398,128 @@ pub enum Operand {
pub struct Place { pub struct Place {
pub local: Local, pub local: Local,
/// projection out of a place (access a field, deref a pointer, etc) /// projection out of a place (access a field, deref a pointer, etc)
pub projection: String, pub projection: Vec<ProjectionElem>,
}
// In MIR ProjectionElem is parameterized on the second Field argument and the Index argument. This
// is so it can be used for both Places (for which the projection elements are of type
// ProjectionElem<Local, Ty>) and user-provided type annotations (for which the projection elements
// are of type ProjectionElem<(), ()>). In SMIR we don't need this generality, so we just use
// ProjectionElem for Places.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ProjectionElem {
/// Dereference projections (e.g. `*_1`) project to the address referenced by the base place.
Deref,
/// A field projection (e.g., `f` in `_1.f`) project to a field in the base place. The field is
/// referenced by source-order index rather than the name of the field. The fields type is also
/// given.
Field(FieldIdx, Ty),
/// Index into a slice/array. The value of the index is computed at runtime using the `V`
/// argument.
///
/// Note that this does not also dereference, and so it does not exactly correspond to slice
/// indexing in Rust. In other words, in the below Rust code:
///
/// ```rust
/// let x = &[1, 2, 3, 4];
/// let i = 2;
/// x[i];
/// ```
///
/// The `x[i]` is turned into a `Deref` followed by an `Index`, not just an `Index`. The same
/// thing is true of the `ConstantIndex` and `Subslice` projections below.
Index(Local),
/// Index into a slice/array given by offsets.
///
/// These indices are generated by slice patterns. Easiest to explain by example:
///
/// ```ignore (illustrative)
/// [X, _, .._, _, _] => { offset: 0, min_length: 4, from_end: false },
/// [_, X, .._, _, _] => { offset: 1, min_length: 4, from_end: false },
/// [_, _, .._, X, _] => { offset: 2, min_length: 4, from_end: true },
/// [_, _, .._, _, X] => { offset: 1, min_length: 4, from_end: true },
/// ```
ConstantIndex {
/// index or -index (in Python terms), depending on from_end
offset: u64,
/// The thing being indexed must be at least this long. For arrays this
/// is always the exact length.
min_length: u64,
/// Counting backwards from end? This is always false when indexing an
/// array.
from_end: bool,
},
/// Projects a slice from the base place.
///
/// These indices are generated by slice patterns. If `from_end` is true, this represents
/// `slice[from..slice.len() - to]`. Otherwise it represents `array[from..to]`.
Subslice {
from: u64,
to: u64,
/// Whether `to` counts from the start or end of the array/slice.
from_end: bool,
},
/// "Downcast" to a variant of an enum or a coroutine.
Downcast(VariantIdx),
/// Like an explicit cast from an opaque type to a concrete type, but without
/// requiring an intermediate variable.
OpaqueCast(Ty),
/// A `Subtype(T)` projection is applied to any `StatementKind::Assign` where
/// type of lvalue doesn't match the type of rvalue, the primary goal is making subtyping
/// explicit during optimizations and codegen.
///
/// This projection doesn't impact the runtime behavior of the program except for potentially changing
/// some type metadata of the interpreter or codegen backend.
Subtype(Ty),
} }
#[derive(Clone, Debug, Eq, PartialEq)] #[derive(Clone, Debug, Eq, PartialEq)]
pub struct UserTypeProjection { pub struct UserTypeProjection {
pub base: UserTypeAnnotationIndex, pub base: UserTypeAnnotationIndex,
pub projection: String,
pub projection: Opaque,
} }
pub type Local = usize; pub type Local = usize;
pub const RETURN_LOCAL: Local = 0; pub const RETURN_LOCAL: Local = 0;
/// The source-order index of a field in a variant.
///
/// For example, in the following types,
/// ```ignore(illustrative)
/// enum Demo1 {
/// Variant0 { a: bool, b: i32 },
/// Variant1 { c: u8, d: u64 },
/// }
/// struct Demo2 { e: u8, f: u16, g: u8 }
/// ```
/// `a`'s `FieldIdx` is `0`,
/// `b`'s `FieldIdx` is `1`,
/// `c`'s `FieldIdx` is `0`, and
/// `g`'s `FieldIdx` is `2`.
type FieldIdx = usize; type FieldIdx = usize;
/// The source-order index of a variant in a type. /// The source-order index of a variant in a type.
///
/// For example, in the following types,
/// ```ignore(illustrative)
/// enum Demo1 {
/// Variant0 { a: bool, b: i32 },
/// Variant1 { c: u8, d: u64 },
/// }
/// struct Demo2 { e: u8, f: u16, g: u8 }
/// ```
/// `a` is in the variant with the `VariantIdx` of `0`,
/// `c` is in the variant with the `VariantIdx` of `1`, and
/// `g` is in the variant with the `VariantIdx` of `0`.
pub type VariantIdx = usize; pub type VariantIdx = usize;
type UserTypeAnnotationIndex = usize; type UserTypeAnnotationIndex = usize;
@ -536,6 +642,10 @@ impl Constant {
} }
impl Place { impl Place {
// FIXME(klinvill): This function is expected to resolve down the chain of projections to get
// the type referenced at the end of it. E.g. calling `ty()` on `*(_1.f)` should end up
// returning the type referenced by `f`. The information needed to do this may not currently be
// present in Stable MIR since at least an implementation for AdtDef is probably needed.
pub fn ty(&self, locals: &[LocalDecl]) -> Ty { pub fn ty(&self, locals: &[LocalDecl]) -> Ty {
let _start_ty = locals[self.local].ty; let _start_ty = locals[self.local].ty;
todo!("Implement projection") todo!("Implement projection")

View File

@ -76,6 +76,15 @@ pub trait MirVisitor {
self.super_place(place, ptx, location) self.super_place(place, ptx, location)
} }
fn visit_projection_elem(
&mut self,
elem: &ProjectionElem,
ptx: PlaceContext,
location: Location,
) {
self.super_projection_elem(elem, ptx, location);
}
fn visit_local(&mut self, local: &Local, ptx: PlaceContext, location: Location) { fn visit_local(&mut self, local: &Local, ptx: PlaceContext, location: Location) {
let _ = (local, ptx, location); let _ = (local, ptx, location);
} }
@ -264,7 +273,29 @@ pub trait MirVisitor {
fn super_place(&mut self, place: &Place, ptx: PlaceContext, location: Location) { fn super_place(&mut self, place: &Place, ptx: PlaceContext, location: Location) {
let _ = location; let _ = location;
let _ = ptx; let _ = ptx;
visit_opaque(&Opaque(place.projection.clone())); self.visit_local(&place.local, ptx, location);
for elem in &place.projection {
self.visit_projection_elem(elem, ptx, location);
}
}
fn super_projection_elem(
&mut self,
elem: &ProjectionElem,
ptx: PlaceContext,
location: Location,
) {
match elem {
ProjectionElem::Deref => {}
ProjectionElem::Field(_idx, ty) => self.visit_ty(ty, location),
ProjectionElem::Index(local) => self.visit_local(local, ptx, location),
ProjectionElem::ConstantIndex { offset: _, min_length: _, from_end: _ } => {}
ProjectionElem::Subslice { from: _, to: _, from_end: _ } => {}
ProjectionElem::Downcast(_idx) => {}
ProjectionElem::OpaqueCast(ty) => self.visit_ty(ty, location),
ProjectionElem::Subtype(ty) => self.visit_ty(ty, location),
}
} }
fn super_rvalue(&mut self, rvalue: &Rvalue, location: Location) { fn super_rvalue(&mut self, rvalue: &Rvalue, location: Location) {

View File

@ -0,0 +1,173 @@
// run-pass
// Tests the Stable MIR projections API
// ignore-stage1
// ignore-cross-compile
// ignore-remote
// ignore-windows-gnu mingw has troubles with linking https://github.com/rust-lang/rust/pull/116837
// edition: 2021
#![feature(rustc_private)]
#![feature(assert_matches)]
#![feature(control_flow_enum)]
extern crate rustc_hir;
extern crate rustc_middle;
#[macro_use]
extern crate rustc_smir;
extern crate rustc_driver;
extern crate rustc_interface;
extern crate stable_mir;
use rustc_hir::def::DefKind;
use rustc_middle::ty::TyCtxt;
use rustc_smir::rustc_internal;
use stable_mir::mir::{ProjectionElem, Rvalue, StatementKind};
use stable_mir::ty::{RigidTy, TyKind};
use std::assert_matches::assert_matches;
use std::io::Write;
use std::ops::ControlFlow;
const CRATE_NAME: &str = "input";
/// Tests projections within Place objects
fn test_place_projections(_tcx: TyCtxt<'_>) -> ControlFlow<()> {
let items = stable_mir::all_local_items();
let body = get_item(&items, (DefKind::Fn, "projections")).unwrap().body();
assert_eq!(body.blocks.len(), 4);
// The first statement assigns `&s.c` to a local. The projections include a deref for `s`, since
// `s` is passed as a reference argument, and a field access for field `c`.
match &body.blocks[0].statements[0].kind {
StatementKind::Assign(
stable_mir::mir::Place { local: _, projection: local_proj },
Rvalue::Ref(_, _, stable_mir::mir::Place { local: _, projection: r_proj }),
) => {
// We can't match on vecs, only on slices. Comparing statements for equality wouldn't be
// any easier since we'd then have to add in the expected local and region values
// instead of matching on wildcards.
assert!(local_proj.is_empty());
match &r_proj[..] {
// Similarly we can't match against a type, only against its kind.
[ProjectionElem::Deref, ProjectionElem::Field(2, ty)] => assert_matches!(
ty.kind(),
TyKind::RigidTy(RigidTy::Uint(stable_mir::ty::UintTy::U8))
),
other => panic!(
"Unable to match against expected rvalue projection. Expected the projection \
for `s.c`, which is a Deref and u8 Field. Got: {:?}",
other
),
};
}
other => panic!(
"Unable to match against expected Assign statement with a Ref rvalue. Expected the \
statement to assign `&s.c` to a local. Got: {:?}",
other
),
};
// This statement assigns `slice[1]` to a local. The projections include a deref for `slice`,
// since `slice` is a reference, and an index.
match &body.blocks[2].statements[0].kind {
StatementKind::Assign(
stable_mir::mir::Place { local: _, projection: local_proj },
Rvalue::Use(stable_mir::mir::Operand::Copy(stable_mir::mir::Place {
local: _,
projection: r_proj,
})),
) => {
// We can't match on vecs, only on slices. Comparing for equality wouldn't be any easier
// since we'd then have to add in the expected local values instead of matching on
// wildcards.
assert!(local_proj.is_empty());
assert_matches!(r_proj[..], [ProjectionElem::Deref, ProjectionElem::Index(_)]);
}
other => panic!(
"Unable to match against expected Assign statement with a Use rvalue. Expected the \
statement to assign `slice[1]` to a local. Got: {:?}",
other
),
};
// The first terminator gets a slice of an array via the Index operation. Specifically it
// performs `&vals[1..3]`. There are no projections in this case, the arguments are just locals.
match &body.blocks[0].terminator.kind {
stable_mir::mir::TerminatorKind::Call { args, .. } =>
// We can't match on vecs, only on slices. Comparing for equality wouldn't be any easier
// since we'd then have to add in the expected local values instead of matching on
// wildcards.
{
match &args[..] {
[
stable_mir::mir::Operand::Move(stable_mir::mir::Place {
local: _,
projection: arg1_proj,
}),
stable_mir::mir::Operand::Move(stable_mir::mir::Place {
local: _,
projection: arg2_proj,
}),
] => {
assert!(arg1_proj.is_empty());
assert!(arg2_proj.is_empty());
}
other => {
panic!(
"Unable to match against expected arguments to Index call. Expected two \
move operands. Got: {:?}",
other
)
}
}
}
other => panic!(
"Unable to match against expected Call terminator. Expected a terminator that calls \
the Index operation. Got: {:?}",
other
),
};
ControlFlow::Continue(())
}
// Use internal API to find a function in a crate.
fn get_item<'a>(
items: &'a stable_mir::CrateItems,
item: (DefKind, &str),
) -> Option<&'a stable_mir::CrateItem> {
items.iter().find(|crate_item| {
crate_item.kind().to_string() == format!("{:?}", item.0) && crate_item.name() == item.1
})
}
/// This test will generate and analyze a dummy crate using the stable mir.
/// For that, it will first write the dummy crate into a file.
/// Then it will create a `StableMir` using custom arguments and then
/// it will run the compiler.
fn main() {
let path = "input.rs";
generate_input(&path).unwrap();
let args = vec![
"rustc".to_string(),
"--crate-type=lib".to_string(),
"--crate-name".to_string(),
CRATE_NAME.to_string(),
path.to_string(),
];
run!(args, tcx, test_place_projections(tcx)).unwrap();
}
fn generate_input(path: &str) -> std::io::Result<()> {
let mut file = std::fs::File::create(path)?;
write!(
file,
r#"
pub struct Struct1 {{ _a: u8, _b: u16, c: u8 }}
pub fn projections(s: &Struct1) -> u8 {{
let v = &s.c;
let vals = [1, 2, 3, 4];
let slice = &vals[1..3];
v + slice[1]
}}"#
)?;
Ok(())
}