Auto merge of #127174 - matthiaskrgr:rollup-q87j6cn, r=matthiaskrgr

Rollup of 9 pull requests

Successful merges:

 - #126018 (Remove the `box_pointers` lint.)
 - #126895 (Fix simd_gather documentation)
 - #126981 (Replace some magic booleans in match-lowering with enums)
 - #127038 (Update test comment)
 - #127053 (Update the LoongArch target documentation)
 - #127069 (small correction to fmt::Pointer impl)
 - #127157 (coverage: Avoid getting extra unexpansion info when we don't need it)
 - #127160 (Add a regression test for #123630)
 - #127161 (Improve `run-make-support` library `args` API)

r? `@ghost`
`@rustbot` modify labels: rollup
This commit is contained in:
bors 2024-06-30 20:14:40 +00:00
commit 6868c831a1
33 changed files with 430 additions and 349 deletions

View File

@ -56,8 +56,6 @@ lint_builtin_asm_labels = avoid using named labels in inline assembly
.help = only local labels of the form `<number>:` should be used in inline asm
.note = see the asm section of Rust By Example <https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels> for more information
lint_builtin_box_pointers = type uses owned (Box type) pointers: {$ty}
lint_builtin_clashing_extern_diff_name = `{$this}` redeclares `{$orig}` with a different signature
.previous_decl_label = `{$orig}` previously declared here
.mismatch_label = this signature doesn't match the previous declaration

View File

@ -24,9 +24,9 @@ use crate::fluent_generated as fluent;
use crate::{
errors::BuiltinEllipsisInclusiveRangePatterns,
lints::{
BuiltinAnonymousParams, BuiltinBoxPointers, BuiltinConstNoMangle,
BuiltinDeprecatedAttrLink, BuiltinDeprecatedAttrLinkSuggestion, BuiltinDeprecatedAttrUsed,
BuiltinDerefNullptr, BuiltinEllipsisInclusiveRangePatternsLint, BuiltinExplicitOutlives,
BuiltinAnonymousParams, BuiltinConstNoMangle, BuiltinDeprecatedAttrLink,
BuiltinDeprecatedAttrLinkSuggestion, BuiltinDeprecatedAttrUsed, BuiltinDerefNullptr,
BuiltinEllipsisInclusiveRangePatternsLint, BuiltinExplicitOutlives,
BuiltinExplicitOutlivesSuggestion, BuiltinFeatureIssueNote, BuiltinIncompleteFeatures,
BuiltinIncompleteFeaturesHelp, BuiltinInternalFeatures, BuiltinKeywordIdents,
BuiltinMissingCopyImpl, BuiltinMissingDebugImpl, BuiltinMissingDoc,
@ -56,7 +56,6 @@ use rustc_middle::bug;
use rustc_middle::lint::in_external_macro;
use rustc_middle::ty::layout::LayoutOf;
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::GenericArgKind;
use rustc_middle::ty::TypeVisitableExt;
use rustc_middle::ty::Upcast;
use rustc_middle::ty::{self, Ty, TyCtxt, VariantDef};
@ -134,80 +133,6 @@ impl EarlyLintPass for WhileTrue {
}
}
declare_lint! {
/// The `box_pointers` lints use of the Box type.
///
/// ### Example
///
/// ```rust,compile_fail
/// #![deny(box_pointers)]
/// struct Foo {
/// x: Box<i32>,
/// }
/// ```
///
/// {{produces}}
///
/// ### Explanation
///
/// This lint is mostly historical, and not particularly useful. `Box<T>`
/// used to be built into the language, and the only way to do heap
/// allocation. Today's Rust can call into other allocators, etc.
BOX_POINTERS,
Allow,
"use of owned (Box type) heap memory"
}
declare_lint_pass!(BoxPointers => [BOX_POINTERS]);
impl BoxPointers {
fn check_heap_type(&self, cx: &LateContext<'_>, span: Span, ty: Ty<'_>) {
for leaf in ty.walk() {
if let GenericArgKind::Type(leaf_ty) = leaf.unpack()
&& leaf_ty.is_box()
{
cx.emit_span_lint(BOX_POINTERS, span, BuiltinBoxPointers { ty });
}
}
}
}
impl<'tcx> LateLintPass<'tcx> for BoxPointers {
fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
match it.kind {
hir::ItemKind::Fn(..)
| hir::ItemKind::TyAlias(..)
| hir::ItemKind::Enum(..)
| hir::ItemKind::Struct(..)
| hir::ItemKind::Union(..) => self.check_heap_type(
cx,
it.span,
cx.tcx.type_of(it.owner_id).instantiate_identity(),
),
_ => (),
}
// If it's a struct, we also have to check the fields' types
match it.kind {
hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
for field in struct_def.fields() {
self.check_heap_type(
cx,
field.span,
cx.tcx.type_of(field.def_id).instantiate_identity(),
);
}
}
_ => (),
}
}
fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) {
let ty = cx.typeck_results().node_type(e.hir_id);
self.check_heap_type(cx, e.span, ty);
}
}
declare_lint! {
/// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
/// instead of `Struct { x }` in a pattern.
@ -1640,7 +1565,6 @@ declare_lint_pass!(
/// which are used by other parts of the compiler.
SoftLints => [
WHILE_TRUE,
BOX_POINTERS,
NON_SHORTHAND_FIELD_PATTERNS,
UNSAFE_CODE,
MISSING_DOCS,

View File

@ -187,7 +187,6 @@ late_lint_methods!(
ImproperCTypesDefinitions: ImproperCTypesDefinitions,
InvalidFromUtf8: InvalidFromUtf8,
VariantSizeDifferences: VariantSizeDifferences,
BoxPointers: BoxPointers,
PathStatements: PathStatements,
LetUnderscore: LetUnderscore,
InvalidReferenceCasting: InvalidReferenceCasting,
@ -551,6 +550,10 @@ fn register_builtins(store: &mut LintStore) {
"converted into hard error, see RFC #3535 \
<https://rust-lang.github.io/rfcs/3535-constants-in-patterns.html> for more information",
);
store.register_removed(
"box_pointers",
"it does not detect other kinds of allocations, and existed only for historical reasons",
);
}
fn register_internals(store: &mut LintStore) {

View File

@ -66,12 +66,6 @@ pub struct BuiltinWhileTrue {
pub replace: String,
}
#[derive(LintDiagnostic)]
#[diag(lint_builtin_box_pointers)]
pub struct BuiltinBoxPointers<'a> {
pub ty: Ty<'a>,
}
#[derive(LintDiagnostic)]
#[diag(lint_builtin_non_shorthand_field_patterns)]
pub struct BuiltinNonShorthandFieldPatterns {

View File

@ -1,3 +1,4 @@
use crate::build::matches::{DeclareLetBindings, EmitStorageLive, ScheduleDrops};
use crate::build::ForGuard::OutsideGuard;
use crate::build::{BlockAnd, BlockAndExtension, BlockFrame, Builder};
use rustc_middle::middle::region::Scope;
@ -201,7 +202,13 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
pattern,
UserTypeProjections::none(),
&mut |this, _, _, node, span, _, _| {
this.storage_live_binding(block, node, span, OutsideGuard, true);
this.storage_live_binding(
block,
node,
span,
OutsideGuard,
ScheduleDrops::Yes,
);
},
);
let else_block_span = this.thir[*else_block].span;
@ -213,8 +220,8 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
pattern,
None,
initializer_span,
false,
true,
DeclareLetBindings::No,
EmitStorageLive::No,
)
});
matching.and(failure)
@ -291,7 +298,13 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
pattern,
UserTypeProjections::none(),
&mut |this, _, _, node, span, _, _| {
this.storage_live_binding(block, node, span, OutsideGuard, true);
this.storage_live_binding(
block,
node,
span,
OutsideGuard,
ScheduleDrops::Yes,
);
this.schedule_drop_for_binding(node, span, OutsideGuard);
},
)

View File

@ -1,6 +1,7 @@
//! See docs in build/expr/mod.rs
use crate::build::expr::category::{Category, RvalueFunc};
use crate::build::matches::DeclareLetBindings;
use crate::build::{BlockAnd, BlockAndExtension, BlockFrame, Builder, NeedsTemporary};
use rustc_ast::InlineAsmOptions;
use rustc_data_structures::fx::FxHashMap;
@ -86,7 +87,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
cond,
Some(condition_scope), // Temp scope
source_info,
true, // Declare `let` bindings normally
DeclareLetBindings::Yes, // Declare `let` bindings normally
));
// Lower the `then` arm into its block.
@ -163,7 +164,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
source_info,
// This flag controls how inner `let` expressions are lowered,
// but either way there shouldn't be any of those in here.
true,
DeclareLetBindings::LetNotPermitted,
)
});
let (short_circuit, continuation, constant) = match op {

View File

@ -28,6 +28,7 @@ mod simplify;
mod test;
mod util;
use std::assert_matches::assert_matches;
use std::borrow::Borrow;
use std::mem;
@ -39,9 +40,50 @@ struct ThenElseArgs {
/// `self.local_scope()` is used.
temp_scope_override: Option<region::Scope>,
variable_source_info: SourceInfo,
/// Determines how bindings should be handled when lowering `let` expressions.
///
/// Forwarded to [`Builder::lower_let_expr`] when lowering [`ExprKind::Let`].
/// When false (for match guards), `let` bindings won't be declared.
declare_let_bindings: bool,
declare_let_bindings: DeclareLetBindings,
}
/// Should lowering a `let` expression also declare its bindings?
///
/// Used by [`Builder::lower_let_expr`] when lowering [`ExprKind::Let`].
#[derive(Clone, Copy)]
pub(crate) enum DeclareLetBindings {
/// Yes, declare `let` bindings as normal for `if` conditions.
Yes,
/// No, don't declare `let` bindings, because the caller declares them
/// separately due to special requirements.
///
/// Used for match guards and let-else.
No,
/// Let expressions are not permitted in this context, so it is a bug to
/// try to lower one (e.g inside lazy-boolean-or or boolean-not).
LetNotPermitted,
}
/// Used by [`Builder::bind_matched_candidate_for_arm_body`] to determine
/// whether or not to call [`Builder::storage_live_binding`] to emit
/// [`StatementKind::StorageLive`].
#[derive(Clone, Copy)]
pub(crate) enum EmitStorageLive {
/// Yes, emit `StorageLive` as normal.
Yes,
/// No, don't emit `StorageLive`. The caller has taken responsibility for
/// emitting `StorageLive` as appropriate.
No,
}
/// Used by [`Builder::storage_live_binding`] and [`Builder::bind_matched_candidate_for_arm_body`]
/// to decide whether to schedule drops.
#[derive(Clone, Copy, Debug)]
pub(crate) enum ScheduleDrops {
/// Yes, the relevant functions should also schedule drops as appropriate.
Yes,
/// No, don't schedule drops. The caller has taken responsibility for any
/// appropriate drops.
No,
}
impl<'a, 'tcx> Builder<'a, 'tcx> {
@ -57,7 +99,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
expr_id: ExprId,
temp_scope_override: Option<region::Scope>,
variable_source_info: SourceInfo,
declare_let_bindings: bool,
declare_let_bindings: DeclareLetBindings,
) -> BlockAnd<()> {
self.then_else_break_inner(
block,
@ -91,13 +133,19 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
this.then_else_break_inner(
block,
lhs,
ThenElseArgs { declare_let_bindings: true, ..args },
ThenElseArgs {
declare_let_bindings: DeclareLetBindings::LetNotPermitted,
..args
},
)
});
let rhs_success_block = unpack!(this.then_else_break_inner(
failure_block,
rhs,
ThenElseArgs { declare_let_bindings: true, ..args },
ThenElseArgs {
declare_let_bindings: DeclareLetBindings::LetNotPermitted,
..args
},
));
// Make the LHS and RHS success arms converge to a common block.
@ -127,7 +175,10 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
this.then_else_break_inner(
block,
arg,
ThenElseArgs { declare_let_bindings: true, ..args },
ThenElseArgs {
declare_let_bindings: DeclareLetBindings::LetNotPermitted,
..args
},
)
});
this.break_for_else(success_block, args.variable_source_info);
@ -147,7 +198,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
Some(args.variable_source_info.scope),
args.variable_source_info.span,
args.declare_let_bindings,
false,
EmitStorageLive::Yes,
),
_ => {
let mut block = block;
@ -440,7 +491,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
&fake_borrow_temps,
scrutinee_span,
Some((arm, match_scope)),
false,
EmitStorageLive::Yes,
);
this.fixed_temps_scope = old_dedup_scope;
@ -485,7 +536,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
fake_borrow_temps: &[(Place<'tcx>, Local, FakeBorrowKind)],
scrutinee_span: Span,
arm_match_scope: Option<(&Arm<'tcx>, region::Scope)>,
storages_alive: bool,
emit_storage_live: EmitStorageLive,
) -> BasicBlock {
if candidate.subcandidates.is_empty() {
// Avoid generating another `BasicBlock` when we only have one
@ -496,8 +547,8 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
fake_borrow_temps,
scrutinee_span,
arm_match_scope,
true,
storages_alive,
ScheduleDrops::Yes,
emit_storage_live,
)
} else {
// It's helpful to avoid scheduling drops multiple times to save
@ -515,7 +566,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
// To handle this we instead unschedule it's drop after each time
// we lower the guard.
let target_block = self.cfg.start_new_block();
let mut schedule_drops = true;
let mut schedule_drops = ScheduleDrops::Yes;
let arm = arm_match_scope.unzip().0;
// We keep a stack of all of the bindings and type ascriptions
// from the parent candidates that we visit, that also need to
@ -534,10 +585,10 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
scrutinee_span,
arm_match_scope,
schedule_drops,
storages_alive,
emit_storage_live,
);
if arm.is_none() {
schedule_drops = false;
schedule_drops = ScheduleDrops::No;
}
self.cfg.goto(binding_end, outer_source_info, target_block);
},
@ -563,8 +614,13 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
match irrefutable_pat.kind {
// Optimize the case of `let x = ...` to write directly into `x`
PatKind::Binding { mode: BindingMode(ByRef::No, _), var, subpattern: None, .. } => {
let place =
self.storage_live_binding(block, var, irrefutable_pat.span, OutsideGuard, true);
let place = self.storage_live_binding(
block,
var,
irrefutable_pat.span,
OutsideGuard,
ScheduleDrops::Yes,
);
unpack!(block = self.expr_into_dest(place, block, initializer_id));
// Inject a fake read, see comments on `FakeReadCause::ForLet`.
@ -597,8 +653,13 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
},
ascription: thir::Ascription { ref annotation, variance: _ },
} => {
let place =
self.storage_live_binding(block, var, irrefutable_pat.span, OutsideGuard, true);
let place = self.storage_live_binding(
block,
var,
irrefutable_pat.span,
OutsideGuard,
ScheduleDrops::Yes,
);
unpack!(block = self.expr_into_dest(place, block, initializer_id));
// Inject a fake read, see comments on `FakeReadCause::ForLet`.
@ -704,7 +765,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
&[],
irrefutable_pat.span,
None,
false,
EmitStorageLive::Yes,
)
.unit()
}
@ -780,13 +841,15 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
}
}
/// Emits a [`StatementKind::StorageLive`] for the given var, and also
/// schedules a drop if requested (and possible).
pub(crate) fn storage_live_binding(
&mut self,
block: BasicBlock,
var: LocalVarId,
span: Span,
for_guard: ForGuard,
schedule_drop: bool,
schedule_drop: ScheduleDrops,
) -> Place<'tcx> {
let local_id = self.var_local_id(var, for_guard);
let source_info = self.source_info(span);
@ -794,7 +857,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
// Although there is almost always scope for given variable in corner cases
// like #92893 we might get variable with no scope.
if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id)
&& schedule_drop
&& matches!(schedule_drop, ScheduleDrops::Yes)
{
self.schedule_drop(span, region_scope, local_id, DropKind::Storage);
}
@ -1991,8 +2054,14 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
// Pat binding - used for `let` and function parameters as well.
impl<'a, 'tcx> Builder<'a, 'tcx> {
/// If the bindings have already been declared, set `declare_bindings` to
/// `false` to avoid duplicated bindings declaration; used for if-let guards.
/// Lowers a `let` expression that appears in a suitable context
/// (e.g. an `if` condition or match guard).
///
/// Also used for lowering let-else statements, since they have similar
/// needs despite not actually using `let` expressions.
///
/// Use [`DeclareLetBindings`] to control whether the `let` bindings are
/// declared or not.
pub(crate) fn lower_let_expr(
&mut self,
mut block: BasicBlock,
@ -2000,8 +2069,8 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
pat: &Pat<'tcx>,
source_scope: Option<SourceScope>,
scope_span: Span,
declare_bindings: bool,
storages_alive: bool,
declare_let_bindings: DeclareLetBindings,
emit_storage_live: EmitStorageLive,
) -> BlockAnd<()> {
let expr_span = self.thir[expr_id].span;
let scrutinee = unpack!(block = self.lower_scrutinee(block, expr_id, expr_span));
@ -2017,10 +2086,22 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
self.break_for_else(otherwise_block, self.source_info(expr_span));
if declare_bindings {
let expr_place = scrutinee.try_to_place(self);
let opt_expr_place = expr_place.as_ref().map(|place| (Some(place), expr_span));
self.declare_bindings(source_scope, pat.span.to(scope_span), pat, None, opt_expr_place);
match declare_let_bindings {
DeclareLetBindings::Yes => {
let expr_place = scrutinee.try_to_place(self);
let opt_expr_place = expr_place.as_ref().map(|place| (Some(place), expr_span));
self.declare_bindings(
source_scope,
pat.span.to(scope_span),
pat,
None,
opt_expr_place,
);
}
DeclareLetBindings::No => {} // Caller is responsible for bindings.
DeclareLetBindings::LetNotPermitted => {
self.tcx.dcx().span_bug(expr_span, "let expression not expected in this context")
}
}
let success = self.bind_pattern(
@ -2029,7 +2110,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
&[],
expr_span,
None,
storages_alive,
emit_storage_live,
);
// If branch coverage is enabled, record this branch.
@ -2053,8 +2134,8 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
fake_borrows: &[(Place<'tcx>, Local, FakeBorrowKind)],
scrutinee_span: Span,
arm_match_scope: Option<(&Arm<'tcx>, region::Scope)>,
schedule_drops: bool,
storages_alive: bool,
schedule_drops: ScheduleDrops,
emit_storage_live: EmitStorageLive,
) -> BasicBlock {
debug!("bind_and_guard_matched_candidate(candidate={:?})", candidate);
@ -2203,7 +2284,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
guard,
None, // Use `self.local_scope()` as the temp scope
this.source_info(arm.span),
false, // For guards, `let` bindings are declared separately
DeclareLetBindings::No, // For guards, `let` bindings are declared separately
)
});
@ -2264,12 +2345,16 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
let cause = FakeReadCause::ForGuardBinding;
self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(local_id));
}
assert!(schedule_drops, "patterns with guards must schedule drops");
assert_matches!(
schedule_drops,
ScheduleDrops::Yes,
"patterns with guards must schedule drops"
);
self.bind_matched_candidate_for_arm_body(
post_guard_block,
true,
ScheduleDrops::Yes,
by_value_bindings,
storages_alive,
emit_storage_live,
);
post_guard_block
@ -2281,7 +2366,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
block,
schedule_drops,
bindings,
storages_alive,
emit_storage_live,
);
block
}
@ -2317,7 +2402,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
fn bind_matched_candidate_for_guard<'b>(
&mut self,
block: BasicBlock,
schedule_drops: bool,
schedule_drops: ScheduleDrops,
bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
) where
'tcx: 'b,
@ -2370,9 +2455,9 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
fn bind_matched_candidate_for_arm_body<'b>(
&mut self,
block: BasicBlock,
schedule_drops: bool,
schedule_drops: ScheduleDrops,
bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
storages_alive: bool,
emit_storage_live: EmitStorageLive,
) where
'tcx: 'b,
{
@ -2382,21 +2467,20 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
// Assign each of the bindings. This may trigger moves out of the candidate.
for binding in bindings {
let source_info = self.source_info(binding.span);
let local = if storages_alive {
let local = match emit_storage_live {
// Here storages are already alive, probably because this is a binding
// from let-else.
// We just need to schedule drop for the value.
self.var_local_id(binding.var_id, OutsideGuard).into()
} else {
self.storage_live_binding(
EmitStorageLive::No => self.var_local_id(binding.var_id, OutsideGuard).into(),
EmitStorageLive::Yes => self.storage_live_binding(
block,
binding.var_id,
binding.span,
OutsideGuard,
schedule_drops,
)
),
};
if schedule_drops {
if matches!(schedule_drops, ScheduleDrops::Yes) {
self.schedule_drop_for_binding(binding.var_id, binding.span, OutsideGuard);
}
let rvalue = match binding.binding_mode.0 {

View File

@ -9,9 +9,8 @@ use rustc_middle::ty::TyCtxt;
use rustc_span::Span;
use crate::coverage::graph::{BasicCoverageBlock, CoverageGraph, START_BCB};
use crate::coverage::spans::{
extract_refined_covspans, unexpand_into_body_span_with_visible_macro,
};
use crate::coverage::spans::extract_refined_covspans;
use crate::coverage::unexpand::unexpand_into_body_span;
use crate::coverage::ExtractedHirInfo;
/// Associates an ordinary executable code span with its corresponding BCB.
@ -202,8 +201,7 @@ pub(super) fn extract_branch_pairs(
if !raw_span.ctxt().outer_expn_data().is_root() {
return None;
}
let (span, _) =
unexpand_into_body_span_with_visible_macro(raw_span, hir_info.body_span)?;
let span = unexpand_into_body_span(raw_span, hir_info.body_span)?;
let bcb_from_marker =
|marker: BlockMarkerId| basic_coverage_blocks.bcb_from_bb(block_markers[marker]?);
@ -238,7 +236,7 @@ pub(super) fn extract_mcdc_mappings(
if !raw_span.ctxt().outer_expn_data().is_root() {
return None;
}
let (span, _) = unexpand_into_body_span_with_visible_macro(raw_span, body_span)?;
let span = unexpand_into_body_span(raw_span, body_span)?;
let true_bcb = bcb_from_marker(true_marker)?;
let false_bcb = bcb_from_marker(false_marker)?;
@ -261,7 +259,7 @@ pub(super) fn extract_mcdc_mappings(
mcdc_decisions.extend(branch_info.mcdc_decision_spans.iter().filter_map(
|decision: &mir::coverage::MCDCDecisionSpan| {
let (span, _) = unexpand_into_body_span_with_visible_macro(decision.span, body_span)?;
let span = unexpand_into_body_span(decision.span, body_span)?;
let end_bcbs = decision
.end_markers

View File

@ -6,6 +6,7 @@ mod mappings;
mod spans;
#[cfg(test)]
mod tests;
mod unexpand;
use rustc_middle::mir::coverage::{
CodeRegion, CoverageKind, DecisionInfo, FunctionCoverageInfo, Mapping, MappingKind,

View File

@ -14,11 +14,6 @@ use crate::coverage::ExtractedHirInfo;
mod from_mir;
// FIXME(#124545) It's awkward that we have to re-export this, because it's an
// internal detail of `from_mir` that is also needed when handling branch and
// MC/DC spans. Ideally we would find a more natural home for it.
pub(super) use from_mir::unexpand_into_body_span_with_visible_macro;
pub(super) fn extract_refined_covspans(
mir_body: &mir::Body<'_>,
hir_info: &ExtractedHirInfo,

View File

@ -4,12 +4,13 @@ use rustc_middle::mir::{
self, AggregateKind, FakeReadCause, Rvalue, Statement, StatementKind, Terminator,
TerminatorKind,
};
use rustc_span::{ExpnKind, MacroKind, Span, Symbol};
use rustc_span::{Span, Symbol};
use crate::coverage::graph::{
BasicCoverageBlock, BasicCoverageBlockData, CoverageGraph, START_BCB,
};
use crate::coverage::spans::Covspan;
use crate::coverage::unexpand::unexpand_into_body_span_with_visible_macro;
use crate::coverage::ExtractedHirInfo;
pub(crate) struct ExtractedCovspans {
@ -215,59 +216,6 @@ fn filtered_terminator_span(terminator: &Terminator<'_>) -> Option<Span> {
}
}
/// Returns an extrapolated span (pre-expansion[^1]) corresponding to a range
/// within the function's body source. This span is guaranteed to be contained
/// within, or equal to, the `body_span`. If the extrapolated span is not
/// contained within the `body_span`, `None` is returned.
///
/// [^1]Expansions result from Rust syntax including macros, syntactic sugar,
/// etc.).
pub(crate) fn unexpand_into_body_span_with_visible_macro(
original_span: Span,
body_span: Span,
) -> Option<(Span, Option<Symbol>)> {
let (span, prev) = unexpand_into_body_span_with_prev(original_span, body_span)?;
let visible_macro = prev
.map(|prev| match prev.ctxt().outer_expn_data().kind {
ExpnKind::Macro(MacroKind::Bang, name) => Some(name),
_ => None,
})
.flatten();
Some((span, visible_macro))
}
/// Walks through the expansion ancestors of `original_span` to find a span that
/// is contained in `body_span` and has the same [`SyntaxContext`] as `body_span`.
/// The ancestor that was traversed just before the matching span (if any) is
/// also returned.
///
/// For example, a return value of `Some((ancestor, Some(prev))` means that:
/// - `ancestor == original_span.find_ancestor_inside_same_ctxt(body_span)`
/// - `ancestor == prev.parent_callsite()`
///
/// [`SyntaxContext`]: rustc_span::SyntaxContext
fn unexpand_into_body_span_with_prev(
original_span: Span,
body_span: Span,
) -> Option<(Span, Option<Span>)> {
let mut prev = None;
let mut curr = original_span;
while !body_span.contains(curr) || !curr.eq_ctxt(body_span) {
prev = Some(curr);
curr = curr.parent_callsite()?;
}
debug_assert_eq!(Some(curr), original_span.find_ancestor_in_same_ctxt(body_span));
if let Some(prev) = prev {
debug_assert_eq!(Some(curr), prev.parent_callsite());
}
Some((curr, prev))
}
#[derive(Debug)]
pub(crate) struct Hole {
pub(crate) span: Span,

View File

@ -0,0 +1,60 @@
use rustc_span::{ExpnKind, MacroKind, Span, Symbol};
/// Walks through the expansion ancestors of `original_span` to find a span that
/// is contained in `body_span` and has the same [syntax context] as `body_span`.
pub(crate) fn unexpand_into_body_span(original_span: Span, body_span: Span) -> Option<Span> {
// Because we don't need to return any extra ancestor information,
// we can just delegate directly to `find_ancestor_inside_same_ctxt`.
original_span.find_ancestor_inside_same_ctxt(body_span)
}
/// Walks through the expansion ancestors of `original_span` to find a span that
/// is contained in `body_span` and has the same [syntax context] as `body_span`.
///
/// If the returned span represents a bang-macro invocation (e.g. `foo!(..)`),
/// the returned symbol will be the name of that macro (e.g. `foo`).
pub(crate) fn unexpand_into_body_span_with_visible_macro(
original_span: Span,
body_span: Span,
) -> Option<(Span, Option<Symbol>)> {
let (span, prev) = unexpand_into_body_span_with_prev(original_span, body_span)?;
let visible_macro = prev
.map(|prev| match prev.ctxt().outer_expn_data().kind {
ExpnKind::Macro(MacroKind::Bang, name) => Some(name),
_ => None,
})
.flatten();
Some((span, visible_macro))
}
/// Walks through the expansion ancestors of `original_span` to find a span that
/// is contained in `body_span` and has the same [syntax context] as `body_span`.
/// The ancestor that was traversed just before the matching span (if any) is
/// also returned.
///
/// For example, a return value of `Some((ancestor, Some(prev)))` means that:
/// - `ancestor == original_span.find_ancestor_inside_same_ctxt(body_span)`
/// - `prev.parent_callsite() == ancestor`
///
/// [syntax context]: rustc_span::SyntaxContext
fn unexpand_into_body_span_with_prev(
original_span: Span,
body_span: Span,
) -> Option<(Span, Option<Span>)> {
let mut prev = None;
let mut curr = original_span;
while !body_span.contains(curr) || !curr.eq_ctxt(body_span) {
prev = Some(curr);
curr = curr.parent_callsite()?;
}
debug_assert_eq!(Some(curr), original_span.find_ancestor_inside_same_ctxt(body_span));
if let Some(prev) = prev {
debug_assert_eq!(Some(curr), prev.parent_callsite());
}
Some((curr, prev))
}

View File

@ -2484,8 +2484,7 @@ impl Display for char {
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Pointer for *const T {
fn fmt(&self, f: &mut Formatter<'_>) -> Result {
// Cast is needed here because `.expose_provenance()` requires `T: Sized`.
pointer_fmt_inner((*self as *const ()).expose_provenance(), f)
pointer_fmt_inner(self.expose_provenance(), f)
}
}

View File

@ -263,9 +263,6 @@ extern "rust-intrinsic" {
///
/// `V` must be a vector of integers with the same length as `T` (but any element size).
///
/// `idx` must be a constant: either naming a constant item, or an inline
/// `const {}` expression.
///
/// For each pointer in `ptr`, if the corresponding value in `mask` is `!0`, read the pointer.
/// Otherwise if the corresponding value in `mask` is `0`, return the corresponding value from
/// `val`.

View File

@ -1,30 +1,24 @@
# loongarch\*-unknown-linux-\*
# `loongarch*-unknown-linux-*`
**Tier: 2**
**Tier: 2 (with Host Tools)**
[LoongArch] is a new RISC ISA developed by Loongson Technology Corporation Limited.
[LoongArch][la-docs] Linux targets.
LoongArch is a RISC ISA developed by Loongson Technology Corporation Limited.
[LoongArch]: https://loongson.github.io/LoongArch-Documentation/README-EN.html
| Target | Description |
|--------|-------------|
| `loongarch64-unknown-linux-gnu` | LoongArch64 Linux, LP64D ABI (kernel 5.19, glibc 2.36) |
| `loongarch64-unknown-linux-musl` | LoongArch64 Linux, LP64D ABI (kernel 5.19, musl 1.2.5) |
The target name follow this format: `<machine>-<vendor>-<os><fabi_suffix>`, where `<machine>` specifies the CPU family/model, `<vendor>` specifies the vendor and `<os>` the operating system name.
While the integer base ABI is implied by themachinefield, the floating point base ABI type is encoded into the os field of the specifier using the string suffix `<fabi-suffix>`.
These support both native and cross builds, and have full support for `std`.
| `<fabi-suffix>` | `Description` |
|------------------------|--------------------------------------------------------------------|
| f64 | The base ABI use 64-bits FPRs for parameter passing. (lp64d)|
| f32 | The base ABI uses 32-bit FPRs for parameter passing. (lp64f)|
| sf | The base ABI uses no FPR for parameter passing. (lp64s) |
Reference material:
<br>
* [LoongArch ISA manuals][la-docs]
* [Application Binary Interface for the LoongArch&trade; Architecture][la-abi-specs]
|`ABI type(Base ABI/ABI extension)`| `C library` | `kernel` | `target tuple` |
|----------------------------------|-------------|----------|----------------------------------|
| lp64d/base | glibc | linux | loongarch64-unknown-linux-gnu |
| lp64f/base | glibc | linux | loongarch64-unknown-linux-gnuf32 |
| lp64s/base | glibc | linux | loongarch64-unknown-linux-gnusf |
| lp64d/base | musl libc | linux | loongarch64-unknown-linux-musl|
| lp64f/base | musl libc | linux | loongarch64-unknown-linux-muslf32|
| lp64s/base | musl libc | linux | loongarch64-unknown-linux-muslsf |
[la-abi-specs]: https://github.com/loongson/la-abi-specs
[la-docs]: https://loongson.github.io/LoongArch-Documentation/README-EN.html
## Target maintainers
@ -35,23 +29,57 @@ While the integer base ABI is implied by themachinefield, the floating po
## Requirements
This target is cross-compiled.
A GNU toolchain for LoongArch target is required. It can be downloaded from https://github.com/loongson/build-tools/releases, or built from the source code of GCC (12.1.0 or later) and Binutils (2.40 or later).
### OS Version
## Building the target
The minimum supported Linux version is 5.19.
The target can be built by enabling it for a `rustc` build.
Some Linux distributions, mostly commercial ones, may provide forked Linux
kernels that has a version number less than 5.19 for their LoongArch ports.
Such kernels may still get patched to be compatible with the upstream Linux
5.19 UAPI, therefore supporting the targets described in this document, but
this is not always the case. The `rustup` installer contains a check for this,
and will abort if incompatibility is detected.
### Host toolchain
The targets require a reasonably up-to-date LoongArch toolchain on the host.
Currently the following components are used by the Rust CI to build the target,
and the versions can be seen as the minimum requirement:
* GNU Binutils 2.40
* GCC 13.x
* glibc 2.36
* linux-headers 5.19
Of these, glibc and linux-headers are at their respective earliest versions with
mainline LoongArch support, so it is impossible to use older versions of these.
Older versions of Binutils and GCC will not work either, due to lack of support
for newer LoongArch ELF relocation types, among other features.
Recent LLVM/Clang toolchains may be able to build the targets, but are not
currently being actively tested.
## Building
These targets are distributed through `rustup`, and otherwise require no
special configuration.
If you need to build your own Rust for some reason though, the targets can be
simply enabled in `config.toml`. For example:
```toml
[build]
target = ["loongarch64-unknown-linux-gnu"]
```
Make sure `loongarch64-unknown-linux-gnu-gcc` can be searched from the directories specified in`$PATH`. Alternatively, you can use GNU LoongArch Toolchain by adding the following to `config.toml`:
Make sure the LoongArch toolchain binaries are reachable from `$PATH`.
Alternatively, you can explicitly configure the paths in `config.toml`:
```toml
[target.loongarch64-unknown-linux-gnu]
# ADJUST THIS PATH TO POINT AT YOUR TOOLCHAIN
# Adjust the paths to point at your toolchain
# Suppose the toolchain is placed at /TOOLCHAIN_PATH, and the cross prefix is
# "loongarch64-unknown-linux-gnu-":
cc = "/TOOLCHAIN_PATH/bin/loongarch64-unknown-linux-gnu-gcc"
cxx = "/TOOLCHAIN_PATH/bin/loongarch64-unknown-linux-gnu-g++"
ar = "/TOOLCHAIN_PATH/bin/loongarch64-unknown-linux-gnu-ar"
@ -59,36 +87,51 @@ ranlib = "/TOOLCHAIN_PATH/bin/loongarch64-unknown-linux-gnu-ranlib"
linker = "/TOOLCHAIN_PATH/bin/loongarch64-unknown-linux-gnu-gcc"
```
## Cross-compilation
### Cross-compilation
This target can be cross-compiled on a `x86_64-unknown-linux-gnu` host. Cross-compilation on other hosts may work but is not tested.
This target can be cross-compiled on a `x86_64-unknown-linux-gnu` host.
Other hosts are also likely to work, but not actively tested.
You can test the cross build directly on the host, thanks to QEMU linux-user emulation.
An example is given below:
```sh
# Suppose the cross toolchain is placed at $TOOLCHAIN_PATH, with a cross prefix
# of "loongarch64-unknown-linux-gnu-".
export CC_loongarch64_unknown_linux_gnu="$TOOLCHAIN_PATH"/bin/loongarch64-unknown-linux-gnu-gcc
export CXX_loongarch64_unknown_linux_gnu="$TOOLCHAIN_PATH"/bin/loongarch64-unknown-linux-gnu-g++
export AR_loongarch64_unknown_linux_gnu="$TOOLCHAIN_PATH"/bin/loongarch64-unknown-linux-gnu-gcc-ar
export CARGO_TARGET_LOONGARCH64_UNKNOWN_LINUX_GNU_LINKER="$TOOLCHAIN_PATH"/bin/loongarch64-unknown-linux-gnu-gcc
# Point qemu-loongarch64 to the LoongArch sysroot.
# Suppose the sysroot is located at "sysroot" below the toolchain root:
export CARGO_TARGET_LOONGARCH64_UNKNOWN_LINUX_GNU_RUNNER="qemu-loongarch64 -L $TOOLCHAIN_PATH/sysroot"
# Or alternatively, if binfmt_misc is set up for running LoongArch binaries
# transparently:
export QEMU_LD_PREFIX="$TOOLCHAIN_PATH"/sysroot
## Testing
To test a cross-compiled binary on your build system, install the qemu binary that supports the LoongArch architecture and execute the following commands.
```text
CC_loongarch64_unknown_linux_gnu=/TOOLCHAIN_PATH/bin/loongarch64-unknown-linux-gnu-gcc \
CXX_loongarch64_unknown_linux_gnu=/TOOLCHAIN_PATH/bin/loongarch64-unknown-linux-gnu-g++ \
AR_loongarch64_unknown_linux_gnu=/TOOLCHAIN_PATH/bin/loongarch64-unknown-linux-gnu-gcc-ar \
CARGO_TARGET_LOONGARCH64_UNKNOWN_LINUX_GNUN_LINKER=/TOOLCHAIN_PATH/bin/loongarch64-unknown-linux-gnu-gcc \
# SET TARGET SYSTEM LIBRARY PATH
CARGO_TARGET_LOONGARCH64_UNKNOWN_LINUX_GNUN_RUNNER="qemu-loongarch64 -L /TOOLCHAIN_PATH/TARGET_LIBRARY_PATH" \
cargo run --target loongarch64-unknown-linux-gnu --release
```
Tested on x86 architecture, other architectures not tested.
## Testing
There are no special requirements for testing and running the targets.
For testing cross builds on the host, please refer to the "Cross-compilation"
section above.
## Building Rust programs
Rust does not yet ship pre-compiled artifacts for this target. To compile for this target, you will either need to build Rust with the target enabled (see "Building the target" above), or build your own copy of `std` by using `build-std` or similar.
As the targets are available through `rustup`, it is very easy to build Rust
programs for these targets: same as with other architectures.
Note that you will need a LoongArch C/C++ toolchain for linking, or if you want
to compile C code along with Rust (such as for Rust crates with C dependencies).
If `rustc` has support for that target and the library artifacts are available, then Rust static libraries can be built for that target:
```shell
$ rustc --target loongarch64-unknown-linux-gnu your-code.rs --crate-type staticlib
$ ls libyour_code.a
```sh
rustup target add loongarch64-unknown-linux-gnu
cargo build --target loongarch64-unknown-linux-gnu
```
On Rust Nightly it's possible to build without the target artifacts available:
Availability of pre-built artifacts through `rustup` are as follows:
```text
cargo build -Z build-std --target loongarch64-unknown-linux-gnu
```
* `loongarch64-unknown-linux-gnu`: since Rust 1.71;
* `loongarch64-unknown-linux-musl`: since Rust 1.81.

View File

@ -4,10 +4,10 @@
Freestanding/bare-metal LoongArch64 binaries in ELF format: firmware, kernels, etc.
| Target | Descriptions |
|------------------------------------|-------------------------------------------------------|
| loongarch64-unknown-none | LoongArch 64-bit, LP64D ABI (freestanding, hardfloat) |
| loongarch64-unknown-none-softfloat | LoongArch 64-bit, LP64S ABI (freestanding, softfloat) |
| Target | Description |
|--------|-------------|
| `loongarch64-unknown-none` | LoongArch 64-bit, LP64D ABI (freestanding, hard-float) |
| `loongarch64-unknown-none-softfloat` | LoongArch 64-bit, LP64S ABI (freestanding, soft-float) |
## Target maintainers
@ -19,6 +19,8 @@ Freestanding/bare-metal LoongArch64 binaries in ELF format: firmware, kernels, e
This target is cross-compiled. There is no support for `std`. There is no
default allocator, but it's possible to use `alloc` by supplying an allocator.
The `*-softfloat` target does not assume existence of FPU or any other LoongArch
ISA extension, and does not make use of any non-GPR register.
This allows the generated code to run in environments, such as kernels, which
may need to avoid the use of such registers or which may have special considerations
about the use of such registers (e.g. saving and restoring them to avoid breaking
@ -26,54 +28,64 @@ userspace code using the same registers). You can change code generation to use
additional CPU features via the `-C target-feature=` codegen options to rustc, or
via the `#[target_feature]` mechanism within Rust code.
By default, code generated with this target should run on any `loongarch`
hardware; enabling additional target features may raise this baseline.
By default, code generated with the soft-float target should run on any
LoongArch64 hardware, with the hard-float target additionally requiring an FPU;
enabling additional target features may raise this baseline.
Code generated with this target will use the `small` code model by default.
Code generated with the targets will use the `small` code model by default.
You can change this using the `-C code-model=` option to rustc.
On `loongarch64-unknown-none*`, `extern "C"` uses the [standard calling
convention](https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html).
On `loongarch64-unknown-none*`, `extern "C"` uses the [architecture's standard calling convention][lapcs].
This target generates binaries in the ELF format. Any alternate formats or
[lapcs]: https://github.com/loongson/la-abi-specs/blob/release/lapcs.adoc
The targets generate binaries in the ELF format. Any alternate formats or
special considerations for binary layout will require linker options or linker
scripts.
## Building the target
You can build Rust with support for the target by adding it to the `target`
You can build Rust with support for the targets by adding them to the `target`
list in `config.toml`:
```toml
[build]
build-stage = 1
target = ["loongarch64-unknown-none"]
```
## Building Rust programs
```text
# target flag may be used with any cargo or rustc command
cargo build --target loongarch64-unknown-none
target = [
"loongarch64-unknown-none",
"loongarch64-unknown-none-softfloat",
]
```
## Testing
As `loongarch64-unknown-none*` supports a variety of different environments and does
not support `std`, this target does not support running the Rust test suite.
As the targets support a variety of different environments and do not support
`std`, they do not support running the Rust test suite.
## Building Rust programs
Starting with Rust 1.74, precompiled artifacts are provided via `rustup`:
```sh
# install cross-compile toolchain
rustup target add loongarch64-unknown-none
# target flag may be used with any cargo or rustc command
cargo build --target loongarch64-unknown-none
```
## Cross-compilation toolchains and C code
If you want to compile C code along with Rust (such as for Rust crates with C
dependencies), you will need an appropriate `loongarch` toolchain.
For cross builds, you will need an appropriate LoongArch C/C++ toolchain for
linking, or if you want to compile C code along with Rust (such as for Rust
crates with C dependencies).
Rust *may* be able to use an `loongarch64-unknown-linux-gnu-` toolchain with
appropriate standalone flags to build for this toolchain (depending on the assumptions
of that toolchain, see below), or you may wish to use a separate
`loongarch64-unknown-none` toolchain.
On some `loongarch` hosts that use ELF binaries, you *may* be able to use the host
On some LoongArch hosts that use ELF binaries, you *may* be able to use the host
C toolchain, if it does not introduce assumptions about the host environment
that don't match the expectations of a standalone environment. Otherwise, you
may need a separate toolchain for standalone/freestanding development, just as
when cross-compiling from a non-`loongarch` platform.
when cross-compiling from a non-LoongArch platform.

View File

@ -525,11 +525,12 @@ macro_rules! impl_common_helpers {
/// Generic command arguments provider. Prefer specific helper methods if possible.
/// Note that for some executables, arguments might be platform specific. For C/C++
/// compilers, arguments might be platform *and* compiler specific.
pub fn args<S>(&mut self, args: &[S]) -> &mut Self
pub fn args<V, S>(&mut self, args: V) -> &mut Self
where
V: AsRef<[S]>,
S: AsRef<::std::ffi::OsStr>,
{
self.cmd.args(args);
self.cmd.args(args.as_ref());
self
}

View File

@ -49,7 +49,6 @@ pub const DEFAULT_LINTS: &[Lint] = &[
label: "bindings_with_variant_name",
description: r##"detects pattern bindings with the same name as one of the matched variants"##,
},
Lint { label: "box_pointers", description: r##"use of owned (Box type) heap memory"## },
Lint {
label: "break_with_label_and_loop",
description: r##"`break` expression with label and unlabeled loop as value expression"##,

View File

@ -10,8 +10,8 @@ pub fn main() {
cc().input("test.c")
.input(static_lib_name("nonclike"))
.out_exe("test")
.args(&extra_c_flags())
.args(&extra_cxx_flags())
.args(extra_c_flags())
.args(extra_cxx_flags())
.inspect(|cmd| eprintln!("{cmd:?}"))
.run();
run("test");

View File

@ -9,7 +9,7 @@ use std::fs;
fn main() {
rustc().input("foo.rs").run();
cc().input("bar.c").input(static_lib_name("foo")).out_exe("bar").args(&extra_c_flags()).run();
cc().input("bar.c").input(static_lib_name("foo")).out_exe("bar").args(extra_c_flags()).run();
run("bar");
remove_file(static_lib_name("foo"));
run("bar");

View File

@ -12,7 +12,7 @@ fn main() {
cc().input("test.c")
.input(static_lib_name("checkrust"))
.out_exe("test")
.args(&extra_c_flags())
.args(extra_c_flags())
.run();
run("test");
}

View File

@ -11,8 +11,8 @@ fn main() {
cc().input("program.c")
.arg(static_lib_name("library"))
.out_exe("program")
.args(&extra_c_flags())
.args(&extra_cxx_flags())
.args(extra_c_flags())
.args(extra_cxx_flags())
.run();
run(&bin_name("program"));
}

View File

@ -86,12 +86,8 @@ fn main() {
}
fn check(CheckCfg { args, contains }: CheckCfg) {
let output = rustc()
.input("lib.rs")
.arg("-Zunstable-options")
.arg("--print=check-cfg")
.args(&*args)
.run();
let output =
rustc().input("lib.rs").arg("-Zunstable-options").arg("--print=check-cfg").args(args).run();
let stdout = output.stdout_utf8();

View File

@ -11,8 +11,8 @@ fn main() {
cc().input("test.c")
.arg(&static_lib_name("nonclike"))
.out_exe("test")
.args(&extra_c_flags())
.args(&extra_cxx_flags())
.args(extra_c_flags())
.args(extra_cxx_flags())
.run();
run("test");
}

View File

@ -20,8 +20,8 @@ fn main() {
.out_exe(&dynamic_lib_name("bar"))
.arg("-fPIC")
.arg("-shared")
.args(&extra_c_flags())
.args(&extra_cxx_flags())
.args(extra_c_flags())
.args(extra_cxx_flags())
.run();
llvm_readobj()
.input(dynamic_lib_name("bar"))

View File

@ -1,14 +1,18 @@
// Given an anon const `a`: `{ N }` and some anon const `b` which references the
// first anon const: `{ [1; a] }`. `b` should not have any generics as it is not
// a simple `N` argument nor is it a repeat expr count.
// Given a const argument `a`: `{ N }` and some const argument `b` which references the
// first anon const like so: `{ [1; a] }`. The `b` anon const should not be allowed to use
// any generic parameters as:
// - The anon const is not a simple bare parameter, e.g. `N`
// - The anon const is not the *length* of an array repeat expression, e.g. the `N` in `[1; N]`.
//
// On the other hand `b` *is* a repeat expr count and so it should inherit its
// parents generics as part of the `const_evaluatable_unchecked` fcw (#76200).
// On the other hand `a` *is* a const argument for the length of a repeat expression and
// so it *should* inherit the generics declared on its parent definition. (This hack is
// introduced for backwards compatibility and is tracked in #76200)
//
// In this specific case however `b`'s parent should be `a` and so it should wind
// up not having any generics after all. If `a` were to inherit its generics from
// the enclosing item then the reference to `a` from `b` would contain generic
// parameters not usable by `b` which would cause us to ICE.
// In this specific case `a`'s parent should be `b` which does not have any generics.
// This means that even though `a` inherits generics from `b`, it still winds up not having
// access to any generic parameters. If `a` were to inherit its generics from the surrounding
// function `foo` then the reference to `a` from `b` would contain generic parameters not usable
// by `b` which would cause us to ICE.
fn bar<const N: usize>() {}

View File

@ -1,5 +1,5 @@
error: generic parameters may not be used in const operations
--> $DIR/repeat_expr_hack_gives_right_generics.rs:16:17
--> $DIR/repeat_expr_hack_gives_right_generics.rs:20:17
|
LL | bar::<{ [1; N] }>();
| ^ cannot perform const operation using `N`

View File

@ -1,12 +0,0 @@
#![allow(dead_code)]
#![forbid(box_pointers)]
struct Foo {
x: Box<isize> //~ ERROR type uses owned
}
fn main() {
let _x: Foo = Foo { x : Box::new(10) };
//~^ ERROR type uses owned
}

View File

@ -1,20 +0,0 @@
error: type uses owned (Box type) pointers: Box<isize>
--> $DIR/lint-owned-heap-memory.rs:6:5
|
LL | x: Box<isize>
| ^^^^^^^^^^^^^
|
note: the lint level is defined here
--> $DIR/lint-owned-heap-memory.rs:2:11
|
LL | #![forbid(box_pointers)]
| ^^^^^^^^^^^^
error: type uses owned (Box type) pointers: Box<isize>
--> $DIR/lint-owned-heap-memory.rs:10:29
|
LL | let _x: Foo = Foo { x : Box::new(10) };
| ^^^^^^^^^^^^
error: aborting due to 2 previous errors

View File

@ -9,7 +9,7 @@
#![warn(bare_trait_objects, reasons = "leaders to no sure land, guides their bearings lost")]
//~^ ERROR malformed lint attribute
//~| NOTE bad attribute argument
#![warn(box_pointers, blerp = "or in league with robbers have reversed the signposts")]
#![warn(unsafe_code, blerp = "or in league with robbers have reversed the signposts")]
//~^ ERROR malformed lint attribute
//~| NOTE bad attribute argument
#![warn(elided_lifetimes_in_paths, reason("disrespectful to ancestors", "irresponsible to heirs"))]

View File

@ -17,10 +17,10 @@ LL | #![warn(bare_trait_objects, reasons = "leaders to no sure land, guides thei
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ bad attribute argument
error[E0452]: malformed lint attribute input
--> $DIR/reasons-erroneous.rs:12:23
--> $DIR/reasons-erroneous.rs:12:22
|
LL | #![warn(box_pointers, blerp = "or in league with robbers have reversed the signposts")]
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ bad attribute argument
LL | #![warn(unsafe_code, blerp = "or in league with robbers have reversed the signposts")]
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ bad attribute argument
error[E0452]: malformed lint attribute input
--> $DIR/reasons-erroneous.rs:15:36

View File

@ -0,0 +1,17 @@
// This is a regression test for #123630
//
// Prior to #123703 this was resulting in compiler suggesting add a type signature
// for `lit` containing path to a file containing `Select` - something obviously invalid.
struct Select<F, I>(F, I);
fn select<F, I>(filter: F) -> Select<F, I> {}
//~^ 7:31: 7:43: mismatched types [E0308]
fn parser1() {
let lit = select(|x| match x {
//~^ 11:23: 11:24: type annotations needed [E0282]
_ => (),
});
}
fn main() {}

View File

@ -0,0 +1,26 @@
error[E0308]: mismatched types
--> $DIR/dont-suggest-path-names.rs:7:31
|
LL | fn select<F, I>(filter: F) -> Select<F, I> {}
| ------ ^^^^^^^^^^^^ expected `Select<F, I>`, found `()`
| |
| implicitly returns `()` as its body has no tail or `return` expression
|
= note: expected struct `Select<F, I>`
found unit type `()`
error[E0282]: type annotations needed
--> $DIR/dont-suggest-path-names.rs:11:23
|
LL | let lit = select(|x| match x {
| ^ - type must be known at this point
|
help: consider giving this closure parameter an explicit type
|
LL | let lit = select(|x: /* Type */| match x {
| ++++++++++++
error: aborting due to 2 previous errors
Some errors have detailed explanations: E0282, E0308.
For more information about an error, try `rustc --explain E0282`.