Auto merge of #109015 - matthiaskrgr:rollup-xu2s31g, r=matthiaskrgr

Rollup of 9 pull requests

Successful merges:

 - #106276 (Fix `vec_deque::Drain` FIXME)
 - #107629 (rustdoc: sort deprecated items lower in search)
 - #108711 (Add note when matching token with nonterminal)
 - #108757 (rustdoc: Migrate `document_item_info` to Askama)
 - #108784 (rustdoc: Migrate sidebar rendering to Askama)
 - #108927 (Move __thread_local_inner to sys)
 - #108949 (Honor current target when checking conditional compilation values)
 - #108950 (Directly construct Inherited in typeck.)
 - #108988 (rustdoc: Don't crash on `crate` references in blocks)

Failed merges:

r? `@ghost`
`@rustbot` modify labels: rollup
This commit is contained in:
bors 2023-03-11 14:45:14 +00:00
commit 67e1681c1d
36 changed files with 1724 additions and 1540 deletions

View File

@ -1,12 +1,10 @@
use std::borrow::Cow;
use crate::base::{DummyResult, ExtCtxt, MacResult};
use crate::expand::{parse_ast_fragment, AstFragmentKind};
use crate::mbe::{
macro_parser::{MatcherLoc, NamedParseResult, ParseResult::*, TtParser},
macro_rules::{try_match_macro, Tracker},
};
use rustc_ast::token::{self, Token};
use rustc_ast::token::{self, Token, TokenKind};
use rustc_ast::tokenstream::TokenStream;
use rustc_ast_pretty::pprust;
use rustc_errors::{Applicability, Diagnostic, DiagnosticBuilder, DiagnosticMessage};
@ -14,6 +12,7 @@ use rustc_parse::parser::{Parser, Recovery};
use rustc_span::source_map::SourceMap;
use rustc_span::symbol::Ident;
use rustc_span::Span;
use std::borrow::Cow;
use super::macro_rules::{parser_from_cx, NoopTracker};
@ -63,6 +62,13 @@ pub(super) fn failed_to_match_macro<'cx>(
err.note(format!("while trying to match {remaining_matcher}"));
}
if let MatcherLoc::Token { token: expected_token } = &remaining_matcher
&& (matches!(expected_token.kind, TokenKind::Interpolated(_))
|| matches!(token.kind, TokenKind::Interpolated(_)))
{
err.note("captured metavariables except for `$tt`, `$ident` and `$lifetime` cannot be compared to other tokens");
}
// Check whether there's a missing comma in this macro call, like `println!("{}" a);`
if let Some((arg, comma_span)) = arg.add_comma() {
for lhs in lhses {

View File

@ -4,7 +4,6 @@ use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_hir as hir;
use rustc_hir::def_id::LocalDefId;
use rustc_hir::HirIdMap;
use rustc_infer::infer;
use rustc_infer::infer::{DefiningAnchor, InferCtxt, InferOk, TyCtxtInferExt};
use rustc_middle::ty::visit::TypeVisitableExt;
use rustc_middle::ty::{self, Ty, TyCtxt};
@ -73,40 +72,16 @@ impl<'tcx> Deref for Inherited<'tcx> {
}
}
/// A temporary returned by `Inherited::build(...)`. This is necessary
/// for multiple `InferCtxt` to share the same `typeck_results`
/// without using `Rc` or something similar.
pub struct InheritedBuilder<'tcx> {
infcx: infer::InferCtxtBuilder<'tcx>,
typeck_results: RefCell<ty::TypeckResults<'tcx>>,
}
impl<'tcx> Inherited<'tcx> {
pub fn build(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> InheritedBuilder<'tcx> {
pub fn new(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> Self {
let hir_owner = tcx.hir().local_def_id_to_hir_id(def_id).owner;
InheritedBuilder {
infcx: tcx
.infer_ctxt()
.ignoring_regions()
.with_opaque_type_inference(DefiningAnchor::Bind(hir_owner.def_id)),
typeck_results: RefCell::new(ty::TypeckResults::new(hir_owner)),
}
}
}
impl<'tcx> InheritedBuilder<'tcx> {
pub fn enter<F, R>(mut self, f: F) -> R
where
F: FnOnce(&Inherited<'tcx>) -> R,
{
f(&Inherited::new(self.infcx.build(), self.typeck_results))
}
}
impl<'tcx> Inherited<'tcx> {
fn new(infcx: InferCtxt<'tcx>, typeck_results: RefCell<ty::TypeckResults<'tcx>>) -> Self {
let tcx = infcx.tcx;
let infcx = tcx
.infer_ctxt()
.ignoring_regions()
.with_opaque_type_inference(DefiningAnchor::Bind(hir_owner.def_id))
.build();
let typeck_results = RefCell::new(ty::TypeckResults::new(hir_owner));
Inherited {
typeck_results,

View File

@ -45,13 +45,14 @@ mod rvalue_scopes;
mod upvar;
mod writeback;
pub use diverges::Diverges;
pub use expectation::Expectation;
pub use fn_ctxt::*;
pub use inherited::{Inherited, InheritedBuilder};
pub use fn_ctxt::FnCtxt;
pub use inherited::Inherited;
use crate::check::check_fn;
use crate::coercion::DynamicCoerceMany;
use crate::diverges::Diverges;
use crate::expectation::Expectation;
use crate::fn_ctxt::RawTy;
use crate::gather_locals::GatherLocalsVisitor;
use rustc_data_structures::unord::UnordSet;
use rustc_errors::{
@ -105,10 +106,9 @@ pub struct LocalTy<'tcx> {
/// (notably closures), `typeck_results(def_id)` would wind up
/// redirecting to the owning function.
fn primary_body_of(
tcx: TyCtxt<'_>,
id: hir::HirId,
node: Node<'_>,
) -> Option<(hir::BodyId, Option<&hir::Ty<'_>>, Option<&hir::FnSig<'_>>)> {
match tcx.hir().get(id) {
match node {
Node::Item(item) => match item.kind {
hir::ItemKind::Const(ty, body) | hir::ItemKind::Static(ty, _, body) => {
Some((body, Some(ty), None))
@ -142,8 +142,7 @@ fn has_typeck_results(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
}
if let Some(def_id) = def_id.as_local() {
let id = tcx.hir().local_def_id_to_hir_id(def_id);
primary_body_of(tcx, id).is_some()
primary_body_of(tcx.hir().get_by_def_id(def_id)).is_some()
} else {
false
}
@ -198,143 +197,140 @@ fn typeck_with_fallback<'tcx>(
}
let id = tcx.hir().local_def_id_to_hir_id(def_id);
let node = tcx.hir().get(id);
let span = tcx.hir().span(id);
// Figure out what primary body this item has.
let (body_id, body_ty, fn_sig) = primary_body_of(tcx, id).unwrap_or_else(|| {
let (body_id, body_ty, fn_sig) = primary_body_of(node).unwrap_or_else(|| {
span_bug!(span, "can't type-check body of {:?}", def_id);
});
let body = tcx.hir().body(body_id);
let typeck_results = Inherited::build(tcx, def_id).enter(|inh| {
let param_env = tcx.param_env(def_id);
let param_env = if tcx.has_attr(def_id.to_def_id(), sym::rustc_do_not_const_check) {
param_env.without_const()
let param_env = tcx.param_env(def_id);
let param_env = if tcx.has_attr(def_id.to_def_id(), sym::rustc_do_not_const_check) {
param_env.without_const()
} else {
param_env
};
let inh = Inherited::new(tcx, def_id);
let mut fcx = FnCtxt::new(&inh, param_env, def_id);
if let Some(hir::FnSig { header, decl, .. }) = fn_sig {
let fn_sig = if rustc_hir_analysis::collect::get_infer_ret_ty(&decl.output).is_some() {
fcx.astconv().ty_of_fn(id, header.unsafety, header.abi, decl, None, None)
} else {
param_env
tcx.fn_sig(def_id).subst_identity()
};
let mut fcx = FnCtxt::new(&inh, param_env, def_id);
if let Some(hir::FnSig { header, decl, .. }) = fn_sig {
let fn_sig = if rustc_hir_analysis::collect::get_infer_ret_ty(&decl.output).is_some() {
fcx.astconv().ty_of_fn(id, header.unsafety, header.abi, decl, None, None)
} else {
tcx.fn_sig(def_id).subst_identity()
};
check_abi(tcx, id, span, fn_sig.abi());
check_abi(tcx, id, span, fn_sig.abi());
// Compute the function signature from point of view of inside the fn.
let fn_sig = tcx.liberate_late_bound_regions(def_id.to_def_id(), fn_sig);
let fn_sig = fcx.normalize(body.value.span, fn_sig);
// Compute the function signature from point of view of inside the fn.
let fn_sig = tcx.liberate_late_bound_regions(def_id.to_def_id(), fn_sig);
let fn_sig = fcx.normalize(body.value.span, fn_sig);
check_fn(&mut fcx, fn_sig, decl, def_id, body, None);
} else {
let expected_type = body_ty
.and_then(|ty| match ty.kind {
hir::TyKind::Infer => Some(fcx.astconv().ast_ty_to_ty(ty)),
_ => None,
})
.unwrap_or_else(|| match tcx.hir().get(id) {
Node::AnonConst(_) => match tcx.hir().get(tcx.hir().parent_id(id)) {
Node::Expr(&hir::Expr {
kind: hir::ExprKind::ConstBlock(ref anon_const),
..
}) if anon_const.hir_id == id => fcx.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::TypeInference,
span,
}),
Node::Ty(&hir::Ty {
kind: hir::TyKind::Typeof(ref anon_const), ..
}) if anon_const.hir_id == id => fcx.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::TypeInference,
span,
}),
Node::Expr(&hir::Expr { kind: hir::ExprKind::InlineAsm(asm), .. })
| Node::Item(&hir::Item { kind: hir::ItemKind::GlobalAsm(asm), .. }) => {
let operand_ty =
asm.operands.iter().find_map(|(op, _op_sp)| match op {
hir::InlineAsmOperand::Const { anon_const }
if anon_const.hir_id == id =>
{
// Inline assembly constants must be integers.
Some(fcx.next_int_var())
}
hir::InlineAsmOperand::SymFn { anon_const }
if anon_const.hir_id == id =>
{
Some(fcx.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::MiscVariable,
span,
}))
}
_ => None,
});
operand_ty.unwrap_or_else(fallback)
check_fn(&mut fcx, fn_sig, decl, def_id, body, None);
} else {
let expected_type = if let Some(&hir::Ty { kind: hir::TyKind::Infer, span, .. }) = body_ty {
Some(fcx.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::TypeInference,
span,
}))
} else if let Node::AnonConst(_) = node {
match tcx.hir().get(tcx.hir().parent_id(id)) {
Node::Expr(&hir::Expr {
kind: hir::ExprKind::ConstBlock(ref anon_const), ..
}) if anon_const.hir_id == id => Some(fcx.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::TypeInference,
span,
})),
Node::Ty(&hir::Ty { kind: hir::TyKind::Typeof(ref anon_const), .. })
if anon_const.hir_id == id =>
{
Some(fcx.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::TypeInference,
span,
}))
}
Node::Expr(&hir::Expr { kind: hir::ExprKind::InlineAsm(asm), .. })
| Node::Item(&hir::Item { kind: hir::ItemKind::GlobalAsm(asm), .. }) => {
asm.operands.iter().find_map(|(op, _op_sp)| match op {
hir::InlineAsmOperand::Const { anon_const } if anon_const.hir_id == id => {
// Inline assembly constants must be integers.
Some(fcx.next_int_var())
}
_ => fallback(),
},
_ => fallback(),
});
let expected_type = fcx.normalize(body.value.span, expected_type);
fcx.require_type_is_sized(expected_type, body.value.span, traits::ConstSized);
// Gather locals in statics (because of block expressions).
GatherLocalsVisitor::new(&fcx).visit_body(body);
fcx.check_expr_coercable_to_type(&body.value, expected_type, None);
fcx.write_ty(id, expected_type);
hir::InlineAsmOperand::SymFn { anon_const } if anon_const.hir_id == id => {
Some(fcx.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::MiscVariable,
span,
}))
}
_ => None,
})
}
_ => None,
}
} else {
None
};
let expected_type = expected_type.unwrap_or_else(fallback);
fcx.type_inference_fallback();
let expected_type = fcx.normalize(body.value.span, expected_type);
fcx.require_type_is_sized(expected_type, body.value.span, traits::ConstSized);
// Even though coercion casts provide type hints, we check casts after fallback for
// backwards compatibility. This makes fallback a stronger type hint than a cast coercion.
fcx.check_casts();
fcx.select_obligations_where_possible(|_| {});
// Gather locals in statics (because of block expressions).
GatherLocalsVisitor::new(&fcx).visit_body(body);
// Closure and generator analysis may run after fallback
// because they don't constrain other type variables.
// Closure analysis only runs on closures. Therefore they only need to fulfill non-const predicates (as of now)
let prev_constness = fcx.param_env.constness();
fcx.param_env = fcx.param_env.without_const();
fcx.closure_analyze(body);
fcx.param_env = fcx.param_env.with_constness(prev_constness);
assert!(fcx.deferred_call_resolutions.borrow().is_empty());
// Before the generator analysis, temporary scopes shall be marked to provide more
// precise information on types to be captured.
fcx.resolve_rvalue_scopes(def_id.to_def_id());
fcx.check_expr_coercable_to_type(&body.value, expected_type, None);
for (ty, span, code) in fcx.deferred_sized_obligations.borrow_mut().drain(..) {
let ty = fcx.normalize(span, ty);
fcx.require_type_is_sized(ty, span, code);
}
fcx.write_ty(id, expected_type);
};
fcx.select_obligations_where_possible(|_| {});
fcx.type_inference_fallback();
debug!(pending_obligations = ?fcx.fulfillment_cx.borrow().pending_obligations());
// Even though coercion casts provide type hints, we check casts after fallback for
// backwards compatibility. This makes fallback a stronger type hint than a cast coercion.
fcx.check_casts();
fcx.select_obligations_where_possible(|_| {});
// This must be the last thing before `report_ambiguity_errors`.
fcx.resolve_generator_interiors(def_id.to_def_id());
// Closure and generator analysis may run after fallback
// because they don't constrain other type variables.
// Closure analysis only runs on closures. Therefore they only need to fulfill non-const predicates (as of now)
let prev_constness = fcx.param_env.constness();
fcx.param_env = fcx.param_env.without_const();
fcx.closure_analyze(body);
fcx.param_env = fcx.param_env.with_constness(prev_constness);
assert!(fcx.deferred_call_resolutions.borrow().is_empty());
// Before the generator analysis, temporary scopes shall be marked to provide more
// precise information on types to be captured.
fcx.resolve_rvalue_scopes(def_id.to_def_id());
debug!(pending_obligations = ?fcx.fulfillment_cx.borrow().pending_obligations());
for (ty, span, code) in fcx.deferred_sized_obligations.borrow_mut().drain(..) {
let ty = fcx.normalize(span, ty);
fcx.require_type_is_sized(ty, span, code);
}
if let None = fcx.infcx.tainted_by_errors() {
fcx.report_ambiguity_errors();
}
fcx.select_obligations_where_possible(|_| {});
if let None = fcx.infcx.tainted_by_errors() {
fcx.check_transmutes();
}
debug!(pending_obligations = ?fcx.fulfillment_cx.borrow().pending_obligations());
fcx.check_asms();
// This must be the last thing before `report_ambiguity_errors`.
fcx.resolve_generator_interiors(def_id.to_def_id());
fcx.infcx.skip_region_resolution();
debug!(pending_obligations = ?fcx.fulfillment_cx.borrow().pending_obligations());
fcx.resolve_type_vars_in_body(body)
});
if let None = fcx.infcx.tainted_by_errors() {
fcx.report_ambiguity_errors();
}
if let None = fcx.infcx.tainted_by_errors() {
fcx.check_transmutes();
}
fcx.check_asms();
fcx.infcx.skip_region_resolution();
let typeck_results = fcx.resolve_type_vars_in_body(body);
// Consistency check our TypeckResults instance can hold all ItemLocalIds
// it will need to hold.

View File

@ -110,7 +110,7 @@ pub fn create_session(
add_configuration(&mut cfg, &mut sess, &*codegen_backend);
let mut check_cfg = config::to_crate_check_config(check_cfg);
check_cfg.fill_well_known();
check_cfg.fill_well_known(&sess.target);
sess.parse_sess.config = cfg;
sess.parse_sess.check_config = check_cfg;

View File

@ -1849,20 +1849,12 @@ impl<'a, 'tcx> Resolver<'a, 'tcx> {
&mut self,
path_str: &str,
ns: Namespace,
mut parent_scope: ParentScope<'a>,
parent_scope: ParentScope<'a>,
) -> Option<Res> {
let mut segments =
Vec::from_iter(path_str.split("::").map(Ident::from_str).map(Segment::from_ident));
if let Some(segment) = segments.first_mut() {
if segment.ident.name == kw::Crate {
// FIXME: `resolve_path` always resolves `crate` to the current crate root, but
// rustdoc wants it to resolve to the `parent_scope`'s crate root. This trick of
// replacing `crate` with `self` and changing the current module should achieve
// the same effect.
segment.ident.name = kw::SelfLower;
parent_scope.module =
self.expect_module(parent_scope.module.def_id().krate.as_def_id());
} else if segment.ident.name == kw::Empty {
if segment.ident.name == kw::Empty {
segment.ident.name = kw::PathRoot;
}
}

View File

@ -1137,7 +1137,7 @@ impl CrateCheckConfig {
}
/// Fills a `CrateCheckConfig` with well-known configuration values.
fn fill_well_known_values(&mut self) {
fn fill_well_known_values(&mut self, current_target: &Target) {
if !self.well_known_values {
return;
}
@ -1229,6 +1229,7 @@ impl CrateCheckConfig {
for target in TARGETS
.iter()
.map(|target| Target::expect_builtin(&TargetTriple::from_triple(target)))
.chain(iter::once(current_target.clone()))
{
values_target_os.insert(Symbol::intern(&target.options.os));
values_target_family
@ -1243,9 +1244,9 @@ impl CrateCheckConfig {
}
}
pub fn fill_well_known(&mut self) {
pub fn fill_well_known(&mut self, current_target: &Target) {
self.fill_well_known_names();
self.fill_well_known_values();
self.fill_well_known_values(current_target);
}
}

View File

@ -52,36 +52,22 @@ impl<'a, T, A: Allocator> Drain<'a, T, A> {
}
}
// Only returns pointers to the slices, as that's
// all we need to drop them. May only be called if `self.remaining != 0`.
// Only returns pointers to the slices, as that's all we need
// to drop them. May only be called if `self.remaining != 0`.
unsafe fn as_slices(&self) -> (*mut [T], *mut [T]) {
unsafe {
let deque = self.deque.as_ref();
// FIXME: This is doing almost exactly the same thing as the else branch in `VecDeque::slice_ranges`.
// Unfortunately, we can't just call `slice_ranges` here, as the deque's `len` is currently
// just `drain_start`, so the range check would (almost) always panic. Between temporarily
// adjusting the deques `len` to call `slice_ranges`, and just copy pasting the `slice_ranges`
// implementation, this seemed like the less hacky solution, though it might be good to
// find a better one in the future.
// because `self.remaining != 0`, we know that `self.idx < deque.original_len`, so it's a valid
// logical index.
let wrapped_start = deque.to_physical_idx(self.idx);
// We know that `self.idx + self.remaining <= deque.len <= usize::MAX`, so this won't overflow.
let logical_remaining_range = self.idx..self.idx + self.remaining;
let head_len = deque.capacity() - wrapped_start;
let (a_range, b_range) = if head_len >= self.remaining {
(wrapped_start..wrapped_start + self.remaining, 0..0)
} else {
let tail_len = self.remaining - head_len;
(wrapped_start..deque.capacity(), 0..tail_len)
};
// SAFETY: the range `self.idx..self.idx+self.remaining` lies strictly inside
// the range `0..deque.original_len`. because of this, and because of the fact
// that we acquire `a_range` and `b_range` exactly like `slice_ranges` would,
// it's guaranteed that `a_range` and `b_range` represent valid ranges into
// the deques buffer.
// SAFETY: `logical_remaining_range` represents the
// range into the logical buffer of elements that
// haven't been drained yet, so they're all initialized,
// and `slice::range(start..end, end) == start..end`,
// so the preconditions for `slice_ranges` are met.
let (a_range, b_range) =
deque.slice_ranges(logical_remaining_range.clone(), logical_remaining_range.end);
(deque.buffer_range(a_range), deque.buffer_range(b_range))
}
}

View File

@ -1156,7 +1156,7 @@ impl<T, A: Allocator> VecDeque<T, A> {
#[inline]
#[stable(feature = "deque_extras_15", since = "1.5.0")]
pub fn as_slices(&self) -> (&[T], &[T]) {
let (a_range, b_range) = self.slice_ranges(..);
let (a_range, b_range) = self.slice_ranges(.., self.len);
// SAFETY: `slice_ranges` always returns valid ranges into
// the physical buffer.
unsafe { (&*self.buffer_range(a_range), &*self.buffer_range(b_range)) }
@ -1190,7 +1190,7 @@ impl<T, A: Allocator> VecDeque<T, A> {
#[inline]
#[stable(feature = "deque_extras_15", since = "1.5.0")]
pub fn as_mut_slices(&mut self) -> (&mut [T], &mut [T]) {
let (a_range, b_range) = self.slice_ranges(..);
let (a_range, b_range) = self.slice_ranges(.., self.len);
// SAFETY: `slice_ranges` always returns valid ranges into
// the physical buffer.
unsafe { (&mut *self.buffer_range(a_range), &mut *self.buffer_range(b_range)) }
@ -1232,19 +1232,28 @@ impl<T, A: Allocator> VecDeque<T, A> {
/// Given a range into the logical buffer of the deque, this function
/// return two ranges into the physical buffer that correspond to
/// the given range.
fn slice_ranges<R>(&self, range: R) -> (Range<usize>, Range<usize>)
/// the given range. The `len` parameter should usually just be `self.len`;
/// the reason it's passed explicitly is that if the deque is wrapped in
/// a `Drain`, then `self.len` is not actually the length of the deque.
///
/// # Safety
///
/// This function is always safe to call. For the resulting ranges to be valid
/// ranges into the physical buffer, the caller must ensure that the result of
/// calling `slice::range(range, ..len)` represents a valid range into the
/// logical buffer, and that all elements in that range are initialized.
fn slice_ranges<R>(&self, range: R, len: usize) -> (Range<usize>, Range<usize>)
where
R: RangeBounds<usize>,
{
let Range { start, end } = slice::range(range, ..self.len);
let Range { start, end } = slice::range(range, ..len);
let len = end - start;
if len == 0 {
(0..0, 0..0)
} else {
// `slice::range` guarantees that `start <= end <= self.len`.
// because `len != 0`, we know that `start < end`, so `start < self.len`
// `slice::range` guarantees that `start <= end <= len`.
// because `len != 0`, we know that `start < end`, so `start < len`
// and the indexing is valid.
let wrapped_start = self.to_physical_idx(start);
@ -1290,7 +1299,7 @@ impl<T, A: Allocator> VecDeque<T, A> {
where
R: RangeBounds<usize>,
{
let (a_range, b_range) = self.slice_ranges(range);
let (a_range, b_range) = self.slice_ranges(range, self.len);
// SAFETY: The ranges returned by `slice_ranges`
// are valid ranges into the physical buffer, so
// it's ok to pass them to `buffer_range` and
@ -1330,7 +1339,7 @@ impl<T, A: Allocator> VecDeque<T, A> {
where
R: RangeBounds<usize>,
{
let (a_range, b_range) = self.slice_ranges(range);
let (a_range, b_range) = self.slice_ranges(range, self.len);
// SAFETY: The ranges returned by `slice_ranges`
// are valid ranges into the physical buffer, so
// it's ok to pass them to `buffer_range` and

View File

@ -12,6 +12,7 @@
pub mod alloc;
pub mod small_c_string;
pub mod thread_local;
#[cfg(test)]
mod tests;

View File

@ -0,0 +1,276 @@
#[doc(hidden)]
#[macro_export]
#[allow_internal_unstable(
thread_local_internals,
cfg_target_thread_local,
thread_local,
libstd_thread_internals
)]
#[allow_internal_unsafe]
macro_rules! __thread_local_inner {
// used to generate the `LocalKey` value for const-initialized thread locals
(@key $t:ty, const $init:expr) => {{
#[cfg_attr(not(windows), inline)] // see comments below
#[deny(unsafe_op_in_unsafe_fn)]
unsafe fn __getit(
_init: $crate::option::Option<&mut $crate::option::Option<$t>>,
) -> $crate::option::Option<&'static $t> {
const INIT_EXPR: $t = $init;
// If the platform has support for `#[thread_local]`, use it.
#[thread_local]
static mut VAL: $t = INIT_EXPR;
// If a dtor isn't needed we can do something "very raw" and
// just get going.
if !$crate::mem::needs_drop::<$t>() {
unsafe {
return $crate::option::Option::Some(&VAL)
}
}
// 0 == dtor not registered
// 1 == dtor registered, dtor not run
// 2 == dtor registered and is running or has run
#[thread_local]
static mut STATE: $crate::primitive::u8 = 0;
unsafe extern "C" fn destroy(ptr: *mut $crate::primitive::u8) {
let ptr = ptr as *mut $t;
unsafe {
$crate::debug_assert_eq!(STATE, 1);
STATE = 2;
$crate::ptr::drop_in_place(ptr);
}
}
unsafe {
match STATE {
// 0 == we haven't registered a destructor, so do
// so now.
0 => {
$crate::thread::__LocalKeyInner::<$t>::register_dtor(
$crate::ptr::addr_of_mut!(VAL) as *mut $crate::primitive::u8,
destroy,
);
STATE = 1;
$crate::option::Option::Some(&VAL)
}
// 1 == the destructor is registered and the value
// is valid, so return the pointer.
1 => $crate::option::Option::Some(&VAL),
// otherwise the destructor has already run, so we
// can't give access.
_ => $crate::option::Option::None,
}
}
}
unsafe {
$crate::thread::LocalKey::new(__getit)
}
}};
// used to generate the `LocalKey` value for `thread_local!`
(@key $t:ty, $init:expr) => {
{
#[inline]
fn __init() -> $t { $init }
// When reading this function you might ask "why is this inlined
// everywhere other than Windows?", and that's a very reasonable
// question to ask. The short story is that it segfaults rustc if
// this function is inlined. The longer story is that Windows looks
// to not support `extern` references to thread locals across DLL
// boundaries. This appears to at least not be supported in the ABI
// that LLVM implements.
//
// Because of this we never inline on Windows, but we do inline on
// other platforms (where external references to thread locals
// across DLLs are supported). A better fix for this would be to
// inline this function on Windows, but only for "statically linked"
// components. For example if two separately compiled rlibs end up
// getting linked into a DLL then it's fine to inline this function
// across that boundary. It's only not fine to inline this function
// across a DLL boundary. Unfortunately rustc doesn't currently
// have this sort of logic available in an attribute, and it's not
// clear that rustc is even equipped to answer this (it's more of a
// Cargo question kinda). This means that, unfortunately, Windows
// gets the pessimistic path for now where it's never inlined.
//
// The issue of "should enable on Windows sometimes" is #84933
#[cfg_attr(not(windows), inline)]
unsafe fn __getit(
init: $crate::option::Option<&mut $crate::option::Option<$t>>,
) -> $crate::option::Option<&'static $t> {
#[thread_local]
static __KEY: $crate::thread::__LocalKeyInner<$t> =
$crate::thread::__LocalKeyInner::<$t>::new();
// FIXME: remove the #[allow(...)] marker when macros don't
// raise warning for missing/extraneous unsafe blocks anymore.
// See https://github.com/rust-lang/rust/issues/74838.
#[allow(unused_unsafe)]
unsafe {
__KEY.get(move || {
if let $crate::option::Option::Some(init) = init {
if let $crate::option::Option::Some(value) = init.take() {
return value;
} else if $crate::cfg!(debug_assertions) {
$crate::unreachable!("missing default value");
}
}
__init()
})
}
}
unsafe {
$crate::thread::LocalKey::new(__getit)
}
}
};
($(#[$attr:meta])* $vis:vis $name:ident, $t:ty, $($init:tt)*) => {
$(#[$attr])* $vis const $name: $crate::thread::LocalKey<$t> =
$crate::__thread_local_inner!(@key $t, $($init)*);
}
}
#[doc(hidden)]
pub mod fast {
use super::super::lazy::LazyKeyInner;
use crate::cell::Cell;
use crate::sys::thread_local_dtor::register_dtor;
use crate::{fmt, mem, panic};
#[derive(Copy, Clone)]
enum DtorState {
Unregistered,
Registered,
RunningOrHasRun,
}
// This data structure has been carefully constructed so that the fast path
// only contains one branch on x86. That optimization is necessary to avoid
// duplicated tls lookups on OSX.
//
// LLVM issue: https://bugs.llvm.org/show_bug.cgi?id=41722
pub struct Key<T> {
// If `LazyKeyInner::get` returns `None`, that indicates either:
// * The value has never been initialized
// * The value is being recursively initialized
// * The value has already been destroyed or is being destroyed
// To determine which kind of `None`, check `dtor_state`.
//
// This is very optimizer friendly for the fast path - initialized but
// not yet dropped.
inner: LazyKeyInner<T>,
// Metadata to keep track of the state of the destructor. Remember that
// this variable is thread-local, not global.
dtor_state: Cell<DtorState>,
}
impl<T> fmt::Debug for Key<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Key").finish_non_exhaustive()
}
}
impl<T> Key<T> {
pub const fn new() -> Key<T> {
Key { inner: LazyKeyInner::new(), dtor_state: Cell::new(DtorState::Unregistered) }
}
// note that this is just a publicly-callable function only for the
// const-initialized form of thread locals, basically a way to call the
// free `register_dtor` function defined elsewhere in std.
pub unsafe fn register_dtor(a: *mut u8, dtor: unsafe extern "C" fn(*mut u8)) {
unsafe {
register_dtor(a, dtor);
}
}
pub unsafe fn get<F: FnOnce() -> T>(&self, init: F) -> Option<&'static T> {
// SAFETY: See the definitions of `LazyKeyInner::get` and
// `try_initialize` for more information.
//
// The caller must ensure no mutable references are ever active to
// the inner cell or the inner T when this is called.
// The `try_initialize` is dependant on the passed `init` function
// for this.
unsafe {
match self.inner.get() {
Some(val) => Some(val),
None => self.try_initialize(init),
}
}
}
// `try_initialize` is only called once per fast thread local variable,
// except in corner cases where thread_local dtors reference other
// thread_local's, or it is being recursively initialized.
//
// Macos: Inlining this function can cause two `tlv_get_addr` calls to
// be performed for every call to `Key::get`.
// LLVM issue: https://bugs.llvm.org/show_bug.cgi?id=41722
#[inline(never)]
unsafe fn try_initialize<F: FnOnce() -> T>(&self, init: F) -> Option<&'static T> {
// SAFETY: See comment above (this function doc).
if !mem::needs_drop::<T>() || unsafe { self.try_register_dtor() } {
// SAFETY: See comment above (this function doc).
Some(unsafe { self.inner.initialize(init) })
} else {
None
}
}
// `try_register_dtor` is only called once per fast thread local
// variable, except in corner cases where thread_local dtors reference
// other thread_local's, or it is being recursively initialized.
unsafe fn try_register_dtor(&self) -> bool {
match self.dtor_state.get() {
DtorState::Unregistered => {
// SAFETY: dtor registration happens before initialization.
// Passing `self` as a pointer while using `destroy_value<T>`
// is safe because the function will build a pointer to a
// Key<T>, which is the type of self and so find the correct
// size.
unsafe { register_dtor(self as *const _ as *mut u8, destroy_value::<T>) };
self.dtor_state.set(DtorState::Registered);
true
}
DtorState::Registered => {
// recursively initialized
true
}
DtorState::RunningOrHasRun => false,
}
}
}
unsafe extern "C" fn destroy_value<T>(ptr: *mut u8) {
let ptr = ptr as *mut Key<T>;
// SAFETY:
//
// The pointer `ptr` has been built just above and comes from
// `try_register_dtor` where it is originally a Key<T> coming from `self`,
// making it non-NUL and of the correct type.
//
// Right before we run the user destructor be sure to set the
// `Option<T>` to `None`, and `dtor_state` to `RunningOrHasRun`. This
// causes future calls to `get` to run `try_initialize_drop` again,
// which will now fail, and return `None`.
//
// Wrap the call in a catch to ensure unwinding is caught in the event
// a panic takes place in a destructor.
if let Err(_) = panic::catch_unwind(panic::AssertUnwindSafe(|| unsafe {
let value = (*ptr).inner.take();
(*ptr).dtor_state.set(DtorState::RunningOrHasRun);
drop(value);
})) {
rtabort!("thread local panicked on drop");
}
}
}

View File

@ -0,0 +1,109 @@
//! The following module declarations are outside cfg_if because the internal
//! `__thread_local_internal` macro does not seem to be exported properly when using cfg_if
#![unstable(feature = "thread_local_internals", reason = "should not be necessary", issue = "none")]
#[cfg(all(target_thread_local, not(all(target_family = "wasm", not(target_feature = "atomics")))))]
mod fast_local;
#[cfg(all(
not(target_thread_local),
not(all(target_family = "wasm", not(target_feature = "atomics")))
))]
mod os_local;
#[cfg(all(target_family = "wasm", not(target_feature = "atomics")))]
mod static_local;
#[cfg(not(test))]
cfg_if::cfg_if! {
if #[cfg(all(target_family = "wasm", not(target_feature = "atomics")))] {
#[doc(hidden)]
pub use static_local::statik::Key;
} else if #[cfg(all(target_thread_local, not(all(target_family = "wasm", not(target_feature = "atomics")))))] {
#[doc(hidden)]
pub use fast_local::fast::Key;
} else if #[cfg(all(not(target_thread_local), not(all(target_family = "wasm", not(target_feature = "atomics")))))] {
#[doc(hidden)]
pub use os_local::os::Key;
}
}
#[doc(hidden)]
#[cfg(test)]
pub use realstd::thread::__LocalKeyInner as Key;
mod lazy {
use crate::cell::UnsafeCell;
use crate::hint;
use crate::mem;
pub struct LazyKeyInner<T> {
inner: UnsafeCell<Option<T>>,
}
impl<T> LazyKeyInner<T> {
pub const fn new() -> LazyKeyInner<T> {
LazyKeyInner { inner: UnsafeCell::new(None) }
}
pub unsafe fn get(&self) -> Option<&'static T> {
// SAFETY: The caller must ensure no reference is ever handed out to
// the inner cell nor mutable reference to the Option<T> inside said
// cell. This make it safe to hand a reference, though the lifetime
// of 'static is itself unsafe, making the get method unsafe.
unsafe { (*self.inner.get()).as_ref() }
}
/// The caller must ensure that no reference is active: this method
/// needs unique access.
pub unsafe fn initialize<F: FnOnce() -> T>(&self, init: F) -> &'static T {
// Execute the initialization up front, *then* move it into our slot,
// just in case initialization fails.
let value = init();
let ptr = self.inner.get();
// SAFETY:
//
// note that this can in theory just be `*ptr = Some(value)`, but due to
// the compiler will currently codegen that pattern with something like:
//
// ptr::drop_in_place(ptr)
// ptr::write(ptr, Some(value))
//
// Due to this pattern it's possible for the destructor of the value in
// `ptr` (e.g., if this is being recursively initialized) to re-access
// TLS, in which case there will be a `&` and `&mut` pointer to the same
// value (an aliasing violation). To avoid setting the "I'm running a
// destructor" flag we just use `mem::replace` which should sequence the
// operations a little differently and make this safe to call.
//
// The precondition also ensures that we are the only one accessing
// `self` at the moment so replacing is fine.
unsafe {
let _ = mem::replace(&mut *ptr, Some(value));
}
// SAFETY: With the call to `mem::replace` it is guaranteed there is
// a `Some` behind `ptr`, not a `None` so `unreachable_unchecked`
// will never be reached.
unsafe {
// After storing `Some` we want to get a reference to the contents of
// what we just stored. While we could use `unwrap` here and it should
// always work it empirically doesn't seem to always get optimized away,
// which means that using something like `try_with` can pull in
// panicking code and cause a large size bloat.
match *ptr {
Some(ref x) => x,
None => hint::unreachable_unchecked(),
}
}
}
/// The other methods hand out references while taking &self.
/// As such, callers of this method must ensure no `&` and `&mut` are
/// available and used at the same time.
#[allow(unused)]
pub unsafe fn take(&mut self) -> Option<T> {
// SAFETY: See doc comment for this method.
unsafe { (*self.inner.get()).take() }
}
}
}

View File

@ -0,0 +1,217 @@
#[doc(hidden)]
#[macro_export]
#[allow_internal_unstable(
thread_local_internals,
cfg_target_thread_local,
thread_local,
libstd_thread_internals
)]
#[allow_internal_unsafe]
macro_rules! __thread_local_inner {
// used to generate the `LocalKey` value for const-initialized thread locals
(@key $t:ty, const $init:expr) => {{
#[cfg_attr(not(windows), inline)] // see comments below
#[deny(unsafe_op_in_unsafe_fn)]
unsafe fn __getit(
_init: $crate::option::Option<&mut $crate::option::Option<$t>>,
) -> $crate::option::Option<&'static $t> {
const INIT_EXPR: $t = $init;
// On platforms without `#[thread_local]` we fall back to the
// same implementation as below for os thread locals.
#[inline]
const fn __init() -> $t { INIT_EXPR }
static __KEY: $crate::thread::__LocalKeyInner<$t> =
$crate::thread::__LocalKeyInner::new();
#[allow(unused_unsafe)]
unsafe {
__KEY.get(move || {
if let $crate::option::Option::Some(init) = _init {
if let $crate::option::Option::Some(value) = init.take() {
return value;
} else if $crate::cfg!(debug_assertions) {
$crate::unreachable!("missing initial value");
}
}
__init()
})
}
}
unsafe {
$crate::thread::LocalKey::new(__getit)
}
}};
// used to generate the `LocalKey` value for `thread_local!`
(@key $t:ty, $init:expr) => {
{
#[inline]
fn __init() -> $t { $init }
// When reading this function you might ask "why is this inlined
// everywhere other than Windows?", and that's a very reasonable
// question to ask. The short story is that it segfaults rustc if
// this function is inlined. The longer story is that Windows looks
// to not support `extern` references to thread locals across DLL
// boundaries. This appears to at least not be supported in the ABI
// that LLVM implements.
//
// Because of this we never inline on Windows, but we do inline on
// other platforms (where external references to thread locals
// across DLLs are supported). A better fix for this would be to
// inline this function on Windows, but only for "statically linked"
// components. For example if two separately compiled rlibs end up
// getting linked into a DLL then it's fine to inline this function
// across that boundary. It's only not fine to inline this function
// across a DLL boundary. Unfortunately rustc doesn't currently
// have this sort of logic available in an attribute, and it's not
// clear that rustc is even equipped to answer this (it's more of a
// Cargo question kinda). This means that, unfortunately, Windows
// gets the pessimistic path for now where it's never inlined.
//
// The issue of "should enable on Windows sometimes" is #84933
#[cfg_attr(not(windows), inline)]
unsafe fn __getit(
init: $crate::option::Option<&mut $crate::option::Option<$t>>,
) -> $crate::option::Option<&'static $t> {
static __KEY: $crate::thread::__LocalKeyInner<$t> =
$crate::thread::__LocalKeyInner::new();
// FIXME: remove the #[allow(...)] marker when macros don't
// raise warning for missing/extraneous unsafe blocks anymore.
// See https://github.com/rust-lang/rust/issues/74838.
#[allow(unused_unsafe)]
unsafe {
__KEY.get(move || {
if let $crate::option::Option::Some(init) = init {
if let $crate::option::Option::Some(value) = init.take() {
return value;
} else if $crate::cfg!(debug_assertions) {
$crate::unreachable!("missing default value");
}
}
__init()
})
}
}
unsafe {
$crate::thread::LocalKey::new(__getit)
}
}
};
($(#[$attr:meta])* $vis:vis $name:ident, $t:ty, $($init:tt)*) => {
$(#[$attr])* $vis const $name: $crate::thread::LocalKey<$t> =
$crate::__thread_local_inner!(@key $t, $($init)*);
}
}
#[doc(hidden)]
pub mod os {
use super::super::lazy::LazyKeyInner;
use crate::cell::Cell;
use crate::sys_common::thread_local_key::StaticKey as OsStaticKey;
use crate::{fmt, marker, panic, ptr};
/// Use a regular global static to store this key; the state provided will then be
/// thread-local.
pub struct Key<T> {
// OS-TLS key that we'll use to key off.
os: OsStaticKey,
marker: marker::PhantomData<Cell<T>>,
}
impl<T> fmt::Debug for Key<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Key").finish_non_exhaustive()
}
}
unsafe impl<T> Sync for Key<T> {}
struct Value<T: 'static> {
inner: LazyKeyInner<T>,
key: &'static Key<T>,
}
impl<T: 'static> Key<T> {
#[rustc_const_unstable(feature = "thread_local_internals", issue = "none")]
pub const fn new() -> Key<T> {
Key { os: OsStaticKey::new(Some(destroy_value::<T>)), marker: marker::PhantomData }
}
/// It is a requirement for the caller to ensure that no mutable
/// reference is active when this method is called.
pub unsafe fn get(&'static self, init: impl FnOnce() -> T) -> Option<&'static T> {
// SAFETY: See the documentation for this method.
let ptr = unsafe { self.os.get() as *mut Value<T> };
if ptr.addr() > 1 {
// SAFETY: the check ensured the pointer is safe (its destructor
// is not running) + it is coming from a trusted source (self).
if let Some(ref value) = unsafe { (*ptr).inner.get() } {
return Some(value);
}
}
// SAFETY: At this point we are sure we have no value and so
// initializing (or trying to) is safe.
unsafe { self.try_initialize(init) }
}
// `try_initialize` is only called once per os thread local variable,
// except in corner cases where thread_local dtors reference other
// thread_local's, or it is being recursively initialized.
unsafe fn try_initialize(&'static self, init: impl FnOnce() -> T) -> Option<&'static T> {
// SAFETY: No mutable references are ever handed out meaning getting
// the value is ok.
let ptr = unsafe { self.os.get() as *mut Value<T> };
if ptr.addr() == 1 {
// destructor is running
return None;
}
let ptr = if ptr.is_null() {
// If the lookup returned null, we haven't initialized our own
// local copy, so do that now.
let ptr = Box::into_raw(Box::new(Value { inner: LazyKeyInner::new(), key: self }));
// SAFETY: At this point we are sure there is no value inside
// ptr so setting it will not affect anyone else.
unsafe {
self.os.set(ptr as *mut u8);
}
ptr
} else {
// recursive initialization
ptr
};
// SAFETY: ptr has been ensured as non-NUL just above an so can be
// dereferenced safely.
unsafe { Some((*ptr).inner.initialize(init)) }
}
}
unsafe extern "C" fn destroy_value<T: 'static>(ptr: *mut u8) {
// SAFETY:
//
// The OS TLS ensures that this key contains a null value when this
// destructor starts to run. We set it back to a sentinel value of 1 to
// ensure that any future calls to `get` for this thread will return
// `None`.
//
// Note that to prevent an infinite loop we reset it back to null right
// before we return from the destructor ourselves.
//
// Wrap the call in a catch to ensure unwinding is caught in the event
// a panic takes place in a destructor.
if let Err(_) = panic::catch_unwind(|| unsafe {
let ptr = Box::from_raw(ptr as *mut Value<T>);
let key = ptr.key;
key.os.set(ptr::invalid_mut(1));
drop(ptr);
key.os.set(ptr::null_mut());
}) {
rtabort!("thread local panicked on drop");
}
}
}

View File

@ -0,0 +1,115 @@
#[doc(hidden)]
#[macro_export]
#[allow_internal_unstable(
thread_local_internals,
cfg_target_thread_local,
thread_local,
libstd_thread_internals
)]
#[allow_internal_unsafe]
macro_rules! __thread_local_inner {
// used to generate the `LocalKey` value for const-initialized thread locals
(@key $t:ty, const $init:expr) => {{
#[inline] // see comments below
#[deny(unsafe_op_in_unsafe_fn)]
unsafe fn __getit(
_init: $crate::option::Option<&mut $crate::option::Option<$t>>,
) -> $crate::option::Option<&'static $t> {
const INIT_EXPR: $t = $init;
// wasm without atomics maps directly to `static mut`, and dtors
// aren't implemented because thread dtors aren't really a thing
// on wasm right now
//
// FIXME(#84224) this should come after the `target_thread_local`
// block.
static mut VAL: $t = INIT_EXPR;
unsafe { $crate::option::Option::Some(&VAL) }
}
unsafe {
$crate::thread::LocalKey::new(__getit)
}
}};
// used to generate the `LocalKey` value for `thread_local!`
(@key $t:ty, $init:expr) => {
{
#[inline]
fn __init() -> $t { $init }
#[inline]
unsafe fn __getit(
init: $crate::option::Option<&mut $crate::option::Option<$t>>,
) -> $crate::option::Option<&'static $t> {
static __KEY: $crate::thread::__LocalKeyInner<$t> =
$crate::thread::__LocalKeyInner::new();
// FIXME: remove the #[allow(...)] marker when macros don't
// raise warning for missing/extraneous unsafe blocks anymore.
// See https://github.com/rust-lang/rust/issues/74838.
#[allow(unused_unsafe)]
unsafe {
__KEY.get(move || {
if let $crate::option::Option::Some(init) = init {
if let $crate::option::Option::Some(value) = init.take() {
return value;
} else if $crate::cfg!(debug_assertions) {
$crate::unreachable!("missing default value");
}
}
__init()
})
}
}
unsafe {
$crate::thread::LocalKey::new(__getit)
}
}
};
($(#[$attr:meta])* $vis:vis $name:ident, $t:ty, $($init:tt)*) => {
$(#[$attr])* $vis const $name: $crate::thread::LocalKey<$t> =
$crate::__thread_local_inner!(@key $t, $($init)*);
}
}
/// On some targets like wasm there's no threads, so no need to generate
/// thread locals and we can instead just use plain statics!
#[doc(hidden)]
pub mod statik {
use super::super::lazy::LazyKeyInner;
use crate::fmt;
pub struct Key<T> {
inner: LazyKeyInner<T>,
}
unsafe impl<T> Sync for Key<T> {}
impl<T> fmt::Debug for Key<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Key").finish_non_exhaustive()
}
}
impl<T> Key<T> {
pub const fn new() -> Key<T> {
Key { inner: LazyKeyInner::new() }
}
pub unsafe fn get(&self, init: impl FnOnce() -> T) -> Option<&'static T> {
// SAFETY: The caller must ensure no reference is ever handed out to
// the inner cell nor mutable reference to the Option<T> inside said
// cell. This make it safe to hand a reference, though the lifetime
// of 'static is itself unsafe, making the get method unsafe.
let value = unsafe {
match self.inner.get() {
Some(ref value) => value,
None => self.inner.initialize(init),
}
};
Some(value)
}
}
}

View File

@ -173,200 +173,6 @@ macro_rules! thread_local {
);
}
#[doc(hidden)]
#[unstable(feature = "thread_local_internals", reason = "should not be necessary", issue = "none")]
#[macro_export]
#[allow_internal_unstable(thread_local_internals, cfg_target_thread_local, thread_local)]
#[allow_internal_unsafe]
macro_rules! __thread_local_inner {
// used to generate the `LocalKey` value for const-initialized thread locals
(@key $t:ty, const $init:expr) => {{
#[cfg_attr(not(windows), inline)] // see comments below
#[deny(unsafe_op_in_unsafe_fn)]
unsafe fn __getit(
_init: $crate::option::Option<&mut $crate::option::Option<$t>>,
) -> $crate::option::Option<&'static $t> {
const INIT_EXPR: $t = $init;
// wasm without atomics maps directly to `static mut`, and dtors
// aren't implemented because thread dtors aren't really a thing
// on wasm right now
//
// FIXME(#84224) this should come after the `target_thread_local`
// block.
#[cfg(all(target_family = "wasm", not(target_feature = "atomics")))]
{
static mut VAL: $t = INIT_EXPR;
unsafe { $crate::option::Option::Some(&VAL) }
}
// If the platform has support for `#[thread_local]`, use it.
#[cfg(all(
target_thread_local,
not(all(target_family = "wasm", not(target_feature = "atomics"))),
))]
{
#[thread_local]
static mut VAL: $t = INIT_EXPR;
// If a dtor isn't needed we can do something "very raw" and
// just get going.
if !$crate::mem::needs_drop::<$t>() {
unsafe {
return $crate::option::Option::Some(&VAL)
}
}
// 0 == dtor not registered
// 1 == dtor registered, dtor not run
// 2 == dtor registered and is running or has run
#[thread_local]
static mut STATE: $crate::primitive::u8 = 0;
unsafe extern "C" fn destroy(ptr: *mut $crate::primitive::u8) {
let ptr = ptr as *mut $t;
unsafe {
$crate::debug_assert_eq!(STATE, 1);
STATE = 2;
$crate::ptr::drop_in_place(ptr);
}
}
unsafe {
match STATE {
// 0 == we haven't registered a destructor, so do
// so now.
0 => {
$crate::thread::__FastLocalKeyInner::<$t>::register_dtor(
$crate::ptr::addr_of_mut!(VAL) as *mut $crate::primitive::u8,
destroy,
);
STATE = 1;
$crate::option::Option::Some(&VAL)
}
// 1 == the destructor is registered and the value
// is valid, so return the pointer.
1 => $crate::option::Option::Some(&VAL),
// otherwise the destructor has already run, so we
// can't give access.
_ => $crate::option::Option::None,
}
}
}
// On platforms without `#[thread_local]` we fall back to the
// same implementation as below for os thread locals.
#[cfg(all(
not(target_thread_local),
not(all(target_family = "wasm", not(target_feature = "atomics"))),
))]
{
#[inline]
const fn __init() -> $t { INIT_EXPR }
static __KEY: $crate::thread::__OsLocalKeyInner<$t> =
$crate::thread::__OsLocalKeyInner::new();
#[allow(unused_unsafe)]
unsafe {
__KEY.get(move || {
if let $crate::option::Option::Some(init) = _init {
if let $crate::option::Option::Some(value) = init.take() {
return value;
} else if $crate::cfg!(debug_assertions) {
$crate::unreachable!("missing initial value");
}
}
__init()
})
}
}
}
unsafe {
$crate::thread::LocalKey::new(__getit)
}
}};
// used to generate the `LocalKey` value for `thread_local!`
(@key $t:ty, $init:expr) => {
{
#[inline]
fn __init() -> $t { $init }
// When reading this function you might ask "why is this inlined
// everywhere other than Windows?", and that's a very reasonable
// question to ask. The short story is that it segfaults rustc if
// this function is inlined. The longer story is that Windows looks
// to not support `extern` references to thread locals across DLL
// boundaries. This appears to at least not be supported in the ABI
// that LLVM implements.
//
// Because of this we never inline on Windows, but we do inline on
// other platforms (where external references to thread locals
// across DLLs are supported). A better fix for this would be to
// inline this function on Windows, but only for "statically linked"
// components. For example if two separately compiled rlibs end up
// getting linked into a DLL then it's fine to inline this function
// across that boundary. It's only not fine to inline this function
// across a DLL boundary. Unfortunately rustc doesn't currently
// have this sort of logic available in an attribute, and it's not
// clear that rustc is even equipped to answer this (it's more of a
// Cargo question kinda). This means that, unfortunately, Windows
// gets the pessimistic path for now where it's never inlined.
//
// The issue of "should enable on Windows sometimes" is #84933
#[cfg_attr(not(windows), inline)]
unsafe fn __getit(
init: $crate::option::Option<&mut $crate::option::Option<$t>>,
) -> $crate::option::Option<&'static $t> {
#[cfg(all(target_family = "wasm", not(target_feature = "atomics")))]
static __KEY: $crate::thread::__StaticLocalKeyInner<$t> =
$crate::thread::__StaticLocalKeyInner::new();
#[thread_local]
#[cfg(all(
target_thread_local,
not(all(target_family = "wasm", not(target_feature = "atomics"))),
))]
static __KEY: $crate::thread::__FastLocalKeyInner<$t> =
$crate::thread::__FastLocalKeyInner::new();
#[cfg(all(
not(target_thread_local),
not(all(target_family = "wasm", not(target_feature = "atomics"))),
))]
static __KEY: $crate::thread::__OsLocalKeyInner<$t> =
$crate::thread::__OsLocalKeyInner::new();
// FIXME: remove the #[allow(...)] marker when macros don't
// raise warning for missing/extraneous unsafe blocks anymore.
// See https://github.com/rust-lang/rust/issues/74838.
#[allow(unused_unsafe)]
unsafe {
__KEY.get(move || {
if let $crate::option::Option::Some(init) = init {
if let $crate::option::Option::Some(value) = init.take() {
return value;
} else if $crate::cfg!(debug_assertions) {
$crate::unreachable!("missing default value");
}
}
__init()
})
}
}
unsafe {
$crate::thread::LocalKey::new(__getit)
}
}
};
($(#[$attr:meta])* $vis:vis $name:ident, $t:ty, $($init:tt)*) => {
$(#[$attr])* $vis const $name: $crate::thread::LocalKey<$t> =
$crate::__thread_local_inner!(@key $t, $($init)*);
}
}
/// An error returned by [`LocalKey::try_with`](struct.LocalKey.html#method.try_with).
#[stable(feature = "thread_local_try_with", since = "1.26.0")]
#[non_exhaustive]
@ -779,376 +585,3 @@ impl<T: 'static> LocalKey<RefCell<T>> {
self.with(|cell| cell.replace(value))
}
}
mod lazy {
use crate::cell::UnsafeCell;
use crate::hint;
use crate::mem;
pub struct LazyKeyInner<T> {
inner: UnsafeCell<Option<T>>,
}
impl<T> LazyKeyInner<T> {
pub const fn new() -> LazyKeyInner<T> {
LazyKeyInner { inner: UnsafeCell::new(None) }
}
pub unsafe fn get(&self) -> Option<&'static T> {
// SAFETY: The caller must ensure no reference is ever handed out to
// the inner cell nor mutable reference to the Option<T> inside said
// cell. This make it safe to hand a reference, though the lifetime
// of 'static is itself unsafe, making the get method unsafe.
unsafe { (*self.inner.get()).as_ref() }
}
/// The caller must ensure that no reference is active: this method
/// needs unique access.
pub unsafe fn initialize<F: FnOnce() -> T>(&self, init: F) -> &'static T {
// Execute the initialization up front, *then* move it into our slot,
// just in case initialization fails.
let value = init();
let ptr = self.inner.get();
// SAFETY:
//
// note that this can in theory just be `*ptr = Some(value)`, but due to
// the compiler will currently codegen that pattern with something like:
//
// ptr::drop_in_place(ptr)
// ptr::write(ptr, Some(value))
//
// Due to this pattern it's possible for the destructor of the value in
// `ptr` (e.g., if this is being recursively initialized) to re-access
// TLS, in which case there will be a `&` and `&mut` pointer to the same
// value (an aliasing violation). To avoid setting the "I'm running a
// destructor" flag we just use `mem::replace` which should sequence the
// operations a little differently and make this safe to call.
//
// The precondition also ensures that we are the only one accessing
// `self` at the moment so replacing is fine.
unsafe {
let _ = mem::replace(&mut *ptr, Some(value));
}
// SAFETY: With the call to `mem::replace` it is guaranteed there is
// a `Some` behind `ptr`, not a `None` so `unreachable_unchecked`
// will never be reached.
unsafe {
// After storing `Some` we want to get a reference to the contents of
// what we just stored. While we could use `unwrap` here and it should
// always work it empirically doesn't seem to always get optimized away,
// which means that using something like `try_with` can pull in
// panicking code and cause a large size bloat.
match *ptr {
Some(ref x) => x,
None => hint::unreachable_unchecked(),
}
}
}
/// The other methods hand out references while taking &self.
/// As such, callers of this method must ensure no `&` and `&mut` are
/// available and used at the same time.
#[allow(unused)]
pub unsafe fn take(&mut self) -> Option<T> {
// SAFETY: See doc comment for this method.
unsafe { (*self.inner.get()).take() }
}
}
}
/// On some targets like wasm there's no threads, so no need to generate
/// thread locals and we can instead just use plain statics!
#[doc(hidden)]
#[cfg(all(target_family = "wasm", not(target_feature = "atomics")))]
pub mod statik {
use super::lazy::LazyKeyInner;
use crate::fmt;
pub struct Key<T> {
inner: LazyKeyInner<T>,
}
unsafe impl<T> Sync for Key<T> {}
impl<T> fmt::Debug for Key<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Key").finish_non_exhaustive()
}
}
impl<T> Key<T> {
pub const fn new() -> Key<T> {
Key { inner: LazyKeyInner::new() }
}
pub unsafe fn get(&self, init: impl FnOnce() -> T) -> Option<&'static T> {
// SAFETY: The caller must ensure no reference is ever handed out to
// the inner cell nor mutable reference to the Option<T> inside said
// cell. This make it safe to hand a reference, though the lifetime
// of 'static is itself unsafe, making the get method unsafe.
let value = unsafe {
match self.inner.get() {
Some(ref value) => value,
None => self.inner.initialize(init),
}
};
Some(value)
}
}
}
#[doc(hidden)]
#[cfg(all(target_thread_local, not(all(target_family = "wasm", not(target_feature = "atomics"))),))]
pub mod fast {
use super::lazy::LazyKeyInner;
use crate::cell::Cell;
use crate::sys::thread_local_dtor::register_dtor;
use crate::{fmt, mem, panic};
#[derive(Copy, Clone)]
enum DtorState {
Unregistered,
Registered,
RunningOrHasRun,
}
// This data structure has been carefully constructed so that the fast path
// only contains one branch on x86. That optimization is necessary to avoid
// duplicated tls lookups on OSX.
//
// LLVM issue: https://bugs.llvm.org/show_bug.cgi?id=41722
pub struct Key<T> {
// If `LazyKeyInner::get` returns `None`, that indicates either:
// * The value has never been initialized
// * The value is being recursively initialized
// * The value has already been destroyed or is being destroyed
// To determine which kind of `None`, check `dtor_state`.
//
// This is very optimizer friendly for the fast path - initialized but
// not yet dropped.
inner: LazyKeyInner<T>,
// Metadata to keep track of the state of the destructor. Remember that
// this variable is thread-local, not global.
dtor_state: Cell<DtorState>,
}
impl<T> fmt::Debug for Key<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Key").finish_non_exhaustive()
}
}
impl<T> Key<T> {
pub const fn new() -> Key<T> {
Key { inner: LazyKeyInner::new(), dtor_state: Cell::new(DtorState::Unregistered) }
}
// note that this is just a publicly-callable function only for the
// const-initialized form of thread locals, basically a way to call the
// free `register_dtor` function defined elsewhere in std.
pub unsafe fn register_dtor(a: *mut u8, dtor: unsafe extern "C" fn(*mut u8)) {
unsafe {
register_dtor(a, dtor);
}
}
pub unsafe fn get<F: FnOnce() -> T>(&self, init: F) -> Option<&'static T> {
// SAFETY: See the definitions of `LazyKeyInner::get` and
// `try_initialize` for more information.
//
// The caller must ensure no mutable references are ever active to
// the inner cell or the inner T when this is called.
// The `try_initialize` is dependant on the passed `init` function
// for this.
unsafe {
match self.inner.get() {
Some(val) => Some(val),
None => self.try_initialize(init),
}
}
}
// `try_initialize` is only called once per fast thread local variable,
// except in corner cases where thread_local dtors reference other
// thread_local's, or it is being recursively initialized.
//
// Macos: Inlining this function can cause two `tlv_get_addr` calls to
// be performed for every call to `Key::get`.
// LLVM issue: https://bugs.llvm.org/show_bug.cgi?id=41722
#[inline(never)]
unsafe fn try_initialize<F: FnOnce() -> T>(&self, init: F) -> Option<&'static T> {
// SAFETY: See comment above (this function doc).
if !mem::needs_drop::<T>() || unsafe { self.try_register_dtor() } {
// SAFETY: See comment above (this function doc).
Some(unsafe { self.inner.initialize(init) })
} else {
None
}
}
// `try_register_dtor` is only called once per fast thread local
// variable, except in corner cases where thread_local dtors reference
// other thread_local's, or it is being recursively initialized.
unsafe fn try_register_dtor(&self) -> bool {
match self.dtor_state.get() {
DtorState::Unregistered => {
// SAFETY: dtor registration happens before initialization.
// Passing `self` as a pointer while using `destroy_value<T>`
// is safe because the function will build a pointer to a
// Key<T>, which is the type of self and so find the correct
// size.
unsafe { register_dtor(self as *const _ as *mut u8, destroy_value::<T>) };
self.dtor_state.set(DtorState::Registered);
true
}
DtorState::Registered => {
// recursively initialized
true
}
DtorState::RunningOrHasRun => false,
}
}
}
unsafe extern "C" fn destroy_value<T>(ptr: *mut u8) {
let ptr = ptr as *mut Key<T>;
// SAFETY:
//
// The pointer `ptr` has been built just above and comes from
// `try_register_dtor` where it is originally a Key<T> coming from `self`,
// making it non-NUL and of the correct type.
//
// Right before we run the user destructor be sure to set the
// `Option<T>` to `None`, and `dtor_state` to `RunningOrHasRun`. This
// causes future calls to `get` to run `try_initialize_drop` again,
// which will now fail, and return `None`.
//
// Wrap the call in a catch to ensure unwinding is caught in the event
// a panic takes place in a destructor.
if let Err(_) = panic::catch_unwind(panic::AssertUnwindSafe(|| unsafe {
let value = (*ptr).inner.take();
(*ptr).dtor_state.set(DtorState::RunningOrHasRun);
drop(value);
})) {
rtabort!("thread local panicked on drop");
}
}
}
#[doc(hidden)]
#[cfg(all(
not(target_thread_local),
not(all(target_family = "wasm", not(target_feature = "atomics"))),
))]
pub mod os {
use super::lazy::LazyKeyInner;
use crate::cell::Cell;
use crate::sys_common::thread_local_key::StaticKey as OsStaticKey;
use crate::{fmt, marker, panic, ptr};
/// Use a regular global static to store this key; the state provided will then be
/// thread-local.
pub struct Key<T> {
// OS-TLS key that we'll use to key off.
os: OsStaticKey,
marker: marker::PhantomData<Cell<T>>,
}
impl<T> fmt::Debug for Key<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Key").finish_non_exhaustive()
}
}
unsafe impl<T> Sync for Key<T> {}
struct Value<T: 'static> {
inner: LazyKeyInner<T>,
key: &'static Key<T>,
}
impl<T: 'static> Key<T> {
#[rustc_const_unstable(feature = "thread_local_internals", issue = "none")]
pub const fn new() -> Key<T> {
Key { os: OsStaticKey::new(Some(destroy_value::<T>)), marker: marker::PhantomData }
}
/// It is a requirement for the caller to ensure that no mutable
/// reference is active when this method is called.
pub unsafe fn get(&'static self, init: impl FnOnce() -> T) -> Option<&'static T> {
// SAFETY: See the documentation for this method.
let ptr = unsafe { self.os.get() as *mut Value<T> };
if ptr.addr() > 1 {
// SAFETY: the check ensured the pointer is safe (its destructor
// is not running) + it is coming from a trusted source (self).
if let Some(ref value) = unsafe { (*ptr).inner.get() } {
return Some(value);
}
}
// SAFETY: At this point we are sure we have no value and so
// initializing (or trying to) is safe.
unsafe { self.try_initialize(init) }
}
// `try_initialize` is only called once per os thread local variable,
// except in corner cases where thread_local dtors reference other
// thread_local's, or it is being recursively initialized.
unsafe fn try_initialize(&'static self, init: impl FnOnce() -> T) -> Option<&'static T> {
// SAFETY: No mutable references are ever handed out meaning getting
// the value is ok.
let ptr = unsafe { self.os.get() as *mut Value<T> };
if ptr.addr() == 1 {
// destructor is running
return None;
}
let ptr = if ptr.is_null() {
// If the lookup returned null, we haven't initialized our own
// local copy, so do that now.
let ptr = Box::into_raw(Box::new(Value { inner: LazyKeyInner::new(), key: self }));
// SAFETY: At this point we are sure there is no value inside
// ptr so setting it will not affect anyone else.
unsafe {
self.os.set(ptr as *mut u8);
}
ptr
} else {
// recursive initialization
ptr
};
// SAFETY: ptr has been ensured as non-NUL just above an so can be
// dereferenced safely.
unsafe { Some((*ptr).inner.initialize(init)) }
}
}
unsafe extern "C" fn destroy_value<T: 'static>(ptr: *mut u8) {
// SAFETY:
//
// The OS TLS ensures that this key contains a null value when this
// destructor starts to run. We set it back to a sentinel value of 1 to
// ensure that any future calls to `get` for this thread will return
// `None`.
//
// Note that to prevent an infinite loop we reset it back to null right
// before we return from the destructor ourselves.
//
// Wrap the call in a catch to ensure unwinding is caught in the event
// a panic takes place in a destructor.
if let Err(_) = panic::catch_unwind(|| unsafe {
let ptr = Box::from_raw(ptr as *mut Value<T>);
let key = ptr.key;
key.os.set(ptr::invalid_mut(1));
drop(ptr);
key.os.set(ptr::null_mut());
}) {
rtabort!("thread local panicked on drop");
}
}
}

View File

@ -203,44 +203,9 @@ pub use self::local::{AccessError, LocalKey};
// by the elf linker. "static" is for single-threaded platforms where a global
// static is sufficient.
#[unstable(feature = "libstd_thread_internals", issue = "none")]
#[cfg(not(test))]
#[cfg(all(
target_thread_local,
not(all(target_family = "wasm", not(target_feature = "atomics"))),
))]
#[doc(hidden)]
pub use self::local::fast::Key as __FastLocalKeyInner;
// when building for tests, use real std's type
#[unstable(feature = "libstd_thread_internals", issue = "none")]
#[cfg(test)]
#[cfg(all(
target_thread_local,
not(all(target_family = "wasm", not(target_feature = "atomics"))),
))]
pub use realstd::thread::__FastLocalKeyInner;
#[unstable(feature = "libstd_thread_internals", issue = "none")]
#[cfg(not(test))]
#[cfg(all(
not(target_thread_local),
not(all(target_family = "wasm", not(target_feature = "atomics"))),
))]
#[doc(hidden)]
pub use self::local::os::Key as __OsLocalKeyInner;
// when building for tests, use real std's type
#[unstable(feature = "libstd_thread_internals", issue = "none")]
#[cfg(test)]
#[cfg(all(
not(target_thread_local),
not(all(target_family = "wasm", not(target_feature = "atomics"))),
))]
pub use realstd::thread::__OsLocalKeyInner;
#[unstable(feature = "libstd_thread_internals", issue = "none")]
#[cfg(all(target_family = "wasm", not(target_feature = "atomics")))]
#[doc(hidden)]
pub use self::local::statik::Key as __StaticLocalKeyInner;
pub use crate::sys::common::thread_local::Key as __LocalKeyInner;
////////////////////////////////////////////////////////////////////////////////
// Builder

View File

@ -346,6 +346,7 @@ impl<'a, 'tcx> DocFolder for CacheBuilder<'a, 'tcx> {
self.cache,
),
aliases: item.attrs.get_doc_aliases(),
deprecation: item.deprecation(self.tcx),
});
}
}

View File

@ -17,10 +17,11 @@ use super::print_item::{full_path, item_path, print_item};
use super::search_index::build_index;
use super::write_shared::write_shared;
use super::{
collect_spans_and_sources, print_sidebar, scrape_examples_help, sidebar_module_like, AllTypes,
LinkFromSrc, StylePath,
collect_spans_and_sources, scrape_examples_help,
sidebar::print_sidebar,
sidebar::{sidebar_module_like, Sidebar},
AllTypes, LinkFromSrc, StylePath,
};
use crate::clean::{self, types::ExternalLocation, ExternalCrate};
use crate::config::{ModuleSorting, RenderOptions};
use crate::docfs::{DocFS, PathError};
@ -35,6 +36,7 @@ use crate::html::url_parts_builder::UrlPartsBuilder;
use crate::html::{layout, sources, static_files};
use crate::scrape_examples::AllCallLocations;
use crate::try_err;
use askama::Template;
/// Major driving force in all rustdoc rendering. This contains information
/// about where in the tree-like hierarchy rendering is occurring and controls
@ -600,15 +602,18 @@ impl<'tcx> FormatRenderer<'tcx> for Context<'tcx> {
};
let all = shared.all.replace(AllTypes::new());
let mut sidebar = Buffer::html();
write!(sidebar, "<h2 class=\"location\"><a href=\"#\">Crate {}</a></h2>", crate_name);
let mut items = Buffer::html();
sidebar_module_like(&mut items, all.item_sections());
if !items.is_empty() {
sidebar.push_str("<div class=\"sidebar-elems\">");
sidebar.push_buffer(items);
sidebar.push_str("</div>");
}
let blocks = sidebar_module_like(all.item_sections());
let bar = Sidebar {
title_prefix: "Crate ",
title: crate_name.as_str(),
is_crate: false,
version: "",
blocks: vec![blocks],
path: String::new(),
};
bar.render_into(&mut sidebar).unwrap();
let v = layout::render(
&shared.layout,

View File

@ -30,6 +30,7 @@ mod tests;
mod context;
mod print_item;
mod sidebar;
mod span_map;
mod write_shared;
@ -46,14 +47,13 @@ use std::rc::Rc;
use std::str;
use std::string::ToString;
use askama::Template;
use rustc_ast_pretty::pprust;
use rustc_attr::{ConstStability, Deprecation, StabilityLevel};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_hir::def::CtorKind;
use rustc_hir::def_id::{DefId, DefIdSet};
use rustc_hir::Mutability;
use rustc_middle::middle::stability;
use rustc_middle::ty;
use rustc_middle::ty::TyCtxt;
use rustc_span::{
symbol::{sym, Symbol},
@ -104,6 +104,7 @@ pub(crate) struct IndexItem {
pub(crate) parent_idx: Option<usize>,
pub(crate) search_type: Option<IndexItemFunctionType>,
pub(crate) aliases: Box<[Symbol]>,
pub(crate) deprecation: Option<Deprecation>,
}
/// A type used for the search index.
@ -417,7 +418,7 @@ fn document(
if let Some(ref name) = item.name {
info!("Documenting {}", name);
}
document_item_info(w, cx, item, parent);
document_item_info(cx, item, parent).render_into(w).unwrap();
if parent.is_none() {
document_full_collapsible(w, item, cx, heading_offset);
} else {
@ -459,7 +460,7 @@ fn document_short(
parent: &clean::Item,
show_def_docs: bool,
) {
document_item_info(w, cx, item, Some(parent));
document_item_info(cx, item, Some(parent)).render_into(w).unwrap();
if !show_def_docs {
return;
}
@ -531,25 +532,23 @@ fn document_full_inner(
}
}
#[derive(Template)]
#[template(path = "item_info.html")]
struct ItemInfo {
items: Vec<ShortItemInfo>,
}
/// Add extra information about an item such as:
///
/// * Stability
/// * Deprecated
/// * Required features (through the `doc_cfg` feature)
fn document_item_info(
w: &mut Buffer,
cx: &mut Context<'_>,
item: &clean::Item,
parent: Option<&clean::Item>,
) {
let item_infos = short_item_info(item, cx, parent);
if !item_infos.is_empty() {
w.write_str("<span class=\"item-info\">");
for info in item_infos {
w.write_str(&info);
}
w.write_str("</span>");
}
) -> ItemInfo {
let items = short_item_info(item, cx, parent);
ItemInfo { items }
}
fn portability(item: &clean::Item, parent: Option<&clean::Item>) -> Option<String> {
@ -567,7 +566,25 @@ fn portability(item: &clean::Item, parent: Option<&clean::Item>) -> Option<Strin
cfg
);
Some(format!("<div class=\"stab portability\">{}</div>", cfg?.render_long_html()))
Some(cfg?.render_long_html())
}
#[derive(Template)]
#[template(path = "short_item_info.html")]
enum ShortItemInfo {
/// A message describing the deprecation of this item
Deprecation {
message: String,
},
/// The feature corresponding to an unstable item, and optionally
/// a tracking issue URL and number.
Unstable {
feature: String,
tracking: Option<(String, u32)>,
},
Portability {
message: String,
},
}
/// Render the stability, deprecation and portability information that is displayed at the top of
@ -576,7 +593,7 @@ fn short_item_info(
item: &clean::Item,
cx: &mut Context<'_>,
parent: Option<&clean::Item>,
) -> Vec<String> {
) -> Vec<ShortItemInfo> {
let mut extra_info = vec![];
if let Some(depr @ Deprecation { note, since, is_since_rustc_version: _, suggestion: _ }) =
@ -602,15 +619,10 @@ fn short_item_info(
if let Some(note) = note {
let note = note.as_str();
let html = MarkdownItemInfo(note, &mut cx.id_map);
message.push_str(&format!(": {}", html.into_string()));
message.push_str(": ");
message.push_str(&html.into_string());
}
extra_info.push(format!(
"<div class=\"stab deprecated\">\
<span class=\"emoji\">👎</span>\
<span>{}</span>\
</div>",
message,
));
extra_info.push(ShortItemInfo::Deprecation { message });
}
// Render unstable items. But don't render "rustc_private" crates (internal compiler crates).
@ -621,26 +633,17 @@ fn short_item_info(
.filter(|stab| stab.feature != sym::rustc_private)
.map(|stab| (stab.level, stab.feature))
{
let mut message = "<span class=\"emoji\">🔬</span>\
<span>This is a nightly-only experimental API."
.to_owned();
let mut feature = format!("<code>{}</code>", Escape(feature.as_str()));
if let (Some(url), Some(issue)) = (&cx.shared.issue_tracker_base_url, issue) {
feature.push_str(&format!(
"&nbsp;<a href=\"{url}{issue}\">#{issue}</a>",
url = url,
issue = issue
));
}
message.push_str(&format!(" ({})</span>", feature));
extra_info.push(format!("<div class=\"stab unstable\">{}</div>", message));
let tracking = if let (Some(url), Some(issue)) = (&cx.shared.issue_tracker_base_url, issue)
{
Some((url.clone(), issue.get()))
} else {
None
};
extra_info.push(ShortItemInfo::Unstable { feature: feature.to_string(), tracking });
}
if let Some(portability) = portability(item, parent) {
extra_info.push(portability);
if let Some(message) = portability(item, parent) {
extra_info.push(ShortItemInfo::Portability { message });
}
extra_info
@ -1472,7 +1475,9 @@ fn render_impl(
// We need the stability of the item from the trait
// because impls can't have a stability.
if item.doc_value().is_some() {
document_item_info(&mut info_buffer, cx, it, Some(parent));
document_item_info(cx, it, Some(parent))
.render_into(&mut info_buffer)
.unwrap();
document_full(&mut doc_buffer, item, cx, HeadingOffset::H5);
short_documented = false;
} else {
@ -1489,7 +1494,9 @@ fn render_impl(
}
}
} else {
document_item_info(&mut info_buffer, cx, item, Some(parent));
document_item_info(cx, item, Some(parent))
.render_into(&mut info_buffer)
.unwrap();
if rendering_params.show_def_docs {
document_full(&mut doc_buffer, item, cx, HeadingOffset::H5);
short_documented = false;
@ -1862,161 +1869,17 @@ pub(crate) fn render_impl_summary(
let is_trait = inner_impl.trait_.is_some();
if is_trait {
if let Some(portability) = portability(&i.impl_item, Some(parent)) {
write!(w, "<span class=\"item-info\">{}</span>", portability);
write!(
w,
"<span class=\"item-info\"><div class=\"stab portability\">{}</div></span>",
portability
);
}
}
w.write_str("</section>");
}
fn print_sidebar(cx: &Context<'_>, it: &clean::Item, buffer: &mut Buffer) {
if it.is_struct()
|| it.is_trait()
|| it.is_primitive()
|| it.is_union()
|| it.is_enum()
|| it.is_mod()
|| it.is_typedef()
{
write!(
buffer,
"<h2 class=\"location\"><a href=\"#\">{}{}</a></h2>",
match *it.kind {
clean::ModuleItem(..) =>
if it.is_crate() {
"Crate "
} else {
"Module "
},
_ => "",
},
it.name.as_ref().unwrap()
);
}
buffer.write_str("<div class=\"sidebar-elems\">");
if it.is_crate() {
write!(buffer, "<ul class=\"block\">");
if let Some(ref version) = cx.cache().crate_version {
write!(buffer, "<li class=\"version\">Version {}</li>", Escape(version));
}
write!(buffer, "<li><a id=\"all-types\" href=\"all.html\">All Items</a></li>");
buffer.write_str("</ul>");
}
match *it.kind {
clean::StructItem(ref s) => sidebar_struct(cx, buffer, it, s),
clean::TraitItem(ref t) => sidebar_trait(cx, buffer, it, t),
clean::PrimitiveItem(_) => sidebar_primitive(cx, buffer, it),
clean::UnionItem(ref u) => sidebar_union(cx, buffer, it, u),
clean::EnumItem(ref e) => sidebar_enum(cx, buffer, it, e),
clean::TypedefItem(_) => sidebar_typedef(cx, buffer, it),
clean::ModuleItem(ref m) => sidebar_module(buffer, &m.items),
clean::ForeignTypeItem => sidebar_foreign_type(cx, buffer, it),
_ => {}
}
// The sidebar is designed to display sibling functions, modules and
// other miscellaneous information. since there are lots of sibling
// items (and that causes quadratic growth in large modules),
// we refactor common parts into a shared JavaScript file per module.
// still, we don't move everything into JS because we want to preserve
// as much HTML as possible in order to allow non-JS-enabled browsers
// to navigate the documentation (though slightly inefficiently).
if !it.is_mod() {
let path: String = cx.current.iter().map(|s| s.as_str()).intersperse("::").collect();
write!(buffer, "<h2><a href=\"index.html\">In {}</a></h2>", path);
}
// Closes sidebar-elems div.
buffer.write_str("</div>");
}
fn get_next_url(used_links: &mut FxHashSet<String>, url: String) -> String {
if used_links.insert(url.clone()) {
return url;
}
let mut add = 1;
while !used_links.insert(format!("{}-{}", url, add)) {
add += 1;
}
format!("{}-{}", url, add)
}
struct SidebarLink {
name: Symbol,
url: String,
}
impl fmt::Display for SidebarLink {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "<a href=\"#{}\">{}</a>", self.url, self.name)
}
}
impl PartialEq for SidebarLink {
fn eq(&self, other: &Self) -> bool {
self.url == other.url
}
}
impl Eq for SidebarLink {}
impl PartialOrd for SidebarLink {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for SidebarLink {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.url.cmp(&other.url)
}
}
fn get_methods(
i: &clean::Impl,
for_deref: bool,
used_links: &mut FxHashSet<String>,
deref_mut: bool,
tcx: TyCtxt<'_>,
) -> Vec<SidebarLink> {
i.items
.iter()
.filter_map(|item| match item.name {
Some(name) if !name.is_empty() && item.is_method() => {
if !for_deref || should_render_item(item, deref_mut, tcx) {
Some(SidebarLink {
name,
url: get_next_url(used_links, format!("{}.{}", ItemType::Method, name)),
})
} else {
None
}
}
_ => None,
})
.collect::<Vec<_>>()
}
fn get_associated_constants(
i: &clean::Impl,
used_links: &mut FxHashSet<String>,
) -> Vec<SidebarLink> {
i.items
.iter()
.filter_map(|item| match item.name {
Some(name) if !name.is_empty() && item.is_associated_const() => Some(SidebarLink {
name,
url: get_next_url(used_links, format!("{}.{}", ItemType::AssocConst, name)),
}),
_ => None,
})
.collect::<Vec<_>>()
}
pub(crate) fn small_url_encode(s: String) -> String {
// These characters don't need to be escaped in a URI.
// See https://url.spec.whatwg.org/#query-percent-encode-set
@ -2082,232 +1945,6 @@ pub(crate) fn small_url_encode(s: String) -> String {
}
}
pub(crate) fn sidebar_render_assoc_items(
cx: &Context<'_>,
out: &mut Buffer,
id_map: &mut IdMap,
concrete: Vec<&Impl>,
synthetic: Vec<&Impl>,
blanket_impl: Vec<&Impl>,
) {
let format_impls = |impls: Vec<&Impl>, id_map: &mut IdMap| {
let mut links = FxHashSet::default();
let mut ret = impls
.iter()
.filter_map(|it| {
let trait_ = it.inner_impl().trait_.as_ref()?;
let encoded =
id_map.derive(get_id_for_impl(&it.inner_impl().for_, Some(trait_), cx));
let i_display = format!("{:#}", trait_.print(cx));
let out = Escape(&i_display);
let prefix = match it.inner_impl().polarity {
ty::ImplPolarity::Positive | ty::ImplPolarity::Reservation => "",
ty::ImplPolarity::Negative => "!",
};
let generated = format!("<a href=\"#{}\">{}{}</a>", encoded, prefix, out);
if links.insert(generated.clone()) { Some(generated) } else { None }
})
.collect::<Vec<String>>();
ret.sort();
ret
};
let concrete_format = format_impls(concrete, id_map);
let synthetic_format = format_impls(synthetic, id_map);
let blanket_format = format_impls(blanket_impl, id_map);
if !concrete_format.is_empty() {
print_sidebar_block(
out,
"trait-implementations",
"Trait Implementations",
concrete_format.iter(),
);
}
if !synthetic_format.is_empty() {
print_sidebar_block(
out,
"synthetic-implementations",
"Auto Trait Implementations",
synthetic_format.iter(),
);
}
if !blanket_format.is_empty() {
print_sidebar_block(
out,
"blanket-implementations",
"Blanket Implementations",
blanket_format.iter(),
);
}
}
fn sidebar_assoc_items(cx: &Context<'_>, out: &mut Buffer, it: &clean::Item) {
let did = it.item_id.expect_def_id();
let cache = cx.cache();
if let Some(v) = cache.impls.get(&did) {
let mut used_links = FxHashSet::default();
let mut id_map = IdMap::new();
{
let used_links_bor = &mut used_links;
let mut assoc_consts = v
.iter()
.filter(|i| i.inner_impl().trait_.is_none())
.flat_map(|i| get_associated_constants(i.inner_impl(), used_links_bor))
.collect::<Vec<_>>();
if !assoc_consts.is_empty() {
// We want links' order to be reproducible so we don't use unstable sort.
assoc_consts.sort();
print_sidebar_block(
out,
"implementations",
"Associated Constants",
assoc_consts.iter(),
);
}
let mut methods = v
.iter()
.filter(|i| i.inner_impl().trait_.is_none())
.flat_map(|i| get_methods(i.inner_impl(), false, used_links_bor, false, cx.tcx()))
.collect::<Vec<_>>();
if !methods.is_empty() {
// We want links' order to be reproducible so we don't use unstable sort.
methods.sort();
print_sidebar_block(out, "implementations", "Methods", methods.iter());
}
}
if v.iter().any(|i| i.inner_impl().trait_.is_some()) {
if let Some(impl_) =
v.iter().find(|i| i.trait_did() == cx.tcx().lang_items().deref_trait())
{
let mut derefs = DefIdSet::default();
derefs.insert(did);
sidebar_deref_methods(cx, out, impl_, v, &mut derefs, &mut used_links);
}
let (synthetic, concrete): (Vec<&Impl>, Vec<&Impl>) =
v.iter().partition::<Vec<_>, _>(|i| i.inner_impl().kind.is_auto());
let (blanket_impl, concrete): (Vec<&Impl>, Vec<&Impl>) =
concrete.into_iter().partition::<Vec<_>, _>(|i| i.inner_impl().kind.is_blanket());
sidebar_render_assoc_items(cx, out, &mut id_map, concrete, synthetic, blanket_impl);
}
}
}
fn sidebar_deref_methods(
cx: &Context<'_>,
out: &mut Buffer,
impl_: &Impl,
v: &[Impl],
derefs: &mut DefIdSet,
used_links: &mut FxHashSet<String>,
) {
let c = cx.cache();
debug!("found Deref: {:?}", impl_);
if let Some((target, real_target)) =
impl_.inner_impl().items.iter().find_map(|item| match *item.kind {
clean::AssocTypeItem(box ref t, _) => Some(match *t {
clean::Typedef { item_type: Some(ref type_), .. } => (type_, &t.type_),
_ => (&t.type_, &t.type_),
}),
_ => None,
})
{
debug!("found target, real_target: {:?} {:?}", target, real_target);
if let Some(did) = target.def_id(c) &&
let Some(type_did) = impl_.inner_impl().for_.def_id(c) &&
// `impl Deref<Target = S> for S`
(did == type_did || !derefs.insert(did))
{
// Avoid infinite cycles
return;
}
let deref_mut = v.iter().any(|i| i.trait_did() == cx.tcx().lang_items().deref_mut_trait());
let inner_impl = target
.def_id(c)
.or_else(|| {
target.primitive_type().and_then(|prim| c.primitive_locations.get(&prim).cloned())
})
.and_then(|did| c.impls.get(&did));
if let Some(impls) = inner_impl {
debug!("found inner_impl: {:?}", impls);
let mut ret = impls
.iter()
.filter(|i| i.inner_impl().trait_.is_none())
.flat_map(|i| get_methods(i.inner_impl(), true, used_links, deref_mut, cx.tcx()))
.collect::<Vec<_>>();
if !ret.is_empty() {
let id = if let Some(target_def_id) = real_target.def_id(c) {
cx.deref_id_map.get(&target_def_id).expect("Deref section without derived id")
} else {
"deref-methods"
};
let title = format!(
"Methods from {}&lt;Target={}&gt;",
Escape(&format!("{:#}", impl_.inner_impl().trait_.as_ref().unwrap().print(cx))),
Escape(&format!("{:#}", real_target.print(cx))),
);
// We want links' order to be reproducible so we don't use unstable sort.
ret.sort();
print_sidebar_block(out, id, &title, ret.iter());
}
}
// Recurse into any further impls that might exist for `target`
if let Some(target_did) = target.def_id(c) &&
let Some(target_impls) = c.impls.get(&target_did) &&
let Some(target_deref_impl) = target_impls.iter().find(|i| {
i.inner_impl()
.trait_
.as_ref()
.map(|t| Some(t.def_id()) == cx.tcx().lang_items().deref_trait())
.unwrap_or(false)
})
{
sidebar_deref_methods(
cx,
out,
target_deref_impl,
target_impls,
derefs,
used_links,
);
}
}
}
fn sidebar_struct(cx: &Context<'_>, buf: &mut Buffer, it: &clean::Item, s: &clean::Struct) {
let mut sidebar = Buffer::new();
let fields = get_struct_fields_name(&s.fields);
if !fields.is_empty() {
match s.ctor_kind {
None => {
print_sidebar_block(&mut sidebar, "fields", "Fields", fields.iter());
}
Some(CtorKind::Fn) => print_sidebar_title(&mut sidebar, "fields", "Tuple Fields"),
Some(CtorKind::Const) => {}
}
}
sidebar_assoc_items(cx, &mut sidebar, it);
if !sidebar.is_empty() {
write!(buf, "<section>{}</section>", sidebar.into_inner());
}
}
fn get_id_for_impl(for_: &clean::Type, trait_: Option<&clean::Path>, cx: &Context<'_>) -> String {
match trait_ {
Some(t) => small_url_encode(format!("impl-{:#}-for-{:#}", t.print(cx), for_.print(cx))),
@ -2328,131 +1965,6 @@ fn extract_for_impl_name(item: &clean::Item, cx: &Context<'_>) -> Option<(String
}
}
fn print_sidebar_title(buf: &mut Buffer, id: &str, title: &str) {
write!(buf, "<h3><a href=\"#{}\">{}</a></h3>", id, title);
}
fn print_sidebar_block(
buf: &mut Buffer,
id: &str,
title: &str,
items: impl Iterator<Item = impl fmt::Display>,
) {
print_sidebar_title(buf, id, title);
buf.push_str("<ul class=\"block\">");
for item in items {
write!(buf, "<li>{}</li>", item);
}
buf.push_str("</ul>");
}
fn sidebar_trait(cx: &Context<'_>, buf: &mut Buffer, it: &clean::Item, t: &clean::Trait) {
buf.write_str("<section>");
fn print_sidebar_section(
out: &mut Buffer,
items: &[clean::Item],
id: &str,
title: &str,
filter: impl Fn(&clean::Item) -> bool,
mapper: impl Fn(&str) -> String,
) {
let mut items: Vec<&str> = items
.iter()
.filter_map(|m| match m.name {
Some(ref name) if filter(m) => Some(name.as_str()),
_ => None,
})
.collect::<Vec<_>>();
if !items.is_empty() {
items.sort_unstable();
print_sidebar_block(out, id, title, items.into_iter().map(mapper));
}
}
print_sidebar_section(
buf,
&t.items,
"required-associated-types",
"Required Associated Types",
|m| m.is_ty_associated_type(),
|sym| format!("<a href=\"#{1}.{0}\">{0}</a>", sym, ItemType::AssocType),
);
print_sidebar_section(
buf,
&t.items,
"provided-associated-types",
"Provided Associated Types",
|m| m.is_associated_type(),
|sym| format!("<a href=\"#{1}.{0}\">{0}</a>", sym, ItemType::AssocType),
);
print_sidebar_section(
buf,
&t.items,
"required-associated-consts",
"Required Associated Constants",
|m| m.is_ty_associated_const(),
|sym| format!("<a href=\"#{1}.{0}\">{0}</a>", sym, ItemType::AssocConst),
);
print_sidebar_section(
buf,
&t.items,
"provided-associated-consts",
"Provided Associated Constants",
|m| m.is_associated_const(),
|sym| format!("<a href=\"#{1}.{0}\">{0}</a>", sym, ItemType::AssocConst),
);
print_sidebar_section(
buf,
&t.items,
"required-methods",
"Required Methods",
|m| m.is_ty_method(),
|sym| format!("<a href=\"#{1}.{0}\">{0}</a>", sym, ItemType::TyMethod),
);
print_sidebar_section(
buf,
&t.items,
"provided-methods",
"Provided Methods",
|m| m.is_method(),
|sym| format!("<a href=\"#{1}.{0}\">{0}</a>", sym, ItemType::Method),
);
if let Some(implementors) = cx.cache().implementors.get(&it.item_id.expect_def_id()) {
let mut res = implementors
.iter()
.filter(|i| !i.is_on_local_type(cx))
.filter_map(|i| extract_for_impl_name(&i.impl_item, cx))
.collect::<Vec<_>>();
if !res.is_empty() {
res.sort();
print_sidebar_block(
buf,
"foreign-impls",
"Implementations on Foreign Types",
res.iter().map(|(name, id)| format!("<a href=\"#{}\">{}</a>", id, Escape(name))),
);
}
}
sidebar_assoc_items(cx, buf, it);
print_sidebar_title(buf, "implementors", "Implementors");
if t.is_auto(cx.tcx()) {
print_sidebar_title(buf, "synthetic-implementors", "Auto Implementors");
}
buf.push_str("</section>")
}
/// Returns the list of implementations for the primitive reference type, filtering out any
/// implementations that are on concrete or partially generic types, only keeping implementations
/// of the form `impl<T> Trait for &T`.
@ -2483,89 +1995,6 @@ pub(crate) fn get_filtered_impls_for_reference<'a>(
(concrete, synthetic, blanket_impl)
}
fn sidebar_primitive(cx: &Context<'_>, buf: &mut Buffer, it: &clean::Item) {
let mut sidebar = Buffer::new();
if it.name.map(|n| n.as_str() != "reference").unwrap_or(false) {
sidebar_assoc_items(cx, &mut sidebar, it);
} else {
let shared = Rc::clone(&cx.shared);
let (concrete, synthetic, blanket_impl) = get_filtered_impls_for_reference(&shared, it);
sidebar_render_assoc_items(
cx,
&mut sidebar,
&mut IdMap::new(),
concrete,
synthetic,
blanket_impl,
);
}
if !sidebar.is_empty() {
write!(buf, "<section>{}</section>", sidebar.into_inner());
}
}
fn sidebar_typedef(cx: &Context<'_>, buf: &mut Buffer, it: &clean::Item) {
let mut sidebar = Buffer::new();
sidebar_assoc_items(cx, &mut sidebar, it);
if !sidebar.is_empty() {
write!(buf, "<section>{}</section>", sidebar.into_inner());
}
}
fn get_struct_fields_name(fields: &[clean::Item]) -> Vec<String> {
let mut fields = fields
.iter()
.filter(|f| matches!(*f.kind, clean::StructFieldItem(..)))
.filter_map(|f| {
f.name.map(|name| format!("<a href=\"#structfield.{name}\">{name}</a>", name = name))
})
.collect::<Vec<_>>();
fields.sort();
fields
}
fn sidebar_union(cx: &Context<'_>, buf: &mut Buffer, it: &clean::Item, u: &clean::Union) {
let mut sidebar = Buffer::new();
let fields = get_struct_fields_name(&u.fields);
if !fields.is_empty() {
print_sidebar_block(&mut sidebar, "fields", "Fields", fields.iter());
}
sidebar_assoc_items(cx, &mut sidebar, it);
if !sidebar.is_empty() {
write!(buf, "<section>{}</section>", sidebar.into_inner());
}
}
fn sidebar_enum(cx: &Context<'_>, buf: &mut Buffer, it: &clean::Item, e: &clean::Enum) {
let mut sidebar = Buffer::new();
let mut variants = e
.variants()
.filter_map(|v| {
v.name
.as_ref()
.map(|name| format!("<a href=\"#variant.{name}\">{name}</a>", name = name))
})
.collect::<Vec<_>>();
if !variants.is_empty() {
variants.sort_unstable();
print_sidebar_block(&mut sidebar, "variants", "Variants", variants.iter());
}
sidebar_assoc_items(cx, &mut sidebar, it);
if !sidebar.is_empty() {
write!(buf, "<section>{}</section>", sidebar.into_inner());
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub(crate) enum ItemSection {
Reexports,
@ -2719,54 +2148,6 @@ fn item_ty_to_section(ty: ItemType) -> ItemSection {
}
}
pub(crate) fn sidebar_module_like(buf: &mut Buffer, item_sections_in_use: FxHashSet<ItemSection>) {
use std::fmt::Write as _;
let mut sidebar = String::new();
for &sec in ItemSection::ALL.iter().filter(|sec| item_sections_in_use.contains(sec)) {
let _ = write!(sidebar, "<li><a href=\"#{}\">{}</a></li>", sec.id(), sec.name());
}
if !sidebar.is_empty() {
write!(
buf,
"<section>\
<ul class=\"block\">{}</ul>\
</section>",
sidebar
);
}
}
fn sidebar_module(buf: &mut Buffer, items: &[clean::Item]) {
let item_sections_in_use: FxHashSet<_> = items
.iter()
.filter(|it| {
!it.is_stripped()
&& it
.name
.or_else(|| {
if let clean::ImportItem(ref i) = *it.kind &&
let clean::ImportKind::Simple(s) = i.kind { Some(s) } else { None }
})
.is_some()
})
.map(|it| item_ty_to_section(it.type_()))
.collect();
sidebar_module_like(buf, item_sections_in_use);
}
fn sidebar_foreign_type(cx: &Context<'_>, buf: &mut Buffer, it: &clean::Item) {
let mut sidebar = Buffer::new();
sidebar_assoc_items(cx, &mut sidebar, it);
if !sidebar.is_empty() {
write!(buf, "<section>{}</section>", sidebar.into_inner());
}
}
/// Returns a list of all paths used in the type.
/// This is used to help deduplicate imported impls
/// for reexported types. If any of the contained

View File

@ -470,10 +470,11 @@ fn extra_info_tags(item: &clean::Item, parent: &clean::Item, tcx: TyCtxt<'_>) ->
// The trailing space after each tag is to space it properly against the rest of the docs.
if let Some(depr) = &item.deprecation(tcx) {
let mut message = "Deprecated";
if !stability::deprecation_in_effect(depr) {
message = "Deprecation planned";
}
let message = if stability::deprecation_in_effect(depr) {
"Deprecated"
} else {
"Deprecation planned"
};
tags += &tag_html("deprecated", "", message);
}

View File

@ -40,6 +40,7 @@ pub(crate) fn build_index<'tcx>(
parent_idx: None,
search_type: get_function_type_for_search(item, tcx, impl_generics.as_ref(), cache),
aliases: item.attrs.get_doc_aliases(),
deprecation: item.deprecation(tcx),
});
}
}
@ -251,7 +252,17 @@ pub(crate) fn build_index<'tcx>(
)?;
crate_data.serialize_field(
"q",
&self.items.iter().map(|item| &item.path).collect::<Vec<_>>(),
&self
.items
.iter()
.enumerate()
// Serialize as an array of item indices and full paths
.filter_map(
|(index, item)| {
if item.path.is_empty() { None } else { Some((index, &item.path)) }
},
)
.collect::<Vec<_>>(),
)?;
crate_data.serialize_field(
"d",
@ -304,6 +315,16 @@ pub(crate) fn build_index<'tcx>(
})
.collect::<Vec<_>>(),
)?;
crate_data.serialize_field(
"c",
&self
.items
.iter()
.enumerate()
// Serialize as an array of deprecated item indices
.filter_map(|(index, item)| item.deprecation.map(|_| index))
.collect::<Vec<_>>(),
)?;
crate_data.serialize_field(
"p",
&self.paths.iter().map(|(it, s)| (it, s.as_str())).collect::<Vec<_>>(),

View File

@ -0,0 +1,561 @@
use std::{borrow::Cow, rc::Rc};
use askama::Template;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::{def::CtorKind, def_id::DefIdSet};
use rustc_middle::ty::{self, TyCtxt};
use crate::{
clean,
formats::{item_type::ItemType, Impl},
html::{format::Buffer, markdown::IdMap},
};
use super::{item_ty_to_section, Context, ItemSection};
#[derive(Template)]
#[template(path = "sidebar.html")]
pub(super) struct Sidebar<'a> {
pub(super) title_prefix: &'static str,
pub(super) title: &'a str,
pub(super) is_crate: bool,
pub(super) version: &'a str,
pub(super) blocks: Vec<LinkBlock<'a>>,
pub(super) path: String,
}
impl<'a> Sidebar<'a> {
/// Only create a `<section>` if there are any blocks
/// which should actually be rendered.
pub fn should_render_blocks(&self) -> bool {
self.blocks.iter().any(LinkBlock::should_render)
}
}
/// A sidebar section such as 'Methods'.
pub(crate) struct LinkBlock<'a> {
/// The name of this section, e.g. 'Methods'
/// as well as the link to it, e.g. `#implementations`.
/// Will be rendered inside an `<h3>` tag
heading: Link<'a>,
links: Vec<Link<'a>>,
/// Render the heading even if there are no links
force_render: bool,
}
impl<'a> LinkBlock<'a> {
pub fn new(heading: Link<'a>, links: Vec<Link<'a>>) -> Self {
Self { heading, links, force_render: false }
}
pub fn forced(heading: Link<'a>) -> Self {
Self { heading, links: vec![], force_render: true }
}
pub fn should_render(&self) -> bool {
self.force_render || !self.links.is_empty()
}
}
/// A link to an item. Content should not be escaped.
#[derive(PartialOrd, Ord, PartialEq, Eq, Hash, Clone)]
pub(crate) struct Link<'a> {
/// The content for the anchor tag
name: Cow<'a, str>,
/// The id of an anchor within the page (without a `#` prefix)
href: Cow<'a, str>,
}
impl<'a> Link<'a> {
pub fn new(href: impl Into<Cow<'a, str>>, name: impl Into<Cow<'a, str>>) -> Self {
Self { href: href.into(), name: name.into() }
}
pub fn empty() -> Link<'static> {
Link::new("", "")
}
}
pub(super) fn print_sidebar(cx: &Context<'_>, it: &clean::Item, buffer: &mut Buffer) {
let blocks: Vec<LinkBlock<'_>> = match *it.kind {
clean::StructItem(ref s) => sidebar_struct(cx, it, s),
clean::TraitItem(ref t) => sidebar_trait(cx, it, t),
clean::PrimitiveItem(_) => sidebar_primitive(cx, it),
clean::UnionItem(ref u) => sidebar_union(cx, it, u),
clean::EnumItem(ref e) => sidebar_enum(cx, it, e),
clean::TypedefItem(_) => sidebar_typedef(cx, it),
clean::ModuleItem(ref m) => vec![sidebar_module(&m.items)],
clean::ForeignTypeItem => sidebar_foreign_type(cx, it),
_ => vec![],
};
// The sidebar is designed to display sibling functions, modules and
// other miscellaneous information. since there are lots of sibling
// items (and that causes quadratic growth in large modules),
// we refactor common parts into a shared JavaScript file per module.
// still, we don't move everything into JS because we want to preserve
// as much HTML as possible in order to allow non-JS-enabled browsers
// to navigate the documentation (though slightly inefficiently).
let (title_prefix, title) = if it.is_struct()
|| it.is_trait()
|| it.is_primitive()
|| it.is_union()
|| it.is_enum()
|| it.is_mod()
|| it.is_typedef()
{
(
match *it.kind {
clean::ModuleItem(..) if it.is_crate() => "Crate ",
clean::ModuleItem(..) => "Module ",
_ => "",
},
it.name.as_ref().unwrap().as_str(),
)
} else {
("", "")
};
let version = if it.is_crate() {
cx.cache().crate_version.as_ref().map(String::as_str).unwrap_or_default()
} else {
""
};
let path: String = if !it.is_mod() {
cx.current.iter().map(|s| s.as_str()).intersperse("::").collect()
} else {
"".into()
};
let sidebar = Sidebar { title_prefix, title, is_crate: it.is_crate(), version, blocks, path };
sidebar.render_into(buffer).unwrap();
}
fn get_struct_fields_name<'a>(fields: &'a [clean::Item]) -> Vec<Link<'a>> {
let mut fields = fields
.iter()
.filter(|f| matches!(*f.kind, clean::StructFieldItem(..)))
.filter_map(|f| {
f.name.as_ref().map(|name| Link::new(format!("structfield.{name}"), name.as_str()))
})
.collect::<Vec<Link<'a>>>();
fields.sort();
fields
}
fn sidebar_struct<'a>(
cx: &'a Context<'_>,
it: &'a clean::Item,
s: &'a clean::Struct,
) -> Vec<LinkBlock<'a>> {
let fields = get_struct_fields_name(&s.fields);
let field_name = match s.ctor_kind {
Some(CtorKind::Fn) => Some("Tuple Fields"),
None => Some("Fields"),
_ => None,
};
let mut items = vec![];
if let Some(name) = field_name {
items.push(LinkBlock::new(Link::new("fields", name), fields));
}
sidebar_assoc_items(cx, it, &mut items);
items
}
fn sidebar_trait<'a>(
cx: &'a Context<'_>,
it: &'a clean::Item,
t: &'a clean::Trait,
) -> Vec<LinkBlock<'a>> {
fn filter_items<'a>(
items: &'a [clean::Item],
filt: impl Fn(&clean::Item) -> bool,
ty: &str,
) -> Vec<Link<'a>> {
let mut res = items
.iter()
.filter_map(|m: &clean::Item| match m.name {
Some(ref name) if filt(m) => Some(Link::new(format!("{ty}.{name}"), name.as_str())),
_ => None,
})
.collect::<Vec<Link<'a>>>();
res.sort();
res
}
let req_assoc = filter_items(&t.items, |m| m.is_ty_associated_type(), "associatedtype");
let prov_assoc = filter_items(&t.items, |m| m.is_associated_type(), "associatedtype");
let req_assoc_const =
filter_items(&t.items, |m| m.is_ty_associated_const(), "associatedconstant");
let prov_assoc_const =
filter_items(&t.items, |m| m.is_associated_const(), "associatedconstant");
let req_method = filter_items(&t.items, |m| m.is_ty_method(), "tymethod");
let prov_method = filter_items(&t.items, |m| m.is_method(), "method");
let mut foreign_impls = vec![];
if let Some(implementors) = cx.cache().implementors.get(&it.item_id.expect_def_id()) {
foreign_impls.extend(
implementors
.iter()
.filter(|i| !i.is_on_local_type(cx))
.filter_map(|i| super::extract_for_impl_name(&i.impl_item, cx))
.map(|(name, id)| Link::new(id, name)),
);
foreign_impls.sort();
}
let mut blocks: Vec<LinkBlock<'_>> = [
("required-associated-types", "Required Associated Types", req_assoc),
("provided-associated-types", "Provided Associated Types", prov_assoc),
("required-associated-consts", "Required Associated Constants", req_assoc_const),
("provided-associated-consts", "Provided Associated Constants", prov_assoc_const),
("required-methods", "Required Methods", req_method),
("provided-methods", "Provided Methods", prov_method),
("foreign-impls", "Implementations on Foreign Types", foreign_impls),
]
.into_iter()
.map(|(id, title, items)| LinkBlock::new(Link::new(id, title), items))
.collect();
sidebar_assoc_items(cx, it, &mut blocks);
blocks.push(LinkBlock::forced(Link::new("implementors", "Implementors")));
if t.is_auto(cx.tcx()) {
blocks.push(LinkBlock::forced(Link::new("synthetic-implementors", "Auto Implementors")));
}
blocks
}
fn sidebar_primitive<'a>(cx: &'a Context<'_>, it: &'a clean::Item) -> Vec<LinkBlock<'a>> {
if it.name.map(|n| n.as_str() != "reference").unwrap_or(false) {
let mut items = vec![];
sidebar_assoc_items(cx, it, &mut items);
items
} else {
let shared = Rc::clone(&cx.shared);
let (concrete, synthetic, blanket_impl) =
super::get_filtered_impls_for_reference(&shared, it);
sidebar_render_assoc_items(cx, &mut IdMap::new(), concrete, synthetic, blanket_impl).into()
}
}
fn sidebar_typedef<'a>(cx: &'a Context<'_>, it: &'a clean::Item) -> Vec<LinkBlock<'a>> {
let mut items = vec![];
sidebar_assoc_items(cx, it, &mut items);
items
}
fn sidebar_union<'a>(
cx: &'a Context<'_>,
it: &'a clean::Item,
u: &'a clean::Union,
) -> Vec<LinkBlock<'a>> {
let fields = get_struct_fields_name(&u.fields);
let mut items = vec![LinkBlock::new(Link::new("fields", "Fields"), fields)];
sidebar_assoc_items(cx, it, &mut items);
items
}
/// Adds trait implementations into the blocks of links
fn sidebar_assoc_items<'a>(
cx: &'a Context<'_>,
it: &'a clean::Item,
links: &mut Vec<LinkBlock<'a>>,
) {
let did = it.item_id.expect_def_id();
let cache = cx.cache();
let mut assoc_consts = Vec::new();
let mut methods = Vec::new();
if let Some(v) = cache.impls.get(&did) {
let mut used_links = FxHashSet::default();
let mut id_map = IdMap::new();
{
let used_links_bor = &mut used_links;
assoc_consts.extend(
v.iter()
.filter(|i| i.inner_impl().trait_.is_none())
.flat_map(|i| get_associated_constants(i.inner_impl(), used_links_bor)),
);
// We want links' order to be reproducible so we don't use unstable sort.
assoc_consts.sort();
#[rustfmt::skip] // rustfmt makes the pipeline less readable
methods.extend(
v.iter()
.filter(|i| i.inner_impl().trait_.is_none())
.flat_map(|i| get_methods(i.inner_impl(), false, used_links_bor, false, cx.tcx())),
);
// We want links' order to be reproducible so we don't use unstable sort.
methods.sort();
}
let mut deref_methods = Vec::new();
let [concrete, synthetic, blanket] = if v.iter().any(|i| i.inner_impl().trait_.is_some()) {
if let Some(impl_) =
v.iter().find(|i| i.trait_did() == cx.tcx().lang_items().deref_trait())
{
let mut derefs = DefIdSet::default();
derefs.insert(did);
sidebar_deref_methods(
cx,
&mut deref_methods,
impl_,
v,
&mut derefs,
&mut used_links,
);
}
let (synthetic, concrete): (Vec<&Impl>, Vec<&Impl>) =
v.iter().partition::<Vec<_>, _>(|i| i.inner_impl().kind.is_auto());
let (blanket_impl, concrete): (Vec<&Impl>, Vec<&Impl>) =
concrete.into_iter().partition::<Vec<_>, _>(|i| i.inner_impl().kind.is_blanket());
sidebar_render_assoc_items(cx, &mut id_map, concrete, synthetic, blanket_impl)
} else {
std::array::from_fn(|_| LinkBlock::new(Link::empty(), vec![]))
};
let mut blocks = vec![
LinkBlock::new(Link::new("implementations", "Associated Constants"), assoc_consts),
LinkBlock::new(Link::new("implementations", "Methods"), methods),
];
blocks.append(&mut deref_methods);
blocks.extend([concrete, synthetic, blanket]);
links.append(&mut blocks);
}
}
fn sidebar_deref_methods<'a>(
cx: &'a Context<'_>,
out: &mut Vec<LinkBlock<'a>>,
impl_: &Impl,
v: &[Impl],
derefs: &mut DefIdSet,
used_links: &mut FxHashSet<String>,
) {
let c = cx.cache();
debug!("found Deref: {:?}", impl_);
if let Some((target, real_target)) =
impl_.inner_impl().items.iter().find_map(|item| match *item.kind {
clean::AssocTypeItem(box ref t, _) => Some(match *t {
clean::Typedef { item_type: Some(ref type_), .. } => (type_, &t.type_),
_ => (&t.type_, &t.type_),
}),
_ => None,
})
{
debug!("found target, real_target: {:?} {:?}", target, real_target);
if let Some(did) = target.def_id(c) &&
let Some(type_did) = impl_.inner_impl().for_.def_id(c) &&
// `impl Deref<Target = S> for S`
(did == type_did || !derefs.insert(did))
{
// Avoid infinite cycles
return;
}
let deref_mut = v.iter().any(|i| i.trait_did() == cx.tcx().lang_items().deref_mut_trait());
let inner_impl = target
.def_id(c)
.or_else(|| {
target.primitive_type().and_then(|prim| c.primitive_locations.get(&prim).cloned())
})
.and_then(|did| c.impls.get(&did));
if let Some(impls) = inner_impl {
debug!("found inner_impl: {:?}", impls);
let mut ret = impls
.iter()
.filter(|i| i.inner_impl().trait_.is_none())
.flat_map(|i| get_methods(i.inner_impl(), true, used_links, deref_mut, cx.tcx()))
.collect::<Vec<_>>();
if !ret.is_empty() {
let id = if let Some(target_def_id) = real_target.def_id(c) {
Cow::Borrowed(
cx.deref_id_map
.get(&target_def_id)
.expect("Deref section without derived id")
.as_str(),
)
} else {
Cow::Borrowed("deref-methods")
};
let title = format!(
"Methods from {:#}<Target={:#}>",
impl_.inner_impl().trait_.as_ref().unwrap().print(cx),
real_target.print(cx),
);
// We want links' order to be reproducible so we don't use unstable sort.
ret.sort();
out.push(LinkBlock::new(Link::new(id, title), ret));
}
}
// Recurse into any further impls that might exist for `target`
if let Some(target_did) = target.def_id(c) &&
let Some(target_impls) = c.impls.get(&target_did) &&
let Some(target_deref_impl) = target_impls.iter().find(|i| {
i.inner_impl()
.trait_
.as_ref()
.map(|t| Some(t.def_id()) == cx.tcx().lang_items().deref_trait())
.unwrap_or(false)
})
{
sidebar_deref_methods(
cx,
out,
target_deref_impl,
target_impls,
derefs,
used_links,
);
}
}
}
fn sidebar_enum<'a>(
cx: &'a Context<'_>,
it: &'a clean::Item,
e: &'a clean::Enum,
) -> Vec<LinkBlock<'a>> {
let mut variants = e
.variants()
.filter_map(|v| v.name)
.map(|name| Link::new(format!("variant.{name}"), name.to_string()))
.collect::<Vec<_>>();
variants.sort_unstable();
let mut items = vec![LinkBlock::new(Link::new("variants", "Variants"), variants)];
sidebar_assoc_items(cx, it, &mut items);
items
}
pub(crate) fn sidebar_module_like(
item_sections_in_use: FxHashSet<ItemSection>,
) -> LinkBlock<'static> {
let item_sections = ItemSection::ALL
.iter()
.copied()
.filter(|sec| item_sections_in_use.contains(sec))
.map(|sec| Link::new(sec.id(), sec.name()))
.collect();
LinkBlock::new(Link::empty(), item_sections)
}
fn sidebar_module(items: &[clean::Item]) -> LinkBlock<'static> {
let item_sections_in_use: FxHashSet<_> = items
.iter()
.filter(|it| {
!it.is_stripped()
&& it
.name
.or_else(|| {
if let clean::ImportItem(ref i) = *it.kind &&
let clean::ImportKind::Simple(s) = i.kind { Some(s) } else { None }
})
.is_some()
})
.map(|it| item_ty_to_section(it.type_()))
.collect();
sidebar_module_like(item_sections_in_use)
}
fn sidebar_foreign_type<'a>(cx: &'a Context<'_>, it: &'a clean::Item) -> Vec<LinkBlock<'a>> {
let mut items = vec![];
sidebar_assoc_items(cx, it, &mut items);
items
}
/// Renders the trait implementations for this type
fn sidebar_render_assoc_items(
cx: &Context<'_>,
id_map: &mut IdMap,
concrete: Vec<&Impl>,
synthetic: Vec<&Impl>,
blanket_impl: Vec<&Impl>,
) -> [LinkBlock<'static>; 3] {
let format_impls = |impls: Vec<&Impl>, id_map: &mut IdMap| {
let mut links = FxHashSet::default();
let mut ret = impls
.iter()
.filter_map(|it| {
let trait_ = it.inner_impl().trait_.as_ref()?;
let encoded =
id_map.derive(super::get_id_for_impl(&it.inner_impl().for_, Some(trait_), cx));
let prefix = match it.inner_impl().polarity {
ty::ImplPolarity::Positive | ty::ImplPolarity::Reservation => "",
ty::ImplPolarity::Negative => "!",
};
let generated = Link::new(encoded, format!("{prefix}{:#}", trait_.print(cx)));
if links.insert(generated.clone()) { Some(generated) } else { None }
})
.collect::<Vec<Link<'static>>>();
ret.sort();
ret
};
let concrete = format_impls(concrete, id_map);
let synthetic = format_impls(synthetic, id_map);
let blanket = format_impls(blanket_impl, id_map);
[
LinkBlock::new(Link::new("trait-implementations", "Trait Implementations"), concrete),
LinkBlock::new(
Link::new("synthetic-implementations", "Auto Trait Implementations"),
synthetic,
),
LinkBlock::new(Link::new("blanket-implementations", "Blanket Implementations"), blanket),
]
}
fn get_next_url(used_links: &mut FxHashSet<String>, url: String) -> String {
if used_links.insert(url.clone()) {
return url;
}
let mut add = 1;
while !used_links.insert(format!("{}-{}", url, add)) {
add += 1;
}
format!("{}-{}", url, add)
}
fn get_methods<'a>(
i: &'a clean::Impl,
for_deref: bool,
used_links: &mut FxHashSet<String>,
deref_mut: bool,
tcx: TyCtxt<'_>,
) -> Vec<Link<'a>> {
i.items
.iter()
.filter_map(|item| match item.name {
Some(ref name) if !name.is_empty() && item.is_method() => {
if !for_deref || super::should_render_item(item, deref_mut, tcx) {
Some(Link::new(
get_next_url(used_links, format!("{}.{}", ItemType::Method, name)),
name.as_str(),
))
} else {
None
}
}
_ => None,
})
.collect::<Vec<_>>()
}
fn get_associated_constants<'a>(
i: &'a clean::Impl,
used_links: &mut FxHashSet<String>,
) -> Vec<Link<'a>> {
i.items
.iter()
.filter_map(|item| match item.name {
Some(ref name) if !name.is_empty() && item.is_associated_const() => Some(Link::new(
get_next_url(used_links, format!("{}.{}", ItemType::AssocConst, name)),
name.as_str(),
)),
_ => None,
})
.collect::<Vec<_>>()
}

View File

@ -881,6 +881,13 @@ function initSearch(rawSearchIndex) {
return a - b;
}
// sort deprecated items later
a = aaa.item.deprecated;
b = bbb.item.deprecated;
if (a !== b) {
return a - b;
}
// sort by crate (current crate comes first)
a = (aaa.item.crate !== preferredCrate);
b = (bbb.item.crate !== preferredCrate);
@ -1244,6 +1251,7 @@ function initSearch(rawSearchIndex) {
parent: item.parent,
type: item.type,
is_alias: true,
deprecated: item.deprecated,
};
}
@ -2064,10 +2072,11 @@ function initSearch(rawSearchIndex) {
* n: Array<string>,
* t: String,
* d: Array<string>,
* q: Array<string>,
* q: Array<[Number, string]>,
* i: Array<Number>,
* f: Array<RawFunctionSearchType>,
* p: Array<Object>,
* c: Array<Number>
* }}
*/
const crateCorpus = rawSearchIndex[crate];
@ -2086,6 +2095,7 @@ function initSearch(rawSearchIndex) {
type: null,
id: id,
normalizedName: crate.indexOf("_") === -1 ? crate : crate.replace(/_/g, ""),
deprecated: null,
};
id += 1;
searchIndex.push(crateRow);
@ -2095,14 +2105,20 @@ function initSearch(rawSearchIndex) {
const itemTypes = crateCorpus.t;
// an array of (String) item names
const itemNames = crateCorpus.n;
// an array of (String) full paths (or empty string for previous path)
const itemPaths = crateCorpus.q;
// an array of [(Number) item index,
// (String) full path]
// an item whose index is not present will fall back to the previous present path
// i.e. if indices 4 and 11 are present, but 5-10 and 12-13 are not present,
// 5-10 will fall back to the path for 4 and 12-13 will fall back to the path for 11
const itemPaths = new Map(crateCorpus.q);
// an array of (String) descriptions
const itemDescs = crateCorpus.d;
// an array of (Number) the parent path index + 1 to `paths`, or 0 if none
const itemParentIdxs = crateCorpus.i;
// an array of (Object | null) the type of the function, if any
const itemFunctionSearchTypes = crateCorpus.f;
// an array of (Number) indices for the deprecated items
const deprecatedItems = new Set(crateCorpus.c);
// an array of [(Number) item type,
// (String) name]
const paths = crateCorpus.p;
@ -2142,12 +2158,13 @@ function initSearch(rawSearchIndex) {
crate: crate,
ty: itemTypes.charCodeAt(i) - charA,
name: itemNames[i],
path: itemPaths[i] ? itemPaths[i] : lastPath,
path: itemPaths.has(i) ? itemPaths.get(i) : lastPath,
desc: itemDescs[i],
parent: itemParentIdxs[i] > 0 ? paths[itemParentIdxs[i] - 1] : undefined,
type: buildFunctionSearchType(itemFunctionSearchTypes[i], lowercasePaths),
id: id,
normalizedName: word.indexOf("_") === -1 ? word : word.replace(/_/g, ""),
deprecated: deprecatedItems.has(i),
};
id += 1;
searchIndex.push(row);

View File

@ -0,0 +1,7 @@
{% if !items.is_empty() %}
<span class="item-info"> {# #}
{% for item in items %}
{{item|safe}} {# #}
{% endfor %}
</span>
{% endif %}

View File

@ -0,0 +1,23 @@
{% match self %}
{% when Self::Deprecation with { message } %}
<div class="stab deprecated"> {# #}
<span class="emoji">👎</span> {# #}
<span>{{message}}</span> {# #}
</div> {# #}
{% when Self::Unstable with { feature, tracking } %}
<div class="stab unstable"> {# #}
<span class="emoji">🔬</span> {# #}
<span> {# #}
This is a nightly-only experimental API. ({# #}
<code>{{feature}}</code> {# #}
{% match tracking %}
{% when Some with ((url, num)) %}
&nbsp;<a href="{{url}}{{num}}">#{{num}}</a> {# #}
{% when None %}
{% endmatch %}
) {# #}
</span> {# #}
</div> {# #}
{% when Self::Portability with { message } %}
<div class="stab portability">{{message|safe}}</div> {# #}
{% endmatch %}

View File

@ -0,0 +1,37 @@
{% if !title.is_empty() %}
<h2 class="location"> {# #}
<a href="#">{{title_prefix}}{{title}}</a> {# #}
</h2>
{% endif %}
<div class="sidebar-elems">
{% if is_crate %}
<ul class="block">
{% if !version.is_empty() %}
<li class="version">Version {{+ version}}</li>
{% endif %}
<li><a id="all-types" href="all.html">All Items</a></li> {# #}
</ul>
{% endif %}
{% if self.should_render_blocks() %}
<section>
{% for block in blocks %}
{% if block.should_render() %}
{% if !block.heading.name.is_empty() %}
<h3><a href="#{{block.heading.href|safe}}">{{block.heading.name}}</a></h3>
{% endif %}
{% if !block.links.is_empty() %}
<ul class="block">
{% for link in block.links %}
<li><a href="#{{link.href|safe}}">{{link.name}}</a></li>
{% endfor %}
</ul>
{% endif %}
{% endif %}
{% endfor %}
</section>
{% endif %}
{% if !path.is_empty() %}
<h2><a href="index.html">In {{+ path}}</a></h2>
{% endif %}
</div>

View File

@ -369,10 +369,10 @@ fn can_change_type<'a>(cx: &LateContext<'a>, mut expr: &'a Expr<'a>, mut ty: Ty<
Node::Item(item) => {
if let ItemKind::Fn(_, _, body_id) = &item.kind
&& let output_ty = return_ty(cx, item.owner_id)
&& Inherited::build(cx.tcx, item.owner_id.def_id).enter(|inherited| {
let fn_ctxt = FnCtxt::new(inherited, cx.param_env, item.owner_id.def_id);
fn_ctxt.can_coerce(ty, output_ty)
}) {
&& let inherited = Inherited::new(cx.tcx, item.owner_id.def_id)
&& let fn_ctxt = FnCtxt::new(&inherited, cx.param_env, item.owner_id.def_id)
&& fn_ctxt.can_coerce(ty, output_ty)
{
if has_lifetime(output_ty) && has_lifetime(ty) {
return false;
}

View File

@ -33,38 +33,37 @@ pub(super) fn check_cast<'tcx>(
let hir_id = e.hir_id;
let local_def_id = hir_id.owner.def_id;
Inherited::build(cx.tcx, local_def_id).enter(|inherited| {
let fn_ctxt = FnCtxt::new(inherited, cx.param_env, local_def_id);
let inherited = Inherited::new(cx.tcx, local_def_id);
let fn_ctxt = FnCtxt::new(&inherited, cx.param_env, local_def_id);
// If we already have errors, we can't be sure we can pointer cast.
// If we already have errors, we can't be sure we can pointer cast.
assert!(
!fn_ctxt.errors_reported_since_creation(),
"Newly created FnCtxt contained errors"
);
if let Ok(check) = cast::CastCheck::new(
&fn_ctxt,
e,
from_ty,
to_ty,
// We won't show any error to the user, so we don't care what the span is here.
DUMMY_SP,
DUMMY_SP,
hir::Constness::NotConst,
) {
let res = check.do_check(&fn_ctxt);
// do_check's documentation says that it might return Ok and create
// errors in the fcx instead of returning Err in some cases. Those cases
// should be filtered out before getting here.
assert!(
!fn_ctxt.errors_reported_since_creation(),
"Newly created FnCtxt contained errors"
"`fn_ctxt` contained errors after cast check!"
);
if let Ok(check) = cast::CastCheck::new(
&fn_ctxt,
e,
from_ty,
to_ty,
// We won't show any error to the user, so we don't care what the span is here.
DUMMY_SP,
DUMMY_SP,
hir::Constness::NotConst,
) {
let res = check.do_check(&fn_ctxt);
// do_check's documentation says that it might return Ok and create
// errors in the fcx instead of returning Err in some cases. Those cases
// should be filtered out before getting here.
assert!(
!fn_ctxt.errors_reported_since_creation(),
"`fn_ctxt` contained errors after cast check!"
);
res.ok()
} else {
None
}
})
res.ok()
} else {
None
}
}

View File

@ -62,8 +62,6 @@ const EXCEPTION_PATHS: &[&str] = &[
"library/std/src/panic.rs", // fuchsia-specific panic backtrace handling
"library/std/src/personality.rs",
"library/std/src/personality/",
"library/std/src/thread/mod.rs",
"library/std/src/thread/local.rs",
];
pub fn check(path: &Path, bad: &mut bool) {

View File

@ -0,0 +1,5 @@
// check-pass
fn main() {
/// [](crate)
struct X;
}

View File

@ -0,0 +1,12 @@
{
"llvm-target": "x86_64-unknown-none-gnu",
"data-layout": "e-m:e-i64:64-f80:128-n8:16:32:64-S128",
"arch": "x86_64",
"target-endian": "little",
"target-pointer-width": "64",
"target-c-int-width": "32",
"os": "ericos",
"linker-flavor": "ld.lld",
"linker": "rust-lld",
"executables": true
}

View File

@ -0,0 +1,21 @@
// This test checks that we don't lint values defined by a custom target (target json)
//
// check-pass
// needs-llvm-components: x86
// compile-flags: --crate-type=lib --check-cfg=values() --target={{src-base}}/check-cfg/my-awesome-platform.json -Z unstable-options
#![feature(lang_items, no_core, auto_traits)]
#![no_core]
#[lang = "sized"]
trait Sized {}
#[cfg(target_os = "linuz")]
//~^ WARNING unexpected `cfg` condition value
fn target_os_linux_misspell() {}
#[cfg(target_os = "linux")]
fn target_os_linux() {}
#[cfg(target_os = "ericos")]
fn target_os_ericos() {}

View File

@ -0,0 +1,13 @@
warning: unexpected `cfg` condition value
--> $DIR/values-target-json.rs:13:7
|
LL | #[cfg(target_os = "linuz")]
| ^^^^^^^^^^^^-------
| |
| help: did you mean: `"linux"`
|
= note: expected values for `target_os` are: aix, android, cuda, dragonfly, emscripten, ericos, espidf, freebsd, fuchsia, haiku, hermit, horizon, illumos, ios, l4re, linux, macos, netbsd, none, nto, openbsd, psp, redox, solaris, solid_asp3, tvos, uefi, unknown, vita, vxworks, wasi, watchos, windows, xous
= note: `#[warn(unexpected_cfgs)]` on by default
warning: 1 warning emitted

View File

@ -18,6 +18,7 @@ LL | macro n(a $nt_item b) {
...
LL | complex_nonterminal!(enum E {});
| ------------------------------- in this macro invocation
= note: captured metavariables except for `$tt`, `$ident` and `$lifetime` cannot be compared to other tokens
= note: this error originates in the macro `complex_nonterminal` (in Nightly builds, run with -Z macro-backtrace for more info)
error: aborting due to previous error

View File

@ -21,7 +21,7 @@ impl<T> Key<T> {
}
#[cfg(target_thread_local)]
use std::thread::__FastLocalKeyInner as Key;
use std::thread::__LocalKeyInner as Key;
static __KEY: Key<()> = Key::new();
//~^ ERROR `UnsafeCell<Option<()>>` cannot be shared between threads

View File

@ -1,8 +1,8 @@
// ignore-wasm32
// revisions: mir thir
// [thir]compile-flags: -Z thir-unsafeck
// normalize-stderr-test: "__FastLocalKeyInner::<T>::get" -> "$$LOCALKEYINNER::<T>::get"
// normalize-stderr-test: "__OsLocalKeyInner::<T>::get" -> "$$LOCALKEYINNER::<T>::get"
// normalize-stderr-test: "__LocalKeyInner::<T>::get" -> "$$LOCALKEYINNER::<T>::get"
// normalize-stderr-test: "__LocalKeyInner::<T>::get" -> "$$LOCALKEYINNER::<T>::get"
#![feature(thread_local)]
#![feature(cfg_target_thread_local, thread_local_internals)]
@ -12,10 +12,10 @@ type Foo = std::cell::RefCell<String>;
#[cfg(target_thread_local)]
#[thread_local]
static __KEY: std::thread::__FastLocalKeyInner<Foo> = std::thread::__FastLocalKeyInner::new();
static __KEY: std::thread::__LocalKeyInner<Foo> = std::thread::__LocalKeyInner::new();
#[cfg(not(target_thread_local))]
static __KEY: std::thread::__OsLocalKeyInner<Foo> = std::thread::__OsLocalKeyInner::new();
static __KEY: std::thread::__LocalKeyInner<Foo> = std::thread::__LocalKeyInner::new();
fn __getit(_: Option<&mut Option<RefCell<String>>>) -> std::option::Option<&'static Foo> {
__KEY.get(Default::default)