Merge default.rs into mod.rs.

Within `compiler/rustc_monomorphize/src/partitioning/`, because the
previous commit removed the need for `default.rs` to be a separate file.
This commit is contained in:
Nicholas Nethercote 2023-05-30 17:39:44 +10:00
parent 97d4a38de9
commit 66cf072ac8
2 changed files with 632 additions and 649 deletions

View File

@ -1,637 +0,0 @@
use std::cmp;
use std::collections::hash_map::Entry;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{DefId, LOCAL_CRATE};
use rustc_hir::definitions::DefPathDataName;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::middle::exported_symbols::{SymbolExportInfo, SymbolExportLevel};
use rustc_middle::mir::mono::{CodegenUnit, CodegenUnitNameBuilder, Linkage, Visibility};
use rustc_middle::mir::mono::{InstantiationMode, MonoItem};
use rustc_middle::ty::print::characteristic_def_id_of_type;
use rustc_middle::ty::{self, visit::TypeVisitableExt, InstanceDef, TyCtxt};
use rustc_span::symbol::Symbol;
use super::PartitioningCx;
use crate::collector::InliningMap;
use crate::partitioning::{MonoItemPlacement, PlacedRootMonoItems};
// This modules implements the default (and only) partitioning strategy.
pub(super) fn place_root_mono_items<'tcx, I>(
cx: &PartitioningCx<'_, 'tcx>,
mono_items: &mut I,
) -> PlacedRootMonoItems<'tcx>
where
I: Iterator<Item = MonoItem<'tcx>>,
{
let mut roots = FxHashSet::default();
let mut codegen_units = FxHashMap::default();
let is_incremental_build = cx.tcx.sess.opts.incremental.is_some();
let mut internalization_candidates = FxHashSet::default();
// Determine if monomorphizations instantiated in this crate will be made
// available to downstream crates. This depends on whether we are in
// share-generics mode and whether the current crate can even have
// downstream crates.
let export_generics =
cx.tcx.sess.opts.share_generics() && cx.tcx.local_crate_exports_generics();
let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
let cgu_name_cache = &mut FxHashMap::default();
for mono_item in mono_items {
match mono_item.instantiation_mode(cx.tcx) {
InstantiationMode::GloballyShared { .. } => {}
InstantiationMode::LocalCopy => continue,
}
let characteristic_def_id = characteristic_def_id_of_mono_item(cx.tcx, mono_item);
let is_volatile = is_incremental_build && mono_item.is_generic_fn();
let codegen_unit_name = match characteristic_def_id {
Some(def_id) => compute_codegen_unit_name(
cx.tcx,
cgu_name_builder,
def_id,
is_volatile,
cgu_name_cache,
),
None => fallback_cgu_name(cgu_name_builder),
};
let codegen_unit = codegen_units
.entry(codegen_unit_name)
.or_insert_with(|| CodegenUnit::new(codegen_unit_name));
let mut can_be_internalized = true;
let (linkage, visibility) = mono_item_linkage_and_visibility(
cx.tcx,
&mono_item,
&mut can_be_internalized,
export_generics,
);
if visibility == Visibility::Hidden && can_be_internalized {
internalization_candidates.insert(mono_item);
}
codegen_unit.items_mut().insert(mono_item, (linkage, visibility));
roots.insert(mono_item);
}
// Always ensure we have at least one CGU; otherwise, if we have a
// crate with just types (for example), we could wind up with no CGU.
if codegen_units.is_empty() {
let codegen_unit_name = fallback_cgu_name(cgu_name_builder);
codegen_units.insert(codegen_unit_name, CodegenUnit::new(codegen_unit_name));
}
let codegen_units = codegen_units.into_values().collect();
PlacedRootMonoItems { codegen_units, roots, internalization_candidates }
}
pub(super) fn merge_codegen_units<'tcx>(
cx: &PartitioningCx<'_, 'tcx>,
codegen_units: &mut Vec<CodegenUnit<'tcx>>,
) {
assert!(cx.target_cgu_count >= 1);
// Note that at this point in time the `codegen_units` here may not be
// in a deterministic order (but we know they're deterministically the
// same set). We want this merging to produce a deterministic ordering
// of codegen units from the input.
//
// Due to basically how we've implemented the merging below (merge the
// two smallest into each other) we're sure to start off with a
// deterministic order (sorted by name). This'll mean that if two cgus
// have the same size the stable sort below will keep everything nice
// and deterministic.
codegen_units.sort_by(|a, b| a.name().as_str().cmp(b.name().as_str()));
// This map keeps track of what got merged into what.
let mut cgu_contents: FxHashMap<Symbol, Vec<Symbol>> =
codegen_units.iter().map(|cgu| (cgu.name(), vec![cgu.name()])).collect();
// Merge the two smallest codegen units until the target size is
// reached.
while codegen_units.len() > cx.target_cgu_count {
// Sort small cgus to the back
codegen_units.sort_by_cached_key(|cgu| cmp::Reverse(cgu.size_estimate()));
let mut smallest = codegen_units.pop().unwrap();
let second_smallest = codegen_units.last_mut().unwrap();
// Move the mono-items from `smallest` to `second_smallest`
second_smallest.modify_size_estimate(smallest.size_estimate());
for (k, v) in smallest.items_mut().drain() {
second_smallest.items_mut().insert(k, v);
}
// Record that `second_smallest` now contains all the stuff that was
// in `smallest` before.
let mut consumed_cgu_names = cgu_contents.remove(&smallest.name()).unwrap();
cgu_contents.get_mut(&second_smallest.name()).unwrap().append(&mut consumed_cgu_names);
debug!(
"CodegenUnit {} merged into CodegenUnit {}",
smallest.name(),
second_smallest.name()
);
}
let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
if cx.tcx.sess.opts.incremental.is_some() {
// If we are doing incremental compilation, we want CGU names to
// reflect the path of the source level module they correspond to.
// For CGUs that contain the code of multiple modules because of the
// merging done above, we use a concatenation of the names of all
// contained CGUs.
let new_cgu_names: FxHashMap<Symbol, String> = cgu_contents
.into_iter()
// This `filter` makes sure we only update the name of CGUs that
// were actually modified by merging.
.filter(|(_, cgu_contents)| cgu_contents.len() > 1)
.map(|(current_cgu_name, cgu_contents)| {
let mut cgu_contents: Vec<&str> = cgu_contents.iter().map(|s| s.as_str()).collect();
// Sort the names, so things are deterministic and easy to
// predict. We are sorting primitive `&str`s here so we can
// use unstable sort.
cgu_contents.sort_unstable();
(current_cgu_name, cgu_contents.join("--"))
})
.collect();
for cgu in codegen_units.iter_mut() {
if let Some(new_cgu_name) = new_cgu_names.get(&cgu.name()) {
if cx.tcx.sess.opts.unstable_opts.human_readable_cgu_names {
cgu.set_name(Symbol::intern(&new_cgu_name));
} else {
// If we don't require CGU names to be human-readable,
// we use a fixed length hash of the composite CGU name
// instead.
let new_cgu_name = CodegenUnit::mangle_name(&new_cgu_name);
cgu.set_name(Symbol::intern(&new_cgu_name));
}
}
}
} else {
// If we are compiling non-incrementally we just generate simple CGU
// names containing an index.
for (index, cgu) in codegen_units.iter_mut().enumerate() {
let numbered_codegen_unit_name =
cgu_name_builder.build_cgu_name_no_mangle(LOCAL_CRATE, &["cgu"], Some(index));
cgu.set_name(numbered_codegen_unit_name);
}
}
}
pub(super) fn place_inlined_mono_items<'tcx>(
cx: &PartitioningCx<'_, 'tcx>,
codegen_units: &mut [CodegenUnit<'tcx>],
roots: FxHashSet<MonoItem<'tcx>>,
) -> FxHashMap<MonoItem<'tcx>, MonoItemPlacement> {
let mut mono_item_placements = FxHashMap::default();
let single_codegen_unit = codegen_units.len() == 1;
for old_codegen_unit in codegen_units.iter_mut() {
// Collect all items that need to be available in this codegen unit.
let mut reachable = FxHashSet::default();
for root in old_codegen_unit.items().keys() {
follow_inlining(*root, cx.inlining_map, &mut reachable);
}
let mut new_codegen_unit = CodegenUnit::new(old_codegen_unit.name());
// Add all monomorphizations that are not already there.
for mono_item in reachable {
if let Some(linkage) = old_codegen_unit.items().get(&mono_item) {
// This is a root, just copy it over.
new_codegen_unit.items_mut().insert(mono_item, *linkage);
} else {
if roots.contains(&mono_item) {
bug!(
"GloballyShared mono-item inlined into other CGU: \
{:?}",
mono_item
);
}
// This is a CGU-private copy.
new_codegen_unit
.items_mut()
.insert(mono_item, (Linkage::Internal, Visibility::Default));
}
if !single_codegen_unit {
// If there is more than one codegen unit, we need to keep track
// in which codegen units each monomorphization is placed.
match mono_item_placements.entry(mono_item) {
Entry::Occupied(e) => {
let placement = e.into_mut();
debug_assert!(match *placement {
MonoItemPlacement::SingleCgu { cgu_name } => {
cgu_name != new_codegen_unit.name()
}
MonoItemPlacement::MultipleCgus => true,
});
*placement = MonoItemPlacement::MultipleCgus;
}
Entry::Vacant(e) => {
e.insert(MonoItemPlacement::SingleCgu {
cgu_name: new_codegen_unit.name(),
});
}
}
}
}
*old_codegen_unit = new_codegen_unit;
}
return mono_item_placements;
fn follow_inlining<'tcx>(
mono_item: MonoItem<'tcx>,
inlining_map: &InliningMap<'tcx>,
visited: &mut FxHashSet<MonoItem<'tcx>>,
) {
if !visited.insert(mono_item) {
return;
}
inlining_map.with_inlining_candidates(mono_item, |target| {
follow_inlining(target, inlining_map, visited);
});
}
}
pub(super) fn internalize_symbols<'tcx>(
cx: &PartitioningCx<'_, 'tcx>,
codegen_units: &mut [CodegenUnit<'tcx>],
mono_item_placements: FxHashMap<MonoItem<'tcx>, MonoItemPlacement>,
internalization_candidates: FxHashSet<MonoItem<'tcx>>,
) {
if codegen_units.len() == 1 {
// Fast path for when there is only one codegen unit. In this case we
// can internalize all candidates, since there is nowhere else they
// could be accessed from.
for cgu in codegen_units {
for candidate in &internalization_candidates {
cgu.items_mut().insert(*candidate, (Linkage::Internal, Visibility::Default));
}
}
return;
}
// Build a map from every monomorphization to all the monomorphizations that
// reference it.
let mut accessor_map: FxHashMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>> = Default::default();
cx.inlining_map.iter_accesses(|accessor, accessees| {
for accessee in accessees {
accessor_map.entry(*accessee).or_default().push(accessor);
}
});
// For each internalization candidates in each codegen unit, check if it is
// accessed from outside its defining codegen unit.
for cgu in codegen_units {
let home_cgu = MonoItemPlacement::SingleCgu { cgu_name: cgu.name() };
for (accessee, linkage_and_visibility) in cgu.items_mut() {
if !internalization_candidates.contains(accessee) {
// This item is no candidate for internalizing, so skip it.
continue;
}
debug_assert_eq!(mono_item_placements[accessee], home_cgu);
if let Some(accessors) = accessor_map.get(accessee) {
if accessors
.iter()
.filter_map(|accessor| {
// Some accessors might not have been
// instantiated. We can safely ignore those.
mono_item_placements.get(accessor)
})
.any(|placement| *placement != home_cgu)
{
// Found an accessor from another CGU, so skip to the next
// item without marking this one as internal.
continue;
}
}
// If we got here, we did not find any accesses from other CGUs,
// so it's fine to make this monomorphization internal.
*linkage_and_visibility = (Linkage::Internal, Visibility::Default);
}
}
}
fn characteristic_def_id_of_mono_item<'tcx>(
tcx: TyCtxt<'tcx>,
mono_item: MonoItem<'tcx>,
) -> Option<DefId> {
match mono_item {
MonoItem::Fn(instance) => {
let def_id = match instance.def {
ty::InstanceDef::Item(def) => def,
ty::InstanceDef::VTableShim(..)
| ty::InstanceDef::ReifyShim(..)
| ty::InstanceDef::FnPtrShim(..)
| ty::InstanceDef::ClosureOnceShim { .. }
| ty::InstanceDef::Intrinsic(..)
| ty::InstanceDef::DropGlue(..)
| ty::InstanceDef::Virtual(..)
| ty::InstanceDef::CloneShim(..)
| ty::InstanceDef::ThreadLocalShim(..)
| ty::InstanceDef::FnPtrAddrShim(..) => return None,
};
// If this is a method, we want to put it into the same module as
// its self-type. If the self-type does not provide a characteristic
// DefId, we use the location of the impl after all.
if tcx.trait_of_item(def_id).is_some() {
let self_ty = instance.substs.type_at(0);
// This is a default implementation of a trait method.
return characteristic_def_id_of_type(self_ty).or(Some(def_id));
}
if let Some(impl_def_id) = tcx.impl_of_method(def_id) {
if tcx.sess.opts.incremental.is_some()
&& tcx.trait_id_of_impl(impl_def_id) == tcx.lang_items().drop_trait()
{
// Put `Drop::drop` into the same cgu as `drop_in_place`
// since `drop_in_place` is the only thing that can
// call it.
return None;
}
// When polymorphization is enabled, methods which do not depend on their generic
// parameters, but the self-type of their impl block do will fail to normalize.
if !tcx.sess.opts.unstable_opts.polymorphize || !instance.has_param() {
// This is a method within an impl, find out what the self-type is:
let impl_self_ty = tcx.subst_and_normalize_erasing_regions(
instance.substs,
ty::ParamEnv::reveal_all(),
tcx.type_of(impl_def_id),
);
if let Some(def_id) = characteristic_def_id_of_type(impl_self_ty) {
return Some(def_id);
}
}
}
Some(def_id)
}
MonoItem::Static(def_id) => Some(def_id),
MonoItem::GlobalAsm(item_id) => Some(item_id.owner_id.to_def_id()),
}
}
fn compute_codegen_unit_name(
tcx: TyCtxt<'_>,
name_builder: &mut CodegenUnitNameBuilder<'_>,
def_id: DefId,
volatile: bool,
cache: &mut CguNameCache,
) -> Symbol {
// Find the innermost module that is not nested within a function.
let mut current_def_id = def_id;
let mut cgu_def_id = None;
// Walk backwards from the item we want to find the module for.
loop {
if current_def_id.is_crate_root() {
if cgu_def_id.is_none() {
// If we have not found a module yet, take the crate root.
cgu_def_id = Some(def_id.krate.as_def_id());
}
break;
} else if tcx.def_kind(current_def_id) == DefKind::Mod {
if cgu_def_id.is_none() {
cgu_def_id = Some(current_def_id);
}
} else {
// If we encounter something that is not a module, throw away
// any module that we've found so far because we now know that
// it is nested within something else.
cgu_def_id = None;
}
current_def_id = tcx.parent(current_def_id);
}
let cgu_def_id = cgu_def_id.unwrap();
*cache.entry((cgu_def_id, volatile)).or_insert_with(|| {
let def_path = tcx.def_path(cgu_def_id);
let components = def_path.data.iter().map(|part| match part.data.name() {
DefPathDataName::Named(name) => name,
DefPathDataName::Anon { .. } => unreachable!(),
});
let volatile_suffix = volatile.then_some("volatile");
name_builder.build_cgu_name(def_path.krate, components, volatile_suffix)
})
}
// Anything we can't find a proper codegen unit for goes into this.
fn fallback_cgu_name(name_builder: &mut CodegenUnitNameBuilder<'_>) -> Symbol {
name_builder.build_cgu_name(LOCAL_CRATE, &["fallback"], Some("cgu"))
}
fn mono_item_linkage_and_visibility<'tcx>(
tcx: TyCtxt<'tcx>,
mono_item: &MonoItem<'tcx>,
can_be_internalized: &mut bool,
export_generics: bool,
) -> (Linkage, Visibility) {
if let Some(explicit_linkage) = mono_item.explicit_linkage(tcx) {
return (explicit_linkage, Visibility::Default);
}
let vis = mono_item_visibility(tcx, mono_item, can_be_internalized, export_generics);
(Linkage::External, vis)
}
type CguNameCache = FxHashMap<(DefId, bool), Symbol>;
fn static_visibility<'tcx>(
tcx: TyCtxt<'tcx>,
can_be_internalized: &mut bool,
def_id: DefId,
) -> Visibility {
if tcx.is_reachable_non_generic(def_id) {
*can_be_internalized = false;
default_visibility(tcx, def_id, false)
} else {
Visibility::Hidden
}
}
fn mono_item_visibility<'tcx>(
tcx: TyCtxt<'tcx>,
mono_item: &MonoItem<'tcx>,
can_be_internalized: &mut bool,
export_generics: bool,
) -> Visibility {
let instance = match mono_item {
// This is pretty complicated; see below.
MonoItem::Fn(instance) => instance,
// Misc handling for generics and such, but otherwise:
MonoItem::Static(def_id) => return static_visibility(tcx, can_be_internalized, *def_id),
MonoItem::GlobalAsm(item_id) => {
return static_visibility(tcx, can_be_internalized, item_id.owner_id.to_def_id());
}
};
let def_id = match instance.def {
InstanceDef::Item(def_id) | InstanceDef::DropGlue(def_id, Some(_)) => def_id,
// We match the visibility of statics here
InstanceDef::ThreadLocalShim(def_id) => {
return static_visibility(tcx, can_be_internalized, def_id);
}
// These are all compiler glue and such, never exported, always hidden.
InstanceDef::VTableShim(..)
| InstanceDef::ReifyShim(..)
| InstanceDef::FnPtrShim(..)
| InstanceDef::Virtual(..)
| InstanceDef::Intrinsic(..)
| InstanceDef::ClosureOnceShim { .. }
| InstanceDef::DropGlue(..)
| InstanceDef::CloneShim(..)
| InstanceDef::FnPtrAddrShim(..) => return Visibility::Hidden,
};
// The `start_fn` lang item is actually a monomorphized instance of a
// function in the standard library, used for the `main` function. We don't
// want to export it so we tag it with `Hidden` visibility but this symbol
// is only referenced from the actual `main` symbol which we unfortunately
// don't know anything about during partitioning/collection. As a result we
// forcibly keep this symbol out of the `internalization_candidates` set.
//
// FIXME: eventually we don't want to always force this symbol to have
// hidden visibility, it should indeed be a candidate for
// internalization, but we have to understand that it's referenced
// from the `main` symbol we'll generate later.
//
// This may be fixable with a new `InstanceDef` perhaps? Unsure!
if tcx.lang_items().start_fn() == Some(def_id) {
*can_be_internalized = false;
return Visibility::Hidden;
}
let is_generic = instance.substs.non_erasable_generics().next().is_some();
// Upstream `DefId` instances get different handling than local ones.
let Some(def_id) = def_id.as_local() else {
return if export_generics && is_generic {
// If it is an upstream monomorphization and we export generics, we must make
// it available to downstream crates.
*can_be_internalized = false;
default_visibility(tcx, def_id, true)
} else {
Visibility::Hidden
};
};
if is_generic {
if export_generics {
if tcx.is_unreachable_local_definition(def_id) {
// This instance cannot be used from another crate.
Visibility::Hidden
} else {
// This instance might be useful in a downstream crate.
*can_be_internalized = false;
default_visibility(tcx, def_id.to_def_id(), true)
}
} else {
// We are not exporting generics or the definition is not reachable
// for downstream crates, we can internalize its instantiations.
Visibility::Hidden
}
} else {
// If this isn't a generic function then we mark this a `Default` if
// this is a reachable item, meaning that it's a symbol other crates may
// access when they link to us.
if tcx.is_reachable_non_generic(def_id.to_def_id()) {
*can_be_internalized = false;
debug_assert!(!is_generic);
return default_visibility(tcx, def_id.to_def_id(), false);
}
// If this isn't reachable then we're gonna tag this with `Hidden`
// visibility. In some situations though we'll want to prevent this
// symbol from being internalized.
//
// There's two categories of items here:
//
// * First is weak lang items. These are basically mechanisms for
// libcore to forward-reference symbols defined later in crates like
// the standard library or `#[panic_handler]` definitions. The
// definition of these weak lang items needs to be referencable by
// libcore, so we're no longer a candidate for internalization.
// Removal of these functions can't be done by LLVM but rather must be
// done by the linker as it's a non-local decision.
//
// * Second is "std internal symbols". Currently this is primarily used
// for allocator symbols. Allocators are a little weird in their
// implementation, but the idea is that the compiler, at the last
// minute, defines an allocator with an injected object file. The
// `alloc` crate references these symbols (`__rust_alloc`) and the
// definition doesn't get hooked up until a linked crate artifact is
// generated.
//
// The symbols synthesized by the compiler (`__rust_alloc`) are thin
// veneers around the actual implementation, some other symbol which
// implements the same ABI. These symbols (things like `__rg_alloc`,
// `__rdl_alloc`, `__rde_alloc`, etc), are all tagged with "std
// internal symbols".
//
// The std-internal symbols here **should not show up in a dll as an
// exported interface**, so they return `false` from
// `is_reachable_non_generic` above and we'll give them `Hidden`
// visibility below. Like the weak lang items, though, we can't let
// LLVM internalize them as this decision is left up to the linker to
// omit them, so prevent them from being internalized.
let attrs = tcx.codegen_fn_attrs(def_id);
if attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
*can_be_internalized = false;
}
Visibility::Hidden
}
}
fn default_visibility(tcx: TyCtxt<'_>, id: DefId, is_generic: bool) -> Visibility {
if !tcx.sess.target.default_hidden_visibility {
return Visibility::Default;
}
// Generic functions never have export-level C.
if is_generic {
return Visibility::Hidden;
}
// Things with export level C don't get instantiated in
// downstream crates.
if !id.is_local() {
return Visibility::Hidden;
}
// C-export level items remain at `Default`, all other internal
// items become `Hidden`.
match tcx.reachable_non_generics(id.krate).get(&id) {
Some(SymbolExportInfo { level: SymbolExportLevel::C, .. }) => Visibility::Default,
_ => Visibility::Hidden,
}
}

View File

@ -92,22 +92,26 @@
//! source-level module, functions from the same module will be available for
//! inlining, even when they are not marked `#[inline]`.
mod default;
use std::cmp;
use std::collections::hash_map::Entry;
use std::fs::{self, File};
use std::io::{BufWriter, Write};
use std::path::{Path, PathBuf};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::sync;
use rustc_hir::def_id::{DefIdSet, LOCAL_CRATE};
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{DefId, DefIdSet, LOCAL_CRATE};
use rustc_hir::definitions::DefPathDataName;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::middle::exported_symbols::{SymbolExportInfo, SymbolExportLevel};
use rustc_middle::mir;
use rustc_middle::mir::mono::MonoItem;
use rustc_middle::mir::mono::{CodegenUnit, Linkage};
use rustc_middle::mir::mono::{
CodegenUnit, CodegenUnitNameBuilder, InstantiationMode, Linkage, MonoItem, Visibility,
};
use rustc_middle::query::Providers;
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::TyCtxt;
use rustc_middle::ty::print::{characteristic_def_id_of_type, with_no_trimmed_paths};
use rustc_middle::ty::{self, visit::TypeVisitableExt, InstanceDef, TyCtxt};
use rustc_session::config::{DumpMonoStatsFormat, SwitchWithOptPath};
use rustc_span::symbol::Symbol;
@ -121,7 +125,7 @@ struct PartitioningCx<'a, 'tcx> {
inlining_map: &'a InliningMap<'tcx>,
}
pub struct PlacedRootMonoItems<'tcx> {
struct PlacedRootMonoItems<'tcx> {
codegen_units: Vec<CodegenUnit<'tcx>>,
roots: FxHashSet<MonoItem<'tcx>>,
internalization_candidates: FxHashSet<MonoItem<'tcx>>,
@ -144,7 +148,7 @@ where
// functions and statics defined in the local crate.
let PlacedRootMonoItems { mut codegen_units, roots, internalization_candidates } = {
let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_place_roots");
default::place_root_mono_items(cx, mono_items)
place_root_mono_items(cx, mono_items)
};
for cgu in &mut codegen_units {
@ -158,7 +162,7 @@ where
// estimates.
{
let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_merge_cgus");
default::merge_codegen_units(cx, &mut codegen_units);
merge_codegen_units(cx, &mut codegen_units);
debug_dump(tcx, "POST MERGING", &codegen_units);
}
@ -168,7 +172,7 @@ where
// local functions the definition of which is marked with `#[inline]`.
let mono_item_placements = {
let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_place_inline_items");
default::place_inlined_mono_items(cx, &mut codegen_units, roots)
place_inlined_mono_items(cx, &mut codegen_units, roots)
};
for cgu in &mut codegen_units {
@ -181,7 +185,7 @@ where
// more freedom to optimize.
if !tcx.sess.link_dead_code() {
let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_internalize_symbols");
default::internalize_symbols(
internalize_symbols(
cx,
&mut codegen_units,
mono_item_placements,
@ -229,6 +233,175 @@ where
codegen_units
}
fn place_root_mono_items<'tcx, I>(
cx: &PartitioningCx<'_, 'tcx>,
mono_items: &mut I,
) -> PlacedRootMonoItems<'tcx>
where
I: Iterator<Item = MonoItem<'tcx>>,
{
let mut roots = FxHashSet::default();
let mut codegen_units = FxHashMap::default();
let is_incremental_build = cx.tcx.sess.opts.incremental.is_some();
let mut internalization_candidates = FxHashSet::default();
// Determine if monomorphizations instantiated in this crate will be made
// available to downstream crates. This depends on whether we are in
// share-generics mode and whether the current crate can even have
// downstream crates.
let export_generics =
cx.tcx.sess.opts.share_generics() && cx.tcx.local_crate_exports_generics();
let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
let cgu_name_cache = &mut FxHashMap::default();
for mono_item in mono_items {
match mono_item.instantiation_mode(cx.tcx) {
InstantiationMode::GloballyShared { .. } => {}
InstantiationMode::LocalCopy => continue,
}
let characteristic_def_id = characteristic_def_id_of_mono_item(cx.tcx, mono_item);
let is_volatile = is_incremental_build && mono_item.is_generic_fn();
let codegen_unit_name = match characteristic_def_id {
Some(def_id) => compute_codegen_unit_name(
cx.tcx,
cgu_name_builder,
def_id,
is_volatile,
cgu_name_cache,
),
None => fallback_cgu_name(cgu_name_builder),
};
let codegen_unit = codegen_units
.entry(codegen_unit_name)
.or_insert_with(|| CodegenUnit::new(codegen_unit_name));
let mut can_be_internalized = true;
let (linkage, visibility) = mono_item_linkage_and_visibility(
cx.tcx,
&mono_item,
&mut can_be_internalized,
export_generics,
);
if visibility == Visibility::Hidden && can_be_internalized {
internalization_candidates.insert(mono_item);
}
codegen_unit.items_mut().insert(mono_item, (linkage, visibility));
roots.insert(mono_item);
}
// Always ensure we have at least one CGU; otherwise, if we have a
// crate with just types (for example), we could wind up with no CGU.
if codegen_units.is_empty() {
let codegen_unit_name = fallback_cgu_name(cgu_name_builder);
codegen_units.insert(codegen_unit_name, CodegenUnit::new(codegen_unit_name));
}
let codegen_units = codegen_units.into_values().collect();
PlacedRootMonoItems { codegen_units, roots, internalization_candidates }
}
fn merge_codegen_units<'tcx>(
cx: &PartitioningCx<'_, 'tcx>,
codegen_units: &mut Vec<CodegenUnit<'tcx>>,
) {
assert!(cx.target_cgu_count >= 1);
// Note that at this point in time the `codegen_units` here may not be
// in a deterministic order (but we know they're deterministically the
// same set). We want this merging to produce a deterministic ordering
// of codegen units from the input.
//
// Due to basically how we've implemented the merging below (merge the
// two smallest into each other) we're sure to start off with a
// deterministic order (sorted by name). This'll mean that if two cgus
// have the same size the stable sort below will keep everything nice
// and deterministic.
codegen_units.sort_by(|a, b| a.name().as_str().cmp(b.name().as_str()));
// This map keeps track of what got merged into what.
let mut cgu_contents: FxHashMap<Symbol, Vec<Symbol>> =
codegen_units.iter().map(|cgu| (cgu.name(), vec![cgu.name()])).collect();
// Merge the two smallest codegen units until the target size is
// reached.
while codegen_units.len() > cx.target_cgu_count {
// Sort small cgus to the back
codegen_units.sort_by_cached_key(|cgu| cmp::Reverse(cgu.size_estimate()));
let mut smallest = codegen_units.pop().unwrap();
let second_smallest = codegen_units.last_mut().unwrap();
// Move the mono-items from `smallest` to `second_smallest`
second_smallest.modify_size_estimate(smallest.size_estimate());
for (k, v) in smallest.items_mut().drain() {
second_smallest.items_mut().insert(k, v);
}
// Record that `second_smallest` now contains all the stuff that was
// in `smallest` before.
let mut consumed_cgu_names = cgu_contents.remove(&smallest.name()).unwrap();
cgu_contents.get_mut(&second_smallest.name()).unwrap().append(&mut consumed_cgu_names);
debug!(
"CodegenUnit {} merged into CodegenUnit {}",
smallest.name(),
second_smallest.name()
);
}
let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
if cx.tcx.sess.opts.incremental.is_some() {
// If we are doing incremental compilation, we want CGU names to
// reflect the path of the source level module they correspond to.
// For CGUs that contain the code of multiple modules because of the
// merging done above, we use a concatenation of the names of all
// contained CGUs.
let new_cgu_names: FxHashMap<Symbol, String> = cgu_contents
.into_iter()
// This `filter` makes sure we only update the name of CGUs that
// were actually modified by merging.
.filter(|(_, cgu_contents)| cgu_contents.len() > 1)
.map(|(current_cgu_name, cgu_contents)| {
let mut cgu_contents: Vec<&str> = cgu_contents.iter().map(|s| s.as_str()).collect();
// Sort the names, so things are deterministic and easy to
// predict. We are sorting primitive `&str`s here so we can
// use unstable sort.
cgu_contents.sort_unstable();
(current_cgu_name, cgu_contents.join("--"))
})
.collect();
for cgu in codegen_units.iter_mut() {
if let Some(new_cgu_name) = new_cgu_names.get(&cgu.name()) {
if cx.tcx.sess.opts.unstable_opts.human_readable_cgu_names {
cgu.set_name(Symbol::intern(&new_cgu_name));
} else {
// If we don't require CGU names to be human-readable,
// we use a fixed length hash of the composite CGU name
// instead.
let new_cgu_name = CodegenUnit::mangle_name(&new_cgu_name);
cgu.set_name(Symbol::intern(&new_cgu_name));
}
}
}
} else {
// If we are compiling non-incrementally we just generate simple CGU
// names containing an index.
for (index, cgu) in codegen_units.iter_mut().enumerate() {
let numbered_codegen_unit_name =
cgu_name_builder.build_cgu_name_no_mangle(LOCAL_CRATE, &["cgu"], Some(index));
cgu.set_name(numbered_codegen_unit_name);
}
}
}
/// For symbol internalization, we need to know whether a symbol/mono-item is
/// accessed from outside the codegen unit it is defined in. This type is used
/// to keep track of that.
@ -238,6 +411,453 @@ enum MonoItemPlacement {
MultipleCgus,
}
fn place_inlined_mono_items<'tcx>(
cx: &PartitioningCx<'_, 'tcx>,
codegen_units: &mut [CodegenUnit<'tcx>],
roots: FxHashSet<MonoItem<'tcx>>,
) -> FxHashMap<MonoItem<'tcx>, MonoItemPlacement> {
let mut mono_item_placements = FxHashMap::default();
let single_codegen_unit = codegen_units.len() == 1;
for old_codegen_unit in codegen_units.iter_mut() {
// Collect all items that need to be available in this codegen unit.
let mut reachable = FxHashSet::default();
for root in old_codegen_unit.items().keys() {
follow_inlining(*root, cx.inlining_map, &mut reachable);
}
let mut new_codegen_unit = CodegenUnit::new(old_codegen_unit.name());
// Add all monomorphizations that are not already there.
for mono_item in reachable {
if let Some(linkage) = old_codegen_unit.items().get(&mono_item) {
// This is a root, just copy it over.
new_codegen_unit.items_mut().insert(mono_item, *linkage);
} else {
if roots.contains(&mono_item) {
bug!(
"GloballyShared mono-item inlined into other CGU: \
{:?}",
mono_item
);
}
// This is a CGU-private copy.
new_codegen_unit
.items_mut()
.insert(mono_item, (Linkage::Internal, Visibility::Default));
}
if !single_codegen_unit {
// If there is more than one codegen unit, we need to keep track
// in which codegen units each monomorphization is placed.
match mono_item_placements.entry(mono_item) {
Entry::Occupied(e) => {
let placement = e.into_mut();
debug_assert!(match *placement {
MonoItemPlacement::SingleCgu { cgu_name } => {
cgu_name != new_codegen_unit.name()
}
MonoItemPlacement::MultipleCgus => true,
});
*placement = MonoItemPlacement::MultipleCgus;
}
Entry::Vacant(e) => {
e.insert(MonoItemPlacement::SingleCgu {
cgu_name: new_codegen_unit.name(),
});
}
}
}
}
*old_codegen_unit = new_codegen_unit;
}
return mono_item_placements;
fn follow_inlining<'tcx>(
mono_item: MonoItem<'tcx>,
inlining_map: &InliningMap<'tcx>,
visited: &mut FxHashSet<MonoItem<'tcx>>,
) {
if !visited.insert(mono_item) {
return;
}
inlining_map.with_inlining_candidates(mono_item, |target| {
follow_inlining(target, inlining_map, visited);
});
}
}
fn internalize_symbols<'tcx>(
cx: &PartitioningCx<'_, 'tcx>,
codegen_units: &mut [CodegenUnit<'tcx>],
mono_item_placements: FxHashMap<MonoItem<'tcx>, MonoItemPlacement>,
internalization_candidates: FxHashSet<MonoItem<'tcx>>,
) {
if codegen_units.len() == 1 {
// Fast path for when there is only one codegen unit. In this case we
// can internalize all candidates, since there is nowhere else they
// could be accessed from.
for cgu in codegen_units {
for candidate in &internalization_candidates {
cgu.items_mut().insert(*candidate, (Linkage::Internal, Visibility::Default));
}
}
return;
}
// Build a map from every monomorphization to all the monomorphizations that
// reference it.
let mut accessor_map: FxHashMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>> = Default::default();
cx.inlining_map.iter_accesses(|accessor, accessees| {
for accessee in accessees {
accessor_map.entry(*accessee).or_default().push(accessor);
}
});
// For each internalization candidates in each codegen unit, check if it is
// accessed from outside its defining codegen unit.
for cgu in codegen_units {
let home_cgu = MonoItemPlacement::SingleCgu { cgu_name: cgu.name() };
for (accessee, linkage_and_visibility) in cgu.items_mut() {
if !internalization_candidates.contains(accessee) {
// This item is no candidate for internalizing, so skip it.
continue;
}
debug_assert_eq!(mono_item_placements[accessee], home_cgu);
if let Some(accessors) = accessor_map.get(accessee) {
if accessors
.iter()
.filter_map(|accessor| {
// Some accessors might not have been
// instantiated. We can safely ignore those.
mono_item_placements.get(accessor)
})
.any(|placement| *placement != home_cgu)
{
// Found an accessor from another CGU, so skip to the next
// item without marking this one as internal.
continue;
}
}
// If we got here, we did not find any accesses from other CGUs,
// so it's fine to make this monomorphization internal.
*linkage_and_visibility = (Linkage::Internal, Visibility::Default);
}
}
}
fn characteristic_def_id_of_mono_item<'tcx>(
tcx: TyCtxt<'tcx>,
mono_item: MonoItem<'tcx>,
) -> Option<DefId> {
match mono_item {
MonoItem::Fn(instance) => {
let def_id = match instance.def {
ty::InstanceDef::Item(def) => def,
ty::InstanceDef::VTableShim(..)
| ty::InstanceDef::ReifyShim(..)
| ty::InstanceDef::FnPtrShim(..)
| ty::InstanceDef::ClosureOnceShim { .. }
| ty::InstanceDef::Intrinsic(..)
| ty::InstanceDef::DropGlue(..)
| ty::InstanceDef::Virtual(..)
| ty::InstanceDef::CloneShim(..)
| ty::InstanceDef::ThreadLocalShim(..)
| ty::InstanceDef::FnPtrAddrShim(..) => return None,
};
// If this is a method, we want to put it into the same module as
// its self-type. If the self-type does not provide a characteristic
// DefId, we use the location of the impl after all.
if tcx.trait_of_item(def_id).is_some() {
let self_ty = instance.substs.type_at(0);
// This is a default implementation of a trait method.
return characteristic_def_id_of_type(self_ty).or(Some(def_id));
}
if let Some(impl_def_id) = tcx.impl_of_method(def_id) {
if tcx.sess.opts.incremental.is_some()
&& tcx.trait_id_of_impl(impl_def_id) == tcx.lang_items().drop_trait()
{
// Put `Drop::drop` into the same cgu as `drop_in_place`
// since `drop_in_place` is the only thing that can
// call it.
return None;
}
// When polymorphization is enabled, methods which do not depend on their generic
// parameters, but the self-type of their impl block do will fail to normalize.
if !tcx.sess.opts.unstable_opts.polymorphize || !instance.has_param() {
// This is a method within an impl, find out what the self-type is:
let impl_self_ty = tcx.subst_and_normalize_erasing_regions(
instance.substs,
ty::ParamEnv::reveal_all(),
tcx.type_of(impl_def_id),
);
if let Some(def_id) = characteristic_def_id_of_type(impl_self_ty) {
return Some(def_id);
}
}
}
Some(def_id)
}
MonoItem::Static(def_id) => Some(def_id),
MonoItem::GlobalAsm(item_id) => Some(item_id.owner_id.to_def_id()),
}
}
fn compute_codegen_unit_name(
tcx: TyCtxt<'_>,
name_builder: &mut CodegenUnitNameBuilder<'_>,
def_id: DefId,
volatile: bool,
cache: &mut CguNameCache,
) -> Symbol {
// Find the innermost module that is not nested within a function.
let mut current_def_id = def_id;
let mut cgu_def_id = None;
// Walk backwards from the item we want to find the module for.
loop {
if current_def_id.is_crate_root() {
if cgu_def_id.is_none() {
// If we have not found a module yet, take the crate root.
cgu_def_id = Some(def_id.krate.as_def_id());
}
break;
} else if tcx.def_kind(current_def_id) == DefKind::Mod {
if cgu_def_id.is_none() {
cgu_def_id = Some(current_def_id);
}
} else {
// If we encounter something that is not a module, throw away
// any module that we've found so far because we now know that
// it is nested within something else.
cgu_def_id = None;
}
current_def_id = tcx.parent(current_def_id);
}
let cgu_def_id = cgu_def_id.unwrap();
*cache.entry((cgu_def_id, volatile)).or_insert_with(|| {
let def_path = tcx.def_path(cgu_def_id);
let components = def_path.data.iter().map(|part| match part.data.name() {
DefPathDataName::Named(name) => name,
DefPathDataName::Anon { .. } => unreachable!(),
});
let volatile_suffix = volatile.then_some("volatile");
name_builder.build_cgu_name(def_path.krate, components, volatile_suffix)
})
}
// Anything we can't find a proper codegen unit for goes into this.
fn fallback_cgu_name(name_builder: &mut CodegenUnitNameBuilder<'_>) -> Symbol {
name_builder.build_cgu_name(LOCAL_CRATE, &["fallback"], Some("cgu"))
}
fn mono_item_linkage_and_visibility<'tcx>(
tcx: TyCtxt<'tcx>,
mono_item: &MonoItem<'tcx>,
can_be_internalized: &mut bool,
export_generics: bool,
) -> (Linkage, Visibility) {
if let Some(explicit_linkage) = mono_item.explicit_linkage(tcx) {
return (explicit_linkage, Visibility::Default);
}
let vis = mono_item_visibility(tcx, mono_item, can_be_internalized, export_generics);
(Linkage::External, vis)
}
type CguNameCache = FxHashMap<(DefId, bool), Symbol>;
fn static_visibility<'tcx>(
tcx: TyCtxt<'tcx>,
can_be_internalized: &mut bool,
def_id: DefId,
) -> Visibility {
if tcx.is_reachable_non_generic(def_id) {
*can_be_internalized = false;
default_visibility(tcx, def_id, false)
} else {
Visibility::Hidden
}
}
fn mono_item_visibility<'tcx>(
tcx: TyCtxt<'tcx>,
mono_item: &MonoItem<'tcx>,
can_be_internalized: &mut bool,
export_generics: bool,
) -> Visibility {
let instance = match mono_item {
// This is pretty complicated; see below.
MonoItem::Fn(instance) => instance,
// Misc handling for generics and such, but otherwise:
MonoItem::Static(def_id) => return static_visibility(tcx, can_be_internalized, *def_id),
MonoItem::GlobalAsm(item_id) => {
return static_visibility(tcx, can_be_internalized, item_id.owner_id.to_def_id());
}
};
let def_id = match instance.def {
InstanceDef::Item(def_id) | InstanceDef::DropGlue(def_id, Some(_)) => def_id,
// We match the visibility of statics here
InstanceDef::ThreadLocalShim(def_id) => {
return static_visibility(tcx, can_be_internalized, def_id);
}
// These are all compiler glue and such, never exported, always hidden.
InstanceDef::VTableShim(..)
| InstanceDef::ReifyShim(..)
| InstanceDef::FnPtrShim(..)
| InstanceDef::Virtual(..)
| InstanceDef::Intrinsic(..)
| InstanceDef::ClosureOnceShim { .. }
| InstanceDef::DropGlue(..)
| InstanceDef::CloneShim(..)
| InstanceDef::FnPtrAddrShim(..) => return Visibility::Hidden,
};
// The `start_fn` lang item is actually a monomorphized instance of a
// function in the standard library, used for the `main` function. We don't
// want to export it so we tag it with `Hidden` visibility but this symbol
// is only referenced from the actual `main` symbol which we unfortunately
// don't know anything about during partitioning/collection. As a result we
// forcibly keep this symbol out of the `internalization_candidates` set.
//
// FIXME: eventually we don't want to always force this symbol to have
// hidden visibility, it should indeed be a candidate for
// internalization, but we have to understand that it's referenced
// from the `main` symbol we'll generate later.
//
// This may be fixable with a new `InstanceDef` perhaps? Unsure!
if tcx.lang_items().start_fn() == Some(def_id) {
*can_be_internalized = false;
return Visibility::Hidden;
}
let is_generic = instance.substs.non_erasable_generics().next().is_some();
// Upstream `DefId` instances get different handling than local ones.
let Some(def_id) = def_id.as_local() else {
return if export_generics && is_generic {
// If it is an upstream monomorphization and we export generics, we must make
// it available to downstream crates.
*can_be_internalized = false;
default_visibility(tcx, def_id, true)
} else {
Visibility::Hidden
};
};
if is_generic {
if export_generics {
if tcx.is_unreachable_local_definition(def_id) {
// This instance cannot be used from another crate.
Visibility::Hidden
} else {
// This instance might be useful in a downstream crate.
*can_be_internalized = false;
default_visibility(tcx, def_id.to_def_id(), true)
}
} else {
// We are not exporting generics or the definition is not reachable
// for downstream crates, we can internalize its instantiations.
Visibility::Hidden
}
} else {
// If this isn't a generic function then we mark this a `Default` if
// this is a reachable item, meaning that it's a symbol other crates may
// access when they link to us.
if tcx.is_reachable_non_generic(def_id.to_def_id()) {
*can_be_internalized = false;
debug_assert!(!is_generic);
return default_visibility(tcx, def_id.to_def_id(), false);
}
// If this isn't reachable then we're gonna tag this with `Hidden`
// visibility. In some situations though we'll want to prevent this
// symbol from being internalized.
//
// There's two categories of items here:
//
// * First is weak lang items. These are basically mechanisms for
// libcore to forward-reference symbols defined later in crates like
// the standard library or `#[panic_handler]` definitions. The
// definition of these weak lang items needs to be referencable by
// libcore, so we're no longer a candidate for internalization.
// Removal of these functions can't be done by LLVM but rather must be
// done by the linker as it's a non-local decision.
//
// * Second is "std internal symbols". Currently this is primarily used
// for allocator symbols. Allocators are a little weird in their
// implementation, but the idea is that the compiler, at the last
// minute, defines an allocator with an injected object file. The
// `alloc` crate references these symbols (`__rust_alloc`) and the
// definition doesn't get hooked up until a linked crate artifact is
// generated.
//
// The symbols synthesized by the compiler (`__rust_alloc`) are thin
// veneers around the actual implementation, some other symbol which
// implements the same ABI. These symbols (things like `__rg_alloc`,
// `__rdl_alloc`, `__rde_alloc`, etc), are all tagged with "std
// internal symbols".
//
// The std-internal symbols here **should not show up in a dll as an
// exported interface**, so they return `false` from
// `is_reachable_non_generic` above and we'll give them `Hidden`
// visibility below. Like the weak lang items, though, we can't let
// LLVM internalize them as this decision is left up to the linker to
// omit them, so prevent them from being internalized.
let attrs = tcx.codegen_fn_attrs(def_id);
if attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
*can_be_internalized = false;
}
Visibility::Hidden
}
}
fn default_visibility(tcx: TyCtxt<'_>, id: DefId, is_generic: bool) -> Visibility {
if !tcx.sess.target.default_hidden_visibility {
return Visibility::Default;
}
// Generic functions never have export-level C.
if is_generic {
return Visibility::Hidden;
}
// Things with export level C don't get instantiated in
// downstream crates.
if !id.is_local() {
return Visibility::Hidden;
}
// C-export level items remain at `Default`, all other internal
// items become `Hidden`.
match tcx.reachable_non_generics(id.krate).get(&id) {
Some(SymbolExportInfo { level: SymbolExportLevel::C, .. }) => Visibility::Default,
_ => Visibility::Hidden,
}
}
fn debug_dump<'a, 'tcx: 'a>(tcx: TyCtxt<'tcx>, label: &str, cgus: &[CodegenUnit<'tcx>]) {
let dump = move || {
use std::fmt::Write;