mirror of
https://github.com/rust-lang/rust.git
synced 2024-11-25 08:13:41 +00:00
Merge default.rs
into mod.rs
.
Within `compiler/rustc_monomorphize/src/partitioning/`, because the previous commit removed the need for `default.rs` to be a separate file.
This commit is contained in:
parent
97d4a38de9
commit
66cf072ac8
@ -1,637 +0,0 @@
|
||||
use std::cmp;
|
||||
use std::collections::hash_map::Entry;
|
||||
|
||||
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
||||
use rustc_hir::def::DefKind;
|
||||
use rustc_hir::def_id::{DefId, LOCAL_CRATE};
|
||||
use rustc_hir::definitions::DefPathDataName;
|
||||
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
|
||||
use rustc_middle::middle::exported_symbols::{SymbolExportInfo, SymbolExportLevel};
|
||||
use rustc_middle::mir::mono::{CodegenUnit, CodegenUnitNameBuilder, Linkage, Visibility};
|
||||
use rustc_middle::mir::mono::{InstantiationMode, MonoItem};
|
||||
use rustc_middle::ty::print::characteristic_def_id_of_type;
|
||||
use rustc_middle::ty::{self, visit::TypeVisitableExt, InstanceDef, TyCtxt};
|
||||
use rustc_span::symbol::Symbol;
|
||||
|
||||
use super::PartitioningCx;
|
||||
use crate::collector::InliningMap;
|
||||
use crate::partitioning::{MonoItemPlacement, PlacedRootMonoItems};
|
||||
|
||||
// This modules implements the default (and only) partitioning strategy.
|
||||
|
||||
pub(super) fn place_root_mono_items<'tcx, I>(
|
||||
cx: &PartitioningCx<'_, 'tcx>,
|
||||
mono_items: &mut I,
|
||||
) -> PlacedRootMonoItems<'tcx>
|
||||
where
|
||||
I: Iterator<Item = MonoItem<'tcx>>,
|
||||
{
|
||||
let mut roots = FxHashSet::default();
|
||||
let mut codegen_units = FxHashMap::default();
|
||||
let is_incremental_build = cx.tcx.sess.opts.incremental.is_some();
|
||||
let mut internalization_candidates = FxHashSet::default();
|
||||
|
||||
// Determine if monomorphizations instantiated in this crate will be made
|
||||
// available to downstream crates. This depends on whether we are in
|
||||
// share-generics mode and whether the current crate can even have
|
||||
// downstream crates.
|
||||
let export_generics =
|
||||
cx.tcx.sess.opts.share_generics() && cx.tcx.local_crate_exports_generics();
|
||||
|
||||
let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
|
||||
let cgu_name_cache = &mut FxHashMap::default();
|
||||
|
||||
for mono_item in mono_items {
|
||||
match mono_item.instantiation_mode(cx.tcx) {
|
||||
InstantiationMode::GloballyShared { .. } => {}
|
||||
InstantiationMode::LocalCopy => continue,
|
||||
}
|
||||
|
||||
let characteristic_def_id = characteristic_def_id_of_mono_item(cx.tcx, mono_item);
|
||||
let is_volatile = is_incremental_build && mono_item.is_generic_fn();
|
||||
|
||||
let codegen_unit_name = match characteristic_def_id {
|
||||
Some(def_id) => compute_codegen_unit_name(
|
||||
cx.tcx,
|
||||
cgu_name_builder,
|
||||
def_id,
|
||||
is_volatile,
|
||||
cgu_name_cache,
|
||||
),
|
||||
None => fallback_cgu_name(cgu_name_builder),
|
||||
};
|
||||
|
||||
let codegen_unit = codegen_units
|
||||
.entry(codegen_unit_name)
|
||||
.or_insert_with(|| CodegenUnit::new(codegen_unit_name));
|
||||
|
||||
let mut can_be_internalized = true;
|
||||
let (linkage, visibility) = mono_item_linkage_and_visibility(
|
||||
cx.tcx,
|
||||
&mono_item,
|
||||
&mut can_be_internalized,
|
||||
export_generics,
|
||||
);
|
||||
if visibility == Visibility::Hidden && can_be_internalized {
|
||||
internalization_candidates.insert(mono_item);
|
||||
}
|
||||
|
||||
codegen_unit.items_mut().insert(mono_item, (linkage, visibility));
|
||||
roots.insert(mono_item);
|
||||
}
|
||||
|
||||
// Always ensure we have at least one CGU; otherwise, if we have a
|
||||
// crate with just types (for example), we could wind up with no CGU.
|
||||
if codegen_units.is_empty() {
|
||||
let codegen_unit_name = fallback_cgu_name(cgu_name_builder);
|
||||
codegen_units.insert(codegen_unit_name, CodegenUnit::new(codegen_unit_name));
|
||||
}
|
||||
|
||||
let codegen_units = codegen_units.into_values().collect();
|
||||
PlacedRootMonoItems { codegen_units, roots, internalization_candidates }
|
||||
}
|
||||
|
||||
pub(super) fn merge_codegen_units<'tcx>(
|
||||
cx: &PartitioningCx<'_, 'tcx>,
|
||||
codegen_units: &mut Vec<CodegenUnit<'tcx>>,
|
||||
) {
|
||||
assert!(cx.target_cgu_count >= 1);
|
||||
|
||||
// Note that at this point in time the `codegen_units` here may not be
|
||||
// in a deterministic order (but we know they're deterministically the
|
||||
// same set). We want this merging to produce a deterministic ordering
|
||||
// of codegen units from the input.
|
||||
//
|
||||
// Due to basically how we've implemented the merging below (merge the
|
||||
// two smallest into each other) we're sure to start off with a
|
||||
// deterministic order (sorted by name). This'll mean that if two cgus
|
||||
// have the same size the stable sort below will keep everything nice
|
||||
// and deterministic.
|
||||
codegen_units.sort_by(|a, b| a.name().as_str().cmp(b.name().as_str()));
|
||||
|
||||
// This map keeps track of what got merged into what.
|
||||
let mut cgu_contents: FxHashMap<Symbol, Vec<Symbol>> =
|
||||
codegen_units.iter().map(|cgu| (cgu.name(), vec![cgu.name()])).collect();
|
||||
|
||||
// Merge the two smallest codegen units until the target size is
|
||||
// reached.
|
||||
while codegen_units.len() > cx.target_cgu_count {
|
||||
// Sort small cgus to the back
|
||||
codegen_units.sort_by_cached_key(|cgu| cmp::Reverse(cgu.size_estimate()));
|
||||
let mut smallest = codegen_units.pop().unwrap();
|
||||
let second_smallest = codegen_units.last_mut().unwrap();
|
||||
|
||||
// Move the mono-items from `smallest` to `second_smallest`
|
||||
second_smallest.modify_size_estimate(smallest.size_estimate());
|
||||
for (k, v) in smallest.items_mut().drain() {
|
||||
second_smallest.items_mut().insert(k, v);
|
||||
}
|
||||
|
||||
// Record that `second_smallest` now contains all the stuff that was
|
||||
// in `smallest` before.
|
||||
let mut consumed_cgu_names = cgu_contents.remove(&smallest.name()).unwrap();
|
||||
cgu_contents.get_mut(&second_smallest.name()).unwrap().append(&mut consumed_cgu_names);
|
||||
|
||||
debug!(
|
||||
"CodegenUnit {} merged into CodegenUnit {}",
|
||||
smallest.name(),
|
||||
second_smallest.name()
|
||||
);
|
||||
}
|
||||
|
||||
let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
|
||||
|
||||
if cx.tcx.sess.opts.incremental.is_some() {
|
||||
// If we are doing incremental compilation, we want CGU names to
|
||||
// reflect the path of the source level module they correspond to.
|
||||
// For CGUs that contain the code of multiple modules because of the
|
||||
// merging done above, we use a concatenation of the names of all
|
||||
// contained CGUs.
|
||||
let new_cgu_names: FxHashMap<Symbol, String> = cgu_contents
|
||||
.into_iter()
|
||||
// This `filter` makes sure we only update the name of CGUs that
|
||||
// were actually modified by merging.
|
||||
.filter(|(_, cgu_contents)| cgu_contents.len() > 1)
|
||||
.map(|(current_cgu_name, cgu_contents)| {
|
||||
let mut cgu_contents: Vec<&str> = cgu_contents.iter().map(|s| s.as_str()).collect();
|
||||
|
||||
// Sort the names, so things are deterministic and easy to
|
||||
// predict. We are sorting primitive `&str`s here so we can
|
||||
// use unstable sort.
|
||||
cgu_contents.sort_unstable();
|
||||
|
||||
(current_cgu_name, cgu_contents.join("--"))
|
||||
})
|
||||
.collect();
|
||||
|
||||
for cgu in codegen_units.iter_mut() {
|
||||
if let Some(new_cgu_name) = new_cgu_names.get(&cgu.name()) {
|
||||
if cx.tcx.sess.opts.unstable_opts.human_readable_cgu_names {
|
||||
cgu.set_name(Symbol::intern(&new_cgu_name));
|
||||
} else {
|
||||
// If we don't require CGU names to be human-readable,
|
||||
// we use a fixed length hash of the composite CGU name
|
||||
// instead.
|
||||
let new_cgu_name = CodegenUnit::mangle_name(&new_cgu_name);
|
||||
cgu.set_name(Symbol::intern(&new_cgu_name));
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// If we are compiling non-incrementally we just generate simple CGU
|
||||
// names containing an index.
|
||||
for (index, cgu) in codegen_units.iter_mut().enumerate() {
|
||||
let numbered_codegen_unit_name =
|
||||
cgu_name_builder.build_cgu_name_no_mangle(LOCAL_CRATE, &["cgu"], Some(index));
|
||||
cgu.set_name(numbered_codegen_unit_name);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(super) fn place_inlined_mono_items<'tcx>(
|
||||
cx: &PartitioningCx<'_, 'tcx>,
|
||||
codegen_units: &mut [CodegenUnit<'tcx>],
|
||||
roots: FxHashSet<MonoItem<'tcx>>,
|
||||
) -> FxHashMap<MonoItem<'tcx>, MonoItemPlacement> {
|
||||
let mut mono_item_placements = FxHashMap::default();
|
||||
|
||||
let single_codegen_unit = codegen_units.len() == 1;
|
||||
|
||||
for old_codegen_unit in codegen_units.iter_mut() {
|
||||
// Collect all items that need to be available in this codegen unit.
|
||||
let mut reachable = FxHashSet::default();
|
||||
for root in old_codegen_unit.items().keys() {
|
||||
follow_inlining(*root, cx.inlining_map, &mut reachable);
|
||||
}
|
||||
|
||||
let mut new_codegen_unit = CodegenUnit::new(old_codegen_unit.name());
|
||||
|
||||
// Add all monomorphizations that are not already there.
|
||||
for mono_item in reachable {
|
||||
if let Some(linkage) = old_codegen_unit.items().get(&mono_item) {
|
||||
// This is a root, just copy it over.
|
||||
new_codegen_unit.items_mut().insert(mono_item, *linkage);
|
||||
} else {
|
||||
if roots.contains(&mono_item) {
|
||||
bug!(
|
||||
"GloballyShared mono-item inlined into other CGU: \
|
||||
{:?}",
|
||||
mono_item
|
||||
);
|
||||
}
|
||||
|
||||
// This is a CGU-private copy.
|
||||
new_codegen_unit
|
||||
.items_mut()
|
||||
.insert(mono_item, (Linkage::Internal, Visibility::Default));
|
||||
}
|
||||
|
||||
if !single_codegen_unit {
|
||||
// If there is more than one codegen unit, we need to keep track
|
||||
// in which codegen units each monomorphization is placed.
|
||||
match mono_item_placements.entry(mono_item) {
|
||||
Entry::Occupied(e) => {
|
||||
let placement = e.into_mut();
|
||||
debug_assert!(match *placement {
|
||||
MonoItemPlacement::SingleCgu { cgu_name } => {
|
||||
cgu_name != new_codegen_unit.name()
|
||||
}
|
||||
MonoItemPlacement::MultipleCgus => true,
|
||||
});
|
||||
*placement = MonoItemPlacement::MultipleCgus;
|
||||
}
|
||||
Entry::Vacant(e) => {
|
||||
e.insert(MonoItemPlacement::SingleCgu {
|
||||
cgu_name: new_codegen_unit.name(),
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
*old_codegen_unit = new_codegen_unit;
|
||||
}
|
||||
|
||||
return mono_item_placements;
|
||||
|
||||
fn follow_inlining<'tcx>(
|
||||
mono_item: MonoItem<'tcx>,
|
||||
inlining_map: &InliningMap<'tcx>,
|
||||
visited: &mut FxHashSet<MonoItem<'tcx>>,
|
||||
) {
|
||||
if !visited.insert(mono_item) {
|
||||
return;
|
||||
}
|
||||
|
||||
inlining_map.with_inlining_candidates(mono_item, |target| {
|
||||
follow_inlining(target, inlining_map, visited);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
pub(super) fn internalize_symbols<'tcx>(
|
||||
cx: &PartitioningCx<'_, 'tcx>,
|
||||
codegen_units: &mut [CodegenUnit<'tcx>],
|
||||
mono_item_placements: FxHashMap<MonoItem<'tcx>, MonoItemPlacement>,
|
||||
internalization_candidates: FxHashSet<MonoItem<'tcx>>,
|
||||
) {
|
||||
if codegen_units.len() == 1 {
|
||||
// Fast path for when there is only one codegen unit. In this case we
|
||||
// can internalize all candidates, since there is nowhere else they
|
||||
// could be accessed from.
|
||||
for cgu in codegen_units {
|
||||
for candidate in &internalization_candidates {
|
||||
cgu.items_mut().insert(*candidate, (Linkage::Internal, Visibility::Default));
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// Build a map from every monomorphization to all the monomorphizations that
|
||||
// reference it.
|
||||
let mut accessor_map: FxHashMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>> = Default::default();
|
||||
cx.inlining_map.iter_accesses(|accessor, accessees| {
|
||||
for accessee in accessees {
|
||||
accessor_map.entry(*accessee).or_default().push(accessor);
|
||||
}
|
||||
});
|
||||
|
||||
// For each internalization candidates in each codegen unit, check if it is
|
||||
// accessed from outside its defining codegen unit.
|
||||
for cgu in codegen_units {
|
||||
let home_cgu = MonoItemPlacement::SingleCgu { cgu_name: cgu.name() };
|
||||
|
||||
for (accessee, linkage_and_visibility) in cgu.items_mut() {
|
||||
if !internalization_candidates.contains(accessee) {
|
||||
// This item is no candidate for internalizing, so skip it.
|
||||
continue;
|
||||
}
|
||||
debug_assert_eq!(mono_item_placements[accessee], home_cgu);
|
||||
|
||||
if let Some(accessors) = accessor_map.get(accessee) {
|
||||
if accessors
|
||||
.iter()
|
||||
.filter_map(|accessor| {
|
||||
// Some accessors might not have been
|
||||
// instantiated. We can safely ignore those.
|
||||
mono_item_placements.get(accessor)
|
||||
})
|
||||
.any(|placement| *placement != home_cgu)
|
||||
{
|
||||
// Found an accessor from another CGU, so skip to the next
|
||||
// item without marking this one as internal.
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// If we got here, we did not find any accesses from other CGUs,
|
||||
// so it's fine to make this monomorphization internal.
|
||||
*linkage_and_visibility = (Linkage::Internal, Visibility::Default);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn characteristic_def_id_of_mono_item<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
mono_item: MonoItem<'tcx>,
|
||||
) -> Option<DefId> {
|
||||
match mono_item {
|
||||
MonoItem::Fn(instance) => {
|
||||
let def_id = match instance.def {
|
||||
ty::InstanceDef::Item(def) => def,
|
||||
ty::InstanceDef::VTableShim(..)
|
||||
| ty::InstanceDef::ReifyShim(..)
|
||||
| ty::InstanceDef::FnPtrShim(..)
|
||||
| ty::InstanceDef::ClosureOnceShim { .. }
|
||||
| ty::InstanceDef::Intrinsic(..)
|
||||
| ty::InstanceDef::DropGlue(..)
|
||||
| ty::InstanceDef::Virtual(..)
|
||||
| ty::InstanceDef::CloneShim(..)
|
||||
| ty::InstanceDef::ThreadLocalShim(..)
|
||||
| ty::InstanceDef::FnPtrAddrShim(..) => return None,
|
||||
};
|
||||
|
||||
// If this is a method, we want to put it into the same module as
|
||||
// its self-type. If the self-type does not provide a characteristic
|
||||
// DefId, we use the location of the impl after all.
|
||||
|
||||
if tcx.trait_of_item(def_id).is_some() {
|
||||
let self_ty = instance.substs.type_at(0);
|
||||
// This is a default implementation of a trait method.
|
||||
return characteristic_def_id_of_type(self_ty).or(Some(def_id));
|
||||
}
|
||||
|
||||
if let Some(impl_def_id) = tcx.impl_of_method(def_id) {
|
||||
if tcx.sess.opts.incremental.is_some()
|
||||
&& tcx.trait_id_of_impl(impl_def_id) == tcx.lang_items().drop_trait()
|
||||
{
|
||||
// Put `Drop::drop` into the same cgu as `drop_in_place`
|
||||
// since `drop_in_place` is the only thing that can
|
||||
// call it.
|
||||
return None;
|
||||
}
|
||||
|
||||
// When polymorphization is enabled, methods which do not depend on their generic
|
||||
// parameters, but the self-type of their impl block do will fail to normalize.
|
||||
if !tcx.sess.opts.unstable_opts.polymorphize || !instance.has_param() {
|
||||
// This is a method within an impl, find out what the self-type is:
|
||||
let impl_self_ty = tcx.subst_and_normalize_erasing_regions(
|
||||
instance.substs,
|
||||
ty::ParamEnv::reveal_all(),
|
||||
tcx.type_of(impl_def_id),
|
||||
);
|
||||
if let Some(def_id) = characteristic_def_id_of_type(impl_self_ty) {
|
||||
return Some(def_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Some(def_id)
|
||||
}
|
||||
MonoItem::Static(def_id) => Some(def_id),
|
||||
MonoItem::GlobalAsm(item_id) => Some(item_id.owner_id.to_def_id()),
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_codegen_unit_name(
|
||||
tcx: TyCtxt<'_>,
|
||||
name_builder: &mut CodegenUnitNameBuilder<'_>,
|
||||
def_id: DefId,
|
||||
volatile: bool,
|
||||
cache: &mut CguNameCache,
|
||||
) -> Symbol {
|
||||
// Find the innermost module that is not nested within a function.
|
||||
let mut current_def_id = def_id;
|
||||
let mut cgu_def_id = None;
|
||||
// Walk backwards from the item we want to find the module for.
|
||||
loop {
|
||||
if current_def_id.is_crate_root() {
|
||||
if cgu_def_id.is_none() {
|
||||
// If we have not found a module yet, take the crate root.
|
||||
cgu_def_id = Some(def_id.krate.as_def_id());
|
||||
}
|
||||
break;
|
||||
} else if tcx.def_kind(current_def_id) == DefKind::Mod {
|
||||
if cgu_def_id.is_none() {
|
||||
cgu_def_id = Some(current_def_id);
|
||||
}
|
||||
} else {
|
||||
// If we encounter something that is not a module, throw away
|
||||
// any module that we've found so far because we now know that
|
||||
// it is nested within something else.
|
||||
cgu_def_id = None;
|
||||
}
|
||||
|
||||
current_def_id = tcx.parent(current_def_id);
|
||||
}
|
||||
|
||||
let cgu_def_id = cgu_def_id.unwrap();
|
||||
|
||||
*cache.entry((cgu_def_id, volatile)).or_insert_with(|| {
|
||||
let def_path = tcx.def_path(cgu_def_id);
|
||||
|
||||
let components = def_path.data.iter().map(|part| match part.data.name() {
|
||||
DefPathDataName::Named(name) => name,
|
||||
DefPathDataName::Anon { .. } => unreachable!(),
|
||||
});
|
||||
|
||||
let volatile_suffix = volatile.then_some("volatile");
|
||||
|
||||
name_builder.build_cgu_name(def_path.krate, components, volatile_suffix)
|
||||
})
|
||||
}
|
||||
|
||||
// Anything we can't find a proper codegen unit for goes into this.
|
||||
fn fallback_cgu_name(name_builder: &mut CodegenUnitNameBuilder<'_>) -> Symbol {
|
||||
name_builder.build_cgu_name(LOCAL_CRATE, &["fallback"], Some("cgu"))
|
||||
}
|
||||
|
||||
fn mono_item_linkage_and_visibility<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
mono_item: &MonoItem<'tcx>,
|
||||
can_be_internalized: &mut bool,
|
||||
export_generics: bool,
|
||||
) -> (Linkage, Visibility) {
|
||||
if let Some(explicit_linkage) = mono_item.explicit_linkage(tcx) {
|
||||
return (explicit_linkage, Visibility::Default);
|
||||
}
|
||||
let vis = mono_item_visibility(tcx, mono_item, can_be_internalized, export_generics);
|
||||
(Linkage::External, vis)
|
||||
}
|
||||
|
||||
type CguNameCache = FxHashMap<(DefId, bool), Symbol>;
|
||||
|
||||
fn static_visibility<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
can_be_internalized: &mut bool,
|
||||
def_id: DefId,
|
||||
) -> Visibility {
|
||||
if tcx.is_reachable_non_generic(def_id) {
|
||||
*can_be_internalized = false;
|
||||
default_visibility(tcx, def_id, false)
|
||||
} else {
|
||||
Visibility::Hidden
|
||||
}
|
||||
}
|
||||
|
||||
fn mono_item_visibility<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
mono_item: &MonoItem<'tcx>,
|
||||
can_be_internalized: &mut bool,
|
||||
export_generics: bool,
|
||||
) -> Visibility {
|
||||
let instance = match mono_item {
|
||||
// This is pretty complicated; see below.
|
||||
MonoItem::Fn(instance) => instance,
|
||||
|
||||
// Misc handling for generics and such, but otherwise:
|
||||
MonoItem::Static(def_id) => return static_visibility(tcx, can_be_internalized, *def_id),
|
||||
MonoItem::GlobalAsm(item_id) => {
|
||||
return static_visibility(tcx, can_be_internalized, item_id.owner_id.to_def_id());
|
||||
}
|
||||
};
|
||||
|
||||
let def_id = match instance.def {
|
||||
InstanceDef::Item(def_id) | InstanceDef::DropGlue(def_id, Some(_)) => def_id,
|
||||
|
||||
// We match the visibility of statics here
|
||||
InstanceDef::ThreadLocalShim(def_id) => {
|
||||
return static_visibility(tcx, can_be_internalized, def_id);
|
||||
}
|
||||
|
||||
// These are all compiler glue and such, never exported, always hidden.
|
||||
InstanceDef::VTableShim(..)
|
||||
| InstanceDef::ReifyShim(..)
|
||||
| InstanceDef::FnPtrShim(..)
|
||||
| InstanceDef::Virtual(..)
|
||||
| InstanceDef::Intrinsic(..)
|
||||
| InstanceDef::ClosureOnceShim { .. }
|
||||
| InstanceDef::DropGlue(..)
|
||||
| InstanceDef::CloneShim(..)
|
||||
| InstanceDef::FnPtrAddrShim(..) => return Visibility::Hidden,
|
||||
};
|
||||
|
||||
// The `start_fn` lang item is actually a monomorphized instance of a
|
||||
// function in the standard library, used for the `main` function. We don't
|
||||
// want to export it so we tag it with `Hidden` visibility but this symbol
|
||||
// is only referenced from the actual `main` symbol which we unfortunately
|
||||
// don't know anything about during partitioning/collection. As a result we
|
||||
// forcibly keep this symbol out of the `internalization_candidates` set.
|
||||
//
|
||||
// FIXME: eventually we don't want to always force this symbol to have
|
||||
// hidden visibility, it should indeed be a candidate for
|
||||
// internalization, but we have to understand that it's referenced
|
||||
// from the `main` symbol we'll generate later.
|
||||
//
|
||||
// This may be fixable with a new `InstanceDef` perhaps? Unsure!
|
||||
if tcx.lang_items().start_fn() == Some(def_id) {
|
||||
*can_be_internalized = false;
|
||||
return Visibility::Hidden;
|
||||
}
|
||||
|
||||
let is_generic = instance.substs.non_erasable_generics().next().is_some();
|
||||
|
||||
// Upstream `DefId` instances get different handling than local ones.
|
||||
let Some(def_id) = def_id.as_local() else {
|
||||
return if export_generics && is_generic {
|
||||
// If it is an upstream monomorphization and we export generics, we must make
|
||||
// it available to downstream crates.
|
||||
*can_be_internalized = false;
|
||||
default_visibility(tcx, def_id, true)
|
||||
} else {
|
||||
Visibility::Hidden
|
||||
};
|
||||
};
|
||||
|
||||
if is_generic {
|
||||
if export_generics {
|
||||
if tcx.is_unreachable_local_definition(def_id) {
|
||||
// This instance cannot be used from another crate.
|
||||
Visibility::Hidden
|
||||
} else {
|
||||
// This instance might be useful in a downstream crate.
|
||||
*can_be_internalized = false;
|
||||
default_visibility(tcx, def_id.to_def_id(), true)
|
||||
}
|
||||
} else {
|
||||
// We are not exporting generics or the definition is not reachable
|
||||
// for downstream crates, we can internalize its instantiations.
|
||||
Visibility::Hidden
|
||||
}
|
||||
} else {
|
||||
// If this isn't a generic function then we mark this a `Default` if
|
||||
// this is a reachable item, meaning that it's a symbol other crates may
|
||||
// access when they link to us.
|
||||
if tcx.is_reachable_non_generic(def_id.to_def_id()) {
|
||||
*can_be_internalized = false;
|
||||
debug_assert!(!is_generic);
|
||||
return default_visibility(tcx, def_id.to_def_id(), false);
|
||||
}
|
||||
|
||||
// If this isn't reachable then we're gonna tag this with `Hidden`
|
||||
// visibility. In some situations though we'll want to prevent this
|
||||
// symbol from being internalized.
|
||||
//
|
||||
// There's two categories of items here:
|
||||
//
|
||||
// * First is weak lang items. These are basically mechanisms for
|
||||
// libcore to forward-reference symbols defined later in crates like
|
||||
// the standard library or `#[panic_handler]` definitions. The
|
||||
// definition of these weak lang items needs to be referencable by
|
||||
// libcore, so we're no longer a candidate for internalization.
|
||||
// Removal of these functions can't be done by LLVM but rather must be
|
||||
// done by the linker as it's a non-local decision.
|
||||
//
|
||||
// * Second is "std internal symbols". Currently this is primarily used
|
||||
// for allocator symbols. Allocators are a little weird in their
|
||||
// implementation, but the idea is that the compiler, at the last
|
||||
// minute, defines an allocator with an injected object file. The
|
||||
// `alloc` crate references these symbols (`__rust_alloc`) and the
|
||||
// definition doesn't get hooked up until a linked crate artifact is
|
||||
// generated.
|
||||
//
|
||||
// The symbols synthesized by the compiler (`__rust_alloc`) are thin
|
||||
// veneers around the actual implementation, some other symbol which
|
||||
// implements the same ABI. These symbols (things like `__rg_alloc`,
|
||||
// `__rdl_alloc`, `__rde_alloc`, etc), are all tagged with "std
|
||||
// internal symbols".
|
||||
//
|
||||
// The std-internal symbols here **should not show up in a dll as an
|
||||
// exported interface**, so they return `false` from
|
||||
// `is_reachable_non_generic` above and we'll give them `Hidden`
|
||||
// visibility below. Like the weak lang items, though, we can't let
|
||||
// LLVM internalize them as this decision is left up to the linker to
|
||||
// omit them, so prevent them from being internalized.
|
||||
let attrs = tcx.codegen_fn_attrs(def_id);
|
||||
if attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
|
||||
*can_be_internalized = false;
|
||||
}
|
||||
|
||||
Visibility::Hidden
|
||||
}
|
||||
}
|
||||
|
||||
fn default_visibility(tcx: TyCtxt<'_>, id: DefId, is_generic: bool) -> Visibility {
|
||||
if !tcx.sess.target.default_hidden_visibility {
|
||||
return Visibility::Default;
|
||||
}
|
||||
|
||||
// Generic functions never have export-level C.
|
||||
if is_generic {
|
||||
return Visibility::Hidden;
|
||||
}
|
||||
|
||||
// Things with export level C don't get instantiated in
|
||||
// downstream crates.
|
||||
if !id.is_local() {
|
||||
return Visibility::Hidden;
|
||||
}
|
||||
|
||||
// C-export level items remain at `Default`, all other internal
|
||||
// items become `Hidden`.
|
||||
match tcx.reachable_non_generics(id.krate).get(&id) {
|
||||
Some(SymbolExportInfo { level: SymbolExportLevel::C, .. }) => Visibility::Default,
|
||||
_ => Visibility::Hidden,
|
||||
}
|
||||
}
|
@ -92,22 +92,26 @@
|
||||
//! source-level module, functions from the same module will be available for
|
||||
//! inlining, even when they are not marked `#[inline]`.
|
||||
|
||||
mod default;
|
||||
|
||||
use std::cmp;
|
||||
use std::collections::hash_map::Entry;
|
||||
use std::fs::{self, File};
|
||||
use std::io::{BufWriter, Write};
|
||||
use std::path::{Path, PathBuf};
|
||||
|
||||
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
||||
use rustc_data_structures::sync;
|
||||
use rustc_hir::def_id::{DefIdSet, LOCAL_CRATE};
|
||||
use rustc_hir::def::DefKind;
|
||||
use rustc_hir::def_id::{DefId, DefIdSet, LOCAL_CRATE};
|
||||
use rustc_hir::definitions::DefPathDataName;
|
||||
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
|
||||
use rustc_middle::middle::exported_symbols::{SymbolExportInfo, SymbolExportLevel};
|
||||
use rustc_middle::mir;
|
||||
use rustc_middle::mir::mono::MonoItem;
|
||||
use rustc_middle::mir::mono::{CodegenUnit, Linkage};
|
||||
use rustc_middle::mir::mono::{
|
||||
CodegenUnit, CodegenUnitNameBuilder, InstantiationMode, Linkage, MonoItem, Visibility,
|
||||
};
|
||||
use rustc_middle::query::Providers;
|
||||
use rustc_middle::ty::print::with_no_trimmed_paths;
|
||||
use rustc_middle::ty::TyCtxt;
|
||||
use rustc_middle::ty::print::{characteristic_def_id_of_type, with_no_trimmed_paths};
|
||||
use rustc_middle::ty::{self, visit::TypeVisitableExt, InstanceDef, TyCtxt};
|
||||
use rustc_session::config::{DumpMonoStatsFormat, SwitchWithOptPath};
|
||||
use rustc_span::symbol::Symbol;
|
||||
|
||||
@ -121,7 +125,7 @@ struct PartitioningCx<'a, 'tcx> {
|
||||
inlining_map: &'a InliningMap<'tcx>,
|
||||
}
|
||||
|
||||
pub struct PlacedRootMonoItems<'tcx> {
|
||||
struct PlacedRootMonoItems<'tcx> {
|
||||
codegen_units: Vec<CodegenUnit<'tcx>>,
|
||||
roots: FxHashSet<MonoItem<'tcx>>,
|
||||
internalization_candidates: FxHashSet<MonoItem<'tcx>>,
|
||||
@ -144,7 +148,7 @@ where
|
||||
// functions and statics defined in the local crate.
|
||||
let PlacedRootMonoItems { mut codegen_units, roots, internalization_candidates } = {
|
||||
let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_place_roots");
|
||||
default::place_root_mono_items(cx, mono_items)
|
||||
place_root_mono_items(cx, mono_items)
|
||||
};
|
||||
|
||||
for cgu in &mut codegen_units {
|
||||
@ -158,7 +162,7 @@ where
|
||||
// estimates.
|
||||
{
|
||||
let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_merge_cgus");
|
||||
default::merge_codegen_units(cx, &mut codegen_units);
|
||||
merge_codegen_units(cx, &mut codegen_units);
|
||||
debug_dump(tcx, "POST MERGING", &codegen_units);
|
||||
}
|
||||
|
||||
@ -168,7 +172,7 @@ where
|
||||
// local functions the definition of which is marked with `#[inline]`.
|
||||
let mono_item_placements = {
|
||||
let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_place_inline_items");
|
||||
default::place_inlined_mono_items(cx, &mut codegen_units, roots)
|
||||
place_inlined_mono_items(cx, &mut codegen_units, roots)
|
||||
};
|
||||
|
||||
for cgu in &mut codegen_units {
|
||||
@ -181,7 +185,7 @@ where
|
||||
// more freedom to optimize.
|
||||
if !tcx.sess.link_dead_code() {
|
||||
let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_internalize_symbols");
|
||||
default::internalize_symbols(
|
||||
internalize_symbols(
|
||||
cx,
|
||||
&mut codegen_units,
|
||||
mono_item_placements,
|
||||
@ -229,6 +233,175 @@ where
|
||||
codegen_units
|
||||
}
|
||||
|
||||
fn place_root_mono_items<'tcx, I>(
|
||||
cx: &PartitioningCx<'_, 'tcx>,
|
||||
mono_items: &mut I,
|
||||
) -> PlacedRootMonoItems<'tcx>
|
||||
where
|
||||
I: Iterator<Item = MonoItem<'tcx>>,
|
||||
{
|
||||
let mut roots = FxHashSet::default();
|
||||
let mut codegen_units = FxHashMap::default();
|
||||
let is_incremental_build = cx.tcx.sess.opts.incremental.is_some();
|
||||
let mut internalization_candidates = FxHashSet::default();
|
||||
|
||||
// Determine if monomorphizations instantiated in this crate will be made
|
||||
// available to downstream crates. This depends on whether we are in
|
||||
// share-generics mode and whether the current crate can even have
|
||||
// downstream crates.
|
||||
let export_generics =
|
||||
cx.tcx.sess.opts.share_generics() && cx.tcx.local_crate_exports_generics();
|
||||
|
||||
let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
|
||||
let cgu_name_cache = &mut FxHashMap::default();
|
||||
|
||||
for mono_item in mono_items {
|
||||
match mono_item.instantiation_mode(cx.tcx) {
|
||||
InstantiationMode::GloballyShared { .. } => {}
|
||||
InstantiationMode::LocalCopy => continue,
|
||||
}
|
||||
|
||||
let characteristic_def_id = characteristic_def_id_of_mono_item(cx.tcx, mono_item);
|
||||
let is_volatile = is_incremental_build && mono_item.is_generic_fn();
|
||||
|
||||
let codegen_unit_name = match characteristic_def_id {
|
||||
Some(def_id) => compute_codegen_unit_name(
|
||||
cx.tcx,
|
||||
cgu_name_builder,
|
||||
def_id,
|
||||
is_volatile,
|
||||
cgu_name_cache,
|
||||
),
|
||||
None => fallback_cgu_name(cgu_name_builder),
|
||||
};
|
||||
|
||||
let codegen_unit = codegen_units
|
||||
.entry(codegen_unit_name)
|
||||
.or_insert_with(|| CodegenUnit::new(codegen_unit_name));
|
||||
|
||||
let mut can_be_internalized = true;
|
||||
let (linkage, visibility) = mono_item_linkage_and_visibility(
|
||||
cx.tcx,
|
||||
&mono_item,
|
||||
&mut can_be_internalized,
|
||||
export_generics,
|
||||
);
|
||||
if visibility == Visibility::Hidden && can_be_internalized {
|
||||
internalization_candidates.insert(mono_item);
|
||||
}
|
||||
|
||||
codegen_unit.items_mut().insert(mono_item, (linkage, visibility));
|
||||
roots.insert(mono_item);
|
||||
}
|
||||
|
||||
// Always ensure we have at least one CGU; otherwise, if we have a
|
||||
// crate with just types (for example), we could wind up with no CGU.
|
||||
if codegen_units.is_empty() {
|
||||
let codegen_unit_name = fallback_cgu_name(cgu_name_builder);
|
||||
codegen_units.insert(codegen_unit_name, CodegenUnit::new(codegen_unit_name));
|
||||
}
|
||||
|
||||
let codegen_units = codegen_units.into_values().collect();
|
||||
PlacedRootMonoItems { codegen_units, roots, internalization_candidates }
|
||||
}
|
||||
|
||||
fn merge_codegen_units<'tcx>(
|
||||
cx: &PartitioningCx<'_, 'tcx>,
|
||||
codegen_units: &mut Vec<CodegenUnit<'tcx>>,
|
||||
) {
|
||||
assert!(cx.target_cgu_count >= 1);
|
||||
|
||||
// Note that at this point in time the `codegen_units` here may not be
|
||||
// in a deterministic order (but we know they're deterministically the
|
||||
// same set). We want this merging to produce a deterministic ordering
|
||||
// of codegen units from the input.
|
||||
//
|
||||
// Due to basically how we've implemented the merging below (merge the
|
||||
// two smallest into each other) we're sure to start off with a
|
||||
// deterministic order (sorted by name). This'll mean that if two cgus
|
||||
// have the same size the stable sort below will keep everything nice
|
||||
// and deterministic.
|
||||
codegen_units.sort_by(|a, b| a.name().as_str().cmp(b.name().as_str()));
|
||||
|
||||
// This map keeps track of what got merged into what.
|
||||
let mut cgu_contents: FxHashMap<Symbol, Vec<Symbol>> =
|
||||
codegen_units.iter().map(|cgu| (cgu.name(), vec![cgu.name()])).collect();
|
||||
|
||||
// Merge the two smallest codegen units until the target size is
|
||||
// reached.
|
||||
while codegen_units.len() > cx.target_cgu_count {
|
||||
// Sort small cgus to the back
|
||||
codegen_units.sort_by_cached_key(|cgu| cmp::Reverse(cgu.size_estimate()));
|
||||
let mut smallest = codegen_units.pop().unwrap();
|
||||
let second_smallest = codegen_units.last_mut().unwrap();
|
||||
|
||||
// Move the mono-items from `smallest` to `second_smallest`
|
||||
second_smallest.modify_size_estimate(smallest.size_estimate());
|
||||
for (k, v) in smallest.items_mut().drain() {
|
||||
second_smallest.items_mut().insert(k, v);
|
||||
}
|
||||
|
||||
// Record that `second_smallest` now contains all the stuff that was
|
||||
// in `smallest` before.
|
||||
let mut consumed_cgu_names = cgu_contents.remove(&smallest.name()).unwrap();
|
||||
cgu_contents.get_mut(&second_smallest.name()).unwrap().append(&mut consumed_cgu_names);
|
||||
|
||||
debug!(
|
||||
"CodegenUnit {} merged into CodegenUnit {}",
|
||||
smallest.name(),
|
||||
second_smallest.name()
|
||||
);
|
||||
}
|
||||
|
||||
let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
|
||||
|
||||
if cx.tcx.sess.opts.incremental.is_some() {
|
||||
// If we are doing incremental compilation, we want CGU names to
|
||||
// reflect the path of the source level module they correspond to.
|
||||
// For CGUs that contain the code of multiple modules because of the
|
||||
// merging done above, we use a concatenation of the names of all
|
||||
// contained CGUs.
|
||||
let new_cgu_names: FxHashMap<Symbol, String> = cgu_contents
|
||||
.into_iter()
|
||||
// This `filter` makes sure we only update the name of CGUs that
|
||||
// were actually modified by merging.
|
||||
.filter(|(_, cgu_contents)| cgu_contents.len() > 1)
|
||||
.map(|(current_cgu_name, cgu_contents)| {
|
||||
let mut cgu_contents: Vec<&str> = cgu_contents.iter().map(|s| s.as_str()).collect();
|
||||
|
||||
// Sort the names, so things are deterministic and easy to
|
||||
// predict. We are sorting primitive `&str`s here so we can
|
||||
// use unstable sort.
|
||||
cgu_contents.sort_unstable();
|
||||
|
||||
(current_cgu_name, cgu_contents.join("--"))
|
||||
})
|
||||
.collect();
|
||||
|
||||
for cgu in codegen_units.iter_mut() {
|
||||
if let Some(new_cgu_name) = new_cgu_names.get(&cgu.name()) {
|
||||
if cx.tcx.sess.opts.unstable_opts.human_readable_cgu_names {
|
||||
cgu.set_name(Symbol::intern(&new_cgu_name));
|
||||
} else {
|
||||
// If we don't require CGU names to be human-readable,
|
||||
// we use a fixed length hash of the composite CGU name
|
||||
// instead.
|
||||
let new_cgu_name = CodegenUnit::mangle_name(&new_cgu_name);
|
||||
cgu.set_name(Symbol::intern(&new_cgu_name));
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// If we are compiling non-incrementally we just generate simple CGU
|
||||
// names containing an index.
|
||||
for (index, cgu) in codegen_units.iter_mut().enumerate() {
|
||||
let numbered_codegen_unit_name =
|
||||
cgu_name_builder.build_cgu_name_no_mangle(LOCAL_CRATE, &["cgu"], Some(index));
|
||||
cgu.set_name(numbered_codegen_unit_name);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// For symbol internalization, we need to know whether a symbol/mono-item is
|
||||
/// accessed from outside the codegen unit it is defined in. This type is used
|
||||
/// to keep track of that.
|
||||
@ -238,6 +411,453 @@ enum MonoItemPlacement {
|
||||
MultipleCgus,
|
||||
}
|
||||
|
||||
fn place_inlined_mono_items<'tcx>(
|
||||
cx: &PartitioningCx<'_, 'tcx>,
|
||||
codegen_units: &mut [CodegenUnit<'tcx>],
|
||||
roots: FxHashSet<MonoItem<'tcx>>,
|
||||
) -> FxHashMap<MonoItem<'tcx>, MonoItemPlacement> {
|
||||
let mut mono_item_placements = FxHashMap::default();
|
||||
|
||||
let single_codegen_unit = codegen_units.len() == 1;
|
||||
|
||||
for old_codegen_unit in codegen_units.iter_mut() {
|
||||
// Collect all items that need to be available in this codegen unit.
|
||||
let mut reachable = FxHashSet::default();
|
||||
for root in old_codegen_unit.items().keys() {
|
||||
follow_inlining(*root, cx.inlining_map, &mut reachable);
|
||||
}
|
||||
|
||||
let mut new_codegen_unit = CodegenUnit::new(old_codegen_unit.name());
|
||||
|
||||
// Add all monomorphizations that are not already there.
|
||||
for mono_item in reachable {
|
||||
if let Some(linkage) = old_codegen_unit.items().get(&mono_item) {
|
||||
// This is a root, just copy it over.
|
||||
new_codegen_unit.items_mut().insert(mono_item, *linkage);
|
||||
} else {
|
||||
if roots.contains(&mono_item) {
|
||||
bug!(
|
||||
"GloballyShared mono-item inlined into other CGU: \
|
||||
{:?}",
|
||||
mono_item
|
||||
);
|
||||
}
|
||||
|
||||
// This is a CGU-private copy.
|
||||
new_codegen_unit
|
||||
.items_mut()
|
||||
.insert(mono_item, (Linkage::Internal, Visibility::Default));
|
||||
}
|
||||
|
||||
if !single_codegen_unit {
|
||||
// If there is more than one codegen unit, we need to keep track
|
||||
// in which codegen units each monomorphization is placed.
|
||||
match mono_item_placements.entry(mono_item) {
|
||||
Entry::Occupied(e) => {
|
||||
let placement = e.into_mut();
|
||||
debug_assert!(match *placement {
|
||||
MonoItemPlacement::SingleCgu { cgu_name } => {
|
||||
cgu_name != new_codegen_unit.name()
|
||||
}
|
||||
MonoItemPlacement::MultipleCgus => true,
|
||||
});
|
||||
*placement = MonoItemPlacement::MultipleCgus;
|
||||
}
|
||||
Entry::Vacant(e) => {
|
||||
e.insert(MonoItemPlacement::SingleCgu {
|
||||
cgu_name: new_codegen_unit.name(),
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
*old_codegen_unit = new_codegen_unit;
|
||||
}
|
||||
|
||||
return mono_item_placements;
|
||||
|
||||
fn follow_inlining<'tcx>(
|
||||
mono_item: MonoItem<'tcx>,
|
||||
inlining_map: &InliningMap<'tcx>,
|
||||
visited: &mut FxHashSet<MonoItem<'tcx>>,
|
||||
) {
|
||||
if !visited.insert(mono_item) {
|
||||
return;
|
||||
}
|
||||
|
||||
inlining_map.with_inlining_candidates(mono_item, |target| {
|
||||
follow_inlining(target, inlining_map, visited);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
fn internalize_symbols<'tcx>(
|
||||
cx: &PartitioningCx<'_, 'tcx>,
|
||||
codegen_units: &mut [CodegenUnit<'tcx>],
|
||||
mono_item_placements: FxHashMap<MonoItem<'tcx>, MonoItemPlacement>,
|
||||
internalization_candidates: FxHashSet<MonoItem<'tcx>>,
|
||||
) {
|
||||
if codegen_units.len() == 1 {
|
||||
// Fast path for when there is only one codegen unit. In this case we
|
||||
// can internalize all candidates, since there is nowhere else they
|
||||
// could be accessed from.
|
||||
for cgu in codegen_units {
|
||||
for candidate in &internalization_candidates {
|
||||
cgu.items_mut().insert(*candidate, (Linkage::Internal, Visibility::Default));
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// Build a map from every monomorphization to all the monomorphizations that
|
||||
// reference it.
|
||||
let mut accessor_map: FxHashMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>> = Default::default();
|
||||
cx.inlining_map.iter_accesses(|accessor, accessees| {
|
||||
for accessee in accessees {
|
||||
accessor_map.entry(*accessee).or_default().push(accessor);
|
||||
}
|
||||
});
|
||||
|
||||
// For each internalization candidates in each codegen unit, check if it is
|
||||
// accessed from outside its defining codegen unit.
|
||||
for cgu in codegen_units {
|
||||
let home_cgu = MonoItemPlacement::SingleCgu { cgu_name: cgu.name() };
|
||||
|
||||
for (accessee, linkage_and_visibility) in cgu.items_mut() {
|
||||
if !internalization_candidates.contains(accessee) {
|
||||
// This item is no candidate for internalizing, so skip it.
|
||||
continue;
|
||||
}
|
||||
debug_assert_eq!(mono_item_placements[accessee], home_cgu);
|
||||
|
||||
if let Some(accessors) = accessor_map.get(accessee) {
|
||||
if accessors
|
||||
.iter()
|
||||
.filter_map(|accessor| {
|
||||
// Some accessors might not have been
|
||||
// instantiated. We can safely ignore those.
|
||||
mono_item_placements.get(accessor)
|
||||
})
|
||||
.any(|placement| *placement != home_cgu)
|
||||
{
|
||||
// Found an accessor from another CGU, so skip to the next
|
||||
// item without marking this one as internal.
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// If we got here, we did not find any accesses from other CGUs,
|
||||
// so it's fine to make this monomorphization internal.
|
||||
*linkage_and_visibility = (Linkage::Internal, Visibility::Default);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn characteristic_def_id_of_mono_item<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
mono_item: MonoItem<'tcx>,
|
||||
) -> Option<DefId> {
|
||||
match mono_item {
|
||||
MonoItem::Fn(instance) => {
|
||||
let def_id = match instance.def {
|
||||
ty::InstanceDef::Item(def) => def,
|
||||
ty::InstanceDef::VTableShim(..)
|
||||
| ty::InstanceDef::ReifyShim(..)
|
||||
| ty::InstanceDef::FnPtrShim(..)
|
||||
| ty::InstanceDef::ClosureOnceShim { .. }
|
||||
| ty::InstanceDef::Intrinsic(..)
|
||||
| ty::InstanceDef::DropGlue(..)
|
||||
| ty::InstanceDef::Virtual(..)
|
||||
| ty::InstanceDef::CloneShim(..)
|
||||
| ty::InstanceDef::ThreadLocalShim(..)
|
||||
| ty::InstanceDef::FnPtrAddrShim(..) => return None,
|
||||
};
|
||||
|
||||
// If this is a method, we want to put it into the same module as
|
||||
// its self-type. If the self-type does not provide a characteristic
|
||||
// DefId, we use the location of the impl after all.
|
||||
|
||||
if tcx.trait_of_item(def_id).is_some() {
|
||||
let self_ty = instance.substs.type_at(0);
|
||||
// This is a default implementation of a trait method.
|
||||
return characteristic_def_id_of_type(self_ty).or(Some(def_id));
|
||||
}
|
||||
|
||||
if let Some(impl_def_id) = tcx.impl_of_method(def_id) {
|
||||
if tcx.sess.opts.incremental.is_some()
|
||||
&& tcx.trait_id_of_impl(impl_def_id) == tcx.lang_items().drop_trait()
|
||||
{
|
||||
// Put `Drop::drop` into the same cgu as `drop_in_place`
|
||||
// since `drop_in_place` is the only thing that can
|
||||
// call it.
|
||||
return None;
|
||||
}
|
||||
|
||||
// When polymorphization is enabled, methods which do not depend on their generic
|
||||
// parameters, but the self-type of their impl block do will fail to normalize.
|
||||
if !tcx.sess.opts.unstable_opts.polymorphize || !instance.has_param() {
|
||||
// This is a method within an impl, find out what the self-type is:
|
||||
let impl_self_ty = tcx.subst_and_normalize_erasing_regions(
|
||||
instance.substs,
|
||||
ty::ParamEnv::reveal_all(),
|
||||
tcx.type_of(impl_def_id),
|
||||
);
|
||||
if let Some(def_id) = characteristic_def_id_of_type(impl_self_ty) {
|
||||
return Some(def_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Some(def_id)
|
||||
}
|
||||
MonoItem::Static(def_id) => Some(def_id),
|
||||
MonoItem::GlobalAsm(item_id) => Some(item_id.owner_id.to_def_id()),
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_codegen_unit_name(
|
||||
tcx: TyCtxt<'_>,
|
||||
name_builder: &mut CodegenUnitNameBuilder<'_>,
|
||||
def_id: DefId,
|
||||
volatile: bool,
|
||||
cache: &mut CguNameCache,
|
||||
) -> Symbol {
|
||||
// Find the innermost module that is not nested within a function.
|
||||
let mut current_def_id = def_id;
|
||||
let mut cgu_def_id = None;
|
||||
// Walk backwards from the item we want to find the module for.
|
||||
loop {
|
||||
if current_def_id.is_crate_root() {
|
||||
if cgu_def_id.is_none() {
|
||||
// If we have not found a module yet, take the crate root.
|
||||
cgu_def_id = Some(def_id.krate.as_def_id());
|
||||
}
|
||||
break;
|
||||
} else if tcx.def_kind(current_def_id) == DefKind::Mod {
|
||||
if cgu_def_id.is_none() {
|
||||
cgu_def_id = Some(current_def_id);
|
||||
}
|
||||
} else {
|
||||
// If we encounter something that is not a module, throw away
|
||||
// any module that we've found so far because we now know that
|
||||
// it is nested within something else.
|
||||
cgu_def_id = None;
|
||||
}
|
||||
|
||||
current_def_id = tcx.parent(current_def_id);
|
||||
}
|
||||
|
||||
let cgu_def_id = cgu_def_id.unwrap();
|
||||
|
||||
*cache.entry((cgu_def_id, volatile)).or_insert_with(|| {
|
||||
let def_path = tcx.def_path(cgu_def_id);
|
||||
|
||||
let components = def_path.data.iter().map(|part| match part.data.name() {
|
||||
DefPathDataName::Named(name) => name,
|
||||
DefPathDataName::Anon { .. } => unreachable!(),
|
||||
});
|
||||
|
||||
let volatile_suffix = volatile.then_some("volatile");
|
||||
|
||||
name_builder.build_cgu_name(def_path.krate, components, volatile_suffix)
|
||||
})
|
||||
}
|
||||
|
||||
// Anything we can't find a proper codegen unit for goes into this.
|
||||
fn fallback_cgu_name(name_builder: &mut CodegenUnitNameBuilder<'_>) -> Symbol {
|
||||
name_builder.build_cgu_name(LOCAL_CRATE, &["fallback"], Some("cgu"))
|
||||
}
|
||||
|
||||
fn mono_item_linkage_and_visibility<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
mono_item: &MonoItem<'tcx>,
|
||||
can_be_internalized: &mut bool,
|
||||
export_generics: bool,
|
||||
) -> (Linkage, Visibility) {
|
||||
if let Some(explicit_linkage) = mono_item.explicit_linkage(tcx) {
|
||||
return (explicit_linkage, Visibility::Default);
|
||||
}
|
||||
let vis = mono_item_visibility(tcx, mono_item, can_be_internalized, export_generics);
|
||||
(Linkage::External, vis)
|
||||
}
|
||||
|
||||
type CguNameCache = FxHashMap<(DefId, bool), Symbol>;
|
||||
|
||||
fn static_visibility<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
can_be_internalized: &mut bool,
|
||||
def_id: DefId,
|
||||
) -> Visibility {
|
||||
if tcx.is_reachable_non_generic(def_id) {
|
||||
*can_be_internalized = false;
|
||||
default_visibility(tcx, def_id, false)
|
||||
} else {
|
||||
Visibility::Hidden
|
||||
}
|
||||
}
|
||||
|
||||
fn mono_item_visibility<'tcx>(
|
||||
tcx: TyCtxt<'tcx>,
|
||||
mono_item: &MonoItem<'tcx>,
|
||||
can_be_internalized: &mut bool,
|
||||
export_generics: bool,
|
||||
) -> Visibility {
|
||||
let instance = match mono_item {
|
||||
// This is pretty complicated; see below.
|
||||
MonoItem::Fn(instance) => instance,
|
||||
|
||||
// Misc handling for generics and such, but otherwise:
|
||||
MonoItem::Static(def_id) => return static_visibility(tcx, can_be_internalized, *def_id),
|
||||
MonoItem::GlobalAsm(item_id) => {
|
||||
return static_visibility(tcx, can_be_internalized, item_id.owner_id.to_def_id());
|
||||
}
|
||||
};
|
||||
|
||||
let def_id = match instance.def {
|
||||
InstanceDef::Item(def_id) | InstanceDef::DropGlue(def_id, Some(_)) => def_id,
|
||||
|
||||
// We match the visibility of statics here
|
||||
InstanceDef::ThreadLocalShim(def_id) => {
|
||||
return static_visibility(tcx, can_be_internalized, def_id);
|
||||
}
|
||||
|
||||
// These are all compiler glue and such, never exported, always hidden.
|
||||
InstanceDef::VTableShim(..)
|
||||
| InstanceDef::ReifyShim(..)
|
||||
| InstanceDef::FnPtrShim(..)
|
||||
| InstanceDef::Virtual(..)
|
||||
| InstanceDef::Intrinsic(..)
|
||||
| InstanceDef::ClosureOnceShim { .. }
|
||||
| InstanceDef::DropGlue(..)
|
||||
| InstanceDef::CloneShim(..)
|
||||
| InstanceDef::FnPtrAddrShim(..) => return Visibility::Hidden,
|
||||
};
|
||||
|
||||
// The `start_fn` lang item is actually a monomorphized instance of a
|
||||
// function in the standard library, used for the `main` function. We don't
|
||||
// want to export it so we tag it with `Hidden` visibility but this symbol
|
||||
// is only referenced from the actual `main` symbol which we unfortunately
|
||||
// don't know anything about during partitioning/collection. As a result we
|
||||
// forcibly keep this symbol out of the `internalization_candidates` set.
|
||||
//
|
||||
// FIXME: eventually we don't want to always force this symbol to have
|
||||
// hidden visibility, it should indeed be a candidate for
|
||||
// internalization, but we have to understand that it's referenced
|
||||
// from the `main` symbol we'll generate later.
|
||||
//
|
||||
// This may be fixable with a new `InstanceDef` perhaps? Unsure!
|
||||
if tcx.lang_items().start_fn() == Some(def_id) {
|
||||
*can_be_internalized = false;
|
||||
return Visibility::Hidden;
|
||||
}
|
||||
|
||||
let is_generic = instance.substs.non_erasable_generics().next().is_some();
|
||||
|
||||
// Upstream `DefId` instances get different handling than local ones.
|
||||
let Some(def_id) = def_id.as_local() else {
|
||||
return if export_generics && is_generic {
|
||||
// If it is an upstream monomorphization and we export generics, we must make
|
||||
// it available to downstream crates.
|
||||
*can_be_internalized = false;
|
||||
default_visibility(tcx, def_id, true)
|
||||
} else {
|
||||
Visibility::Hidden
|
||||
};
|
||||
};
|
||||
|
||||
if is_generic {
|
||||
if export_generics {
|
||||
if tcx.is_unreachable_local_definition(def_id) {
|
||||
// This instance cannot be used from another crate.
|
||||
Visibility::Hidden
|
||||
} else {
|
||||
// This instance might be useful in a downstream crate.
|
||||
*can_be_internalized = false;
|
||||
default_visibility(tcx, def_id.to_def_id(), true)
|
||||
}
|
||||
} else {
|
||||
// We are not exporting generics or the definition is not reachable
|
||||
// for downstream crates, we can internalize its instantiations.
|
||||
Visibility::Hidden
|
||||
}
|
||||
} else {
|
||||
// If this isn't a generic function then we mark this a `Default` if
|
||||
// this is a reachable item, meaning that it's a symbol other crates may
|
||||
// access when they link to us.
|
||||
if tcx.is_reachable_non_generic(def_id.to_def_id()) {
|
||||
*can_be_internalized = false;
|
||||
debug_assert!(!is_generic);
|
||||
return default_visibility(tcx, def_id.to_def_id(), false);
|
||||
}
|
||||
|
||||
// If this isn't reachable then we're gonna tag this with `Hidden`
|
||||
// visibility. In some situations though we'll want to prevent this
|
||||
// symbol from being internalized.
|
||||
//
|
||||
// There's two categories of items here:
|
||||
//
|
||||
// * First is weak lang items. These are basically mechanisms for
|
||||
// libcore to forward-reference symbols defined later in crates like
|
||||
// the standard library or `#[panic_handler]` definitions. The
|
||||
// definition of these weak lang items needs to be referencable by
|
||||
// libcore, so we're no longer a candidate for internalization.
|
||||
// Removal of these functions can't be done by LLVM but rather must be
|
||||
// done by the linker as it's a non-local decision.
|
||||
//
|
||||
// * Second is "std internal symbols". Currently this is primarily used
|
||||
// for allocator symbols. Allocators are a little weird in their
|
||||
// implementation, but the idea is that the compiler, at the last
|
||||
// minute, defines an allocator with an injected object file. The
|
||||
// `alloc` crate references these symbols (`__rust_alloc`) and the
|
||||
// definition doesn't get hooked up until a linked crate artifact is
|
||||
// generated.
|
||||
//
|
||||
// The symbols synthesized by the compiler (`__rust_alloc`) are thin
|
||||
// veneers around the actual implementation, some other symbol which
|
||||
// implements the same ABI. These symbols (things like `__rg_alloc`,
|
||||
// `__rdl_alloc`, `__rde_alloc`, etc), are all tagged with "std
|
||||
// internal symbols".
|
||||
//
|
||||
// The std-internal symbols here **should not show up in a dll as an
|
||||
// exported interface**, so they return `false` from
|
||||
// `is_reachable_non_generic` above and we'll give them `Hidden`
|
||||
// visibility below. Like the weak lang items, though, we can't let
|
||||
// LLVM internalize them as this decision is left up to the linker to
|
||||
// omit them, so prevent them from being internalized.
|
||||
let attrs = tcx.codegen_fn_attrs(def_id);
|
||||
if attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
|
||||
*can_be_internalized = false;
|
||||
}
|
||||
|
||||
Visibility::Hidden
|
||||
}
|
||||
}
|
||||
|
||||
fn default_visibility(tcx: TyCtxt<'_>, id: DefId, is_generic: bool) -> Visibility {
|
||||
if !tcx.sess.target.default_hidden_visibility {
|
||||
return Visibility::Default;
|
||||
}
|
||||
|
||||
// Generic functions never have export-level C.
|
||||
if is_generic {
|
||||
return Visibility::Hidden;
|
||||
}
|
||||
|
||||
// Things with export level C don't get instantiated in
|
||||
// downstream crates.
|
||||
if !id.is_local() {
|
||||
return Visibility::Hidden;
|
||||
}
|
||||
|
||||
// C-export level items remain at `Default`, all other internal
|
||||
// items become `Hidden`.
|
||||
match tcx.reachable_non_generics(id.krate).get(&id) {
|
||||
Some(SymbolExportInfo { level: SymbolExportLevel::C, .. }) => Visibility::Default,
|
||||
_ => Visibility::Hidden,
|
||||
}
|
||||
}
|
||||
fn debug_dump<'a, 'tcx: 'a>(tcx: TyCtxt<'tcx>, label: &str, cgus: &[CodegenUnit<'tcx>]) {
|
||||
let dump = move || {
|
||||
use std::fmt::Write;
|
||||
|
Loading…
Reference in New Issue
Block a user