Implement CoerceMany

This commit is contained in:
Lukas Wirth 2021-07-08 14:16:23 +02:00
parent 9779526d8f
commit 64a1b26b8d
3 changed files with 120 additions and 89 deletions

View File

@ -25,9 +25,8 @@ impl InferenceContext<'_> {
};
// Deduction from where-clauses in scope, as well as fn-pointer coercion are handled here.
if let Ok(res) = self.coerce(closure_ty, &expected_ty) {
self.write_expr_adj(closure_expr, res.value.0);
}
let _ = self.coerce(Some(closure_expr), closure_ty, &expected_ty);
// Deduction based on the expected `dyn Fn` is done separately.
if let TyKind::Dyn(dyn_ty) = expected_ty.kind(&Interner) {
if let Some(sig) = self.deduce_sig_from_dyn_ty(dyn_ty) {

View File

@ -10,7 +10,7 @@ use hir_def::{expr::ExprId, lang_item::LangItemTarget};
use crate::{
autoderef,
infer::{Adjust, Adjustment, AutoBorrow, PointerCast, TypeMismatch},
infer::{Adjust, Adjustment, AutoBorrow, InferResult, PointerCast, TypeMismatch},
static_lifetime, Canonical, DomainGoal, FnPointer, FnSig, Interner, Solution, Substitution, Ty,
TyBuilder, TyExt, TyKind,
};
@ -36,23 +36,25 @@ fn success(
) -> CoerceResult {
Ok(InferOk { goals, value: (adj, target) })
}
#[derive(Clone, Debug)]
pub(super) struct CoerceMany {
expected_ty: Ty,
}
impl<'a> InferenceContext<'a> {
/// Unify two types, but may coerce the first one to the second one
/// using "implicit coercion rules" if needed.
pub(super) fn coerce(&mut self, from_ty: &Ty, to_ty: &Ty) -> CoerceResult {
let from_ty = self.resolve_ty_shallow(from_ty);
let to_ty = self.resolve_ty_shallow(to_ty);
match self.coerce_inner(from_ty, &to_ty) {
Ok(InferOk { value, goals }) => {
self.table.register_infer_ok(InferOk { value: (), goals });
Ok(InferOk { value, goals: Vec::new() })
}
Err(e) => {
// FIXME deal with error
Err(e)
}
}
impl CoerceMany {
pub(super) fn new(expected: Ty) -> Self {
CoerceMany { expected_ty: expected }
}
pub(super) fn once(
ctx: &mut InferenceContext<'_>,
expected: Ty,
expr: Option<ExprId>,
expr_ty: &Ty,
) -> Ty {
let mut this = CoerceMany::new(expected);
this.coerce(ctx, expr, expr_ty);
this.complete()
}
/// Merge two types from different branches, with possible coercion.
@ -62,51 +64,88 @@ impl<'a> InferenceContext<'a> {
/// coerce both to function pointers;
/// - if we were concerned with lifetime subtyping, we'd need to look for a
/// least upper bound.
pub(super) fn coerce_merge_branch(&mut self, id: Option<ExprId>, ty1: &Ty, ty2: &Ty) -> Ty {
// TODO
let ty1 = self.resolve_ty_shallow(ty1);
let ty2 = self.resolve_ty_shallow(ty2);
pub(super) fn coerce(
&mut self,
ctx: &mut InferenceContext<'_>,
expr: Option<ExprId>,
expr_ty: &Ty,
) {
let expr_ty = ctx.resolve_ty_shallow(expr_ty);
self.expected_ty = ctx.resolve_ty_shallow(&self.expected_ty);
// Special case: two function types. Try to coerce both to
// pointers to have a chance at getting a match. See
// https://github.com/rust-lang/rust/blob/7b805396bf46dce972692a6846ce2ad8481c5f85/src/librustc_typeck/check/coercion.rs#L877-L916
let sig = match (ty1.kind(&Interner), ty2.kind(&Interner)) {
let sig = match (self.expected_ty.kind(&Interner), expr_ty.kind(&Interner)) {
(TyKind::FnDef(..) | TyKind::Closure(..), TyKind::FnDef(..) | TyKind::Closure(..)) => {
// FIXME: we're ignoring safety here. To be more correct, if we have one FnDef and one Closure,
// we should be coercing the closure to a fn pointer of the safety of the FnDef
cov_mark::hit!(coerce_fn_reification);
let sig = ty1.callable_sig(self.db).expect("FnDef without callable sig");
let sig =
self.expected_ty.callable_sig(ctx.db).expect("FnDef without callable sig");
Some(sig)
}
_ => None,
};
if let Some(sig) = sig {
let target_ty = TyKind::Function(sig.to_fn_ptr()).intern(&Interner);
let result1 = self.coerce_inner(ty1.clone(), &target_ty);
let result2 = self.coerce_inner(ty2.clone(), &target_ty);
let result1 = ctx.coerce_inner(self.expected_ty.clone(), &target_ty);
let result2 = ctx.coerce_inner(expr_ty.clone(), &target_ty);
if let (Ok(result1), Ok(result2)) = (result1, result2) {
self.table.register_infer_ok(result1);
self.table.register_infer_ok(result2);
return target_ty;
ctx.table.register_infer_ok(result1);
ctx.table.register_infer_ok(result2);
return self.expected_ty = target_ty;
}
}
// It might not seem like it, but order is important here: ty1 is our
// "previous" type, ty2 is the "new" one being added. If the previous
// It might not seem like it, but order is important here: If the expected
// type is a type variable and the new one is `!`, trying it the other
// way around first would mean we make the type variable `!`, instead of
// just marking it as possibly diverging.
if self.coerce(&ty2, &ty1).is_ok() {
ty1
} else if self.coerce(&ty1, &ty2).is_ok() {
ty2
if ctx.coerce(expr, &expr_ty, &self.expected_ty).is_ok() {
/* self.expected_ty is already correct */
} else if ctx.coerce(expr, &self.expected_ty, &expr_ty).is_ok() {
self.expected_ty = expr_ty;
} else {
if let Some(id) = id {
self.result
.type_mismatches
.insert(id.into(), TypeMismatch { expected: ty1.clone(), actual: ty2 });
if let Some(id) = expr {
ctx.result.type_mismatches.insert(
id.into(),
TypeMismatch { expected: self.expected_ty.clone(), actual: expr_ty },
);
}
cov_mark::hit!(coerce_merge_fail_fallback);
ty1
/* self.expected_ty is already correct */
}
}
pub(super) fn complete(self) -> Ty {
self.expected_ty
}
}
impl<'a> InferenceContext<'a> {
/// Unify two types, but may coerce the first one to the second one
/// using "implicit coercion rules" if needed.
pub(super) fn coerce(
&mut self,
expr: Option<ExprId>,
from_ty: &Ty,
to_ty: &Ty,
) -> InferResult<Ty> {
let from_ty = self.resolve_ty_shallow(from_ty);
let to_ty = self.resolve_ty_shallow(to_ty);
match self.coerce_inner(from_ty, &to_ty) {
Ok(InferOk { value: (adjustments, ty), goals }) => {
if let Some(expr) = expr {
self.write_expr_adj(expr, adjustments);
}
self.table.register_infer_ok(InferOk { value: (), goals });
Ok(InferOk { value: ty, goals: Vec::new() })
}
Err(e) => {
// FIXME deal with error
Err(e)
}
}
}
@ -189,7 +228,6 @@ impl<'a> InferenceContext<'a> {
// Check that the types which they point at are compatible.
let from_raw = TyKind::Raw(to_mt, from_inner.clone()).intern(&Interner);
// self.table.try_unify(&from_raw, to_ty);
// Although references and unsafe ptrs have the same
// representation, we still register an Adjust::DerefRef so that
@ -518,15 +556,13 @@ impl<'a> InferenceContext<'a> {
// FIXME: should we accept ambiguous results here?
_ => return Err(TypeError),
};
// TODO: this is probably wrong?
let coerce_target = self.table.new_type_var();
self.unify_and(&coerce_target, to_ty, |target| {
let unsize = Adjustment { kind: Adjust::Pointer(PointerCast::Unsize), target };
match reborrow {
None => vec![unsize],
Some((ref deref, ref autoref)) => vec![deref.clone(), autoref.clone(), unsize],
}
})
let unsize =
Adjustment { kind: Adjust::Pointer(PointerCast::Unsize), target: to_ty.clone() };
let adjustments = match reborrow {
None => vec![unsize],
Some((deref, autoref)) => vec![deref, autoref, unsize],
};
success(adjustments, to_ty.clone(), vec![])
}
}

View File

@ -16,6 +16,7 @@ use syntax::ast::RangeOp;
use crate::{
autoderef, consteval,
infer::coerce::CoerceMany,
lower::lower_to_chalk_mutability,
mapping::from_chalk,
method_resolution, op,
@ -56,11 +57,8 @@ impl<'a> InferenceContext<'a> {
pub(super) fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty {
let ty = self.infer_expr_inner(expr, expected);
let ty = if let Some(target) = expected.only_has_type(&mut self.table) {
match self.coerce(&ty, &target) {
Ok(res) => {
self.result.expr_adjustments.insert(expr, res.value.0);
target
}
match self.coerce(Some(expr), &ty, &target) {
Ok(res) => res.value,
Err(_) => {
self.result
.type_mismatches
@ -128,31 +126,32 @@ impl<'a> InferenceContext<'a> {
let body = Arc::clone(&self.body); // avoid borrow checker problem
let ty = match &body[tgt_expr] {
Expr::Missing => self.err_ty(),
Expr::If { condition, then_branch, else_branch } => {
&Expr::If { condition, then_branch, else_branch } => {
// if let is desugared to match, so this is always simple if
self.infer_expr(
*condition,
condition,
&Expectation::has_type(TyKind::Scalar(Scalar::Bool).intern(&Interner)),
);
let condition_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
let mut both_arms_diverge = Diverges::Always;
let mut result_ty = self.table.new_type_var();
let then_ty = self.infer_expr_inner(*then_branch, expected);
let result_ty = self.table.new_type_var();
let then_ty = self.infer_expr_inner(then_branch, expected);
both_arms_diverge &= mem::replace(&mut self.diverges, Diverges::Maybe);
result_ty = self.coerce_merge_branch(Some(*then_branch), &result_ty, &then_ty);
let mut coerce = CoerceMany::new(result_ty);
coerce.coerce(self, Some(then_branch), &then_ty);
let else_ty = match else_branch {
Some(else_branch) => self.infer_expr_inner(*else_branch, expected),
Some(else_branch) => self.infer_expr_inner(else_branch, expected),
None => TyBuilder::unit(),
};
both_arms_diverge &= self.diverges;
// FIXME: create a synthetic `else {}` so we have something to refer to here instead of None?
result_ty = self.coerce_merge_branch(*else_branch, &result_ty, &else_ty);
coerce.coerce(self, else_branch, &else_ty);
self.diverges = condition_diverges | both_arms_diverge;
result_ty
coerce.complete()
}
Expr::Block { statements, tail, label, id: _ } => {
let old_resolver = mem::replace(
@ -193,7 +192,7 @@ impl<'a> InferenceContext<'a> {
}
Expr::Async { body } => {
// Use the first type parameter as the output type of future.
// existenail type AsyncBlockImplTrait<InnerType>: Future<Output = InnerType>
// existential type AsyncBlockImplTrait<InnerType>: Future<Output = InnerType>
let inner_ty = self.infer_expr(*body, &Expectation::none());
let impl_trait_id = crate::ImplTraitId::AsyncBlockTypeImplTrait(self.owner, *body);
let opaque_ty_id = self.db.intern_impl_trait_id(impl_trait_id).into();
@ -223,6 +222,7 @@ impl<'a> InferenceContext<'a> {
self.breakables.push(BreakableContext {
may_break: false,
break_ty: self.err_ty(),
label: label.map(|label| self.body[label].name.clone()),
});
// while let is desugared to a match loop, so this is always simple while
@ -344,7 +344,7 @@ impl<'a> InferenceContext<'a> {
let expected = expected.adjust_for_branches(&mut self.table);
let mut result_ty = if arms.is_empty() {
let result_ty = if arms.is_empty() {
TyKind::Never.intern(&Interner)
} else {
match &expected {
@ -352,6 +352,7 @@ impl<'a> InferenceContext<'a> {
_ => self.table.new_type_var(),
}
};
let mut coerce = CoerceMany::new(result_ty);
let matchee_diverges = self.diverges;
let mut all_arms_diverge = Diverges::Always;
@ -368,12 +369,12 @@ impl<'a> InferenceContext<'a> {
let arm_ty = self.infer_expr_inner(arm.expr, &expected);
all_arms_diverge &= self.diverges;
result_ty = self.coerce_merge_branch(Some(arm.expr), &result_ty, &arm_ty);
coerce.coerce(self, Some(arm.expr), &arm_ty);
}
self.diverges = matchee_diverges | all_arms_diverge;
result_ty
coerce.complete()
}
Expr::Path(p) => {
// FIXME this could be more efficient...
@ -382,6 +383,7 @@ impl<'a> InferenceContext<'a> {
}
Expr::Continue { .. } => TyKind::Never.intern(&Interner),
Expr::Break { expr, label } => {
let expr = *expr;
let last_ty =
if let Some(ctxt) = find_breakable(&mut self.breakables, label.as_ref()) {
ctxt.break_ty.clone()
@ -390,13 +392,13 @@ impl<'a> InferenceContext<'a> {
};
let val_ty = if let Some(expr) = expr {
self.infer_expr(*expr, &Expectation::none())
self.infer_expr(expr, &Expectation::none())
} else {
TyBuilder::unit()
};
// FIXME: create a synthetic `()` during lowering so we have something to refer to here?
let merged_type = self.coerce_merge_branch(*expr, &last_ty, &val_ty);
let merged_type = CoerceMany::once(self, last_ty, expr, &val_ty);
if let Some(ctxt) = find_breakable(&mut self.breakables, label.as_ref()) {
ctxt.break_ty = merged_type;
@ -413,9 +415,7 @@ impl<'a> InferenceContext<'a> {
self.infer_expr_coerce(*expr, &Expectation::has_type(self.return_ty.clone()));
} else {
let unit = TyBuilder::unit();
if let Ok(ok) = self.coerce(&unit, &self.return_ty.clone()) {
self.write_expr_adj(tgt_expr, ok.value.0);
}
let _ = self.coerce(Some(tgt_expr), &unit, &self.return_ty.clone());
}
TyKind::Never.intern(&Interner)
}
@ -744,39 +744,37 @@ impl<'a> InferenceContext<'a> {
TyKind::Tuple(tys.len(), Substitution::from_iter(&Interner, tys)).intern(&Interner)
}
Expr::Array(array) => {
let mut elem_ty =
let elem_ty =
match expected.to_option(&mut self.table).as_ref().map(|t| t.kind(&Interner)) {
Some(TyKind::Array(st, _) | TyKind::Slice(st)) => st.clone(),
_ => self.table.new_type_var(),
};
let mut coerce = CoerceMany::new(elem_ty.clone());
let expected = Expectation::has_type(elem_ty.clone());
let len = match array {
Array::ElementList(items) => {
for expr in items.iter() {
let cur_elem_ty = self.infer_expr_inner(*expr, &expected);
elem_ty = self.coerce_merge_branch(Some(*expr), &elem_ty, &cur_elem_ty);
for &expr in items.iter() {
let cur_elem_ty = self.infer_expr_inner(expr, &expected);
coerce.coerce(self, Some(expr), &cur_elem_ty);
}
Some(items.len() as u64)
}
Array::Repeat { initializer, repeat } => {
self.infer_expr_coerce(
*initializer,
&Expectation::has_type(elem_ty.clone()),
);
&Array::Repeat { initializer, repeat } => {
self.infer_expr_coerce(initializer, &Expectation::has_type(elem_ty));
self.infer_expr(
*repeat,
repeat,
&Expectation::has_type(
TyKind::Scalar(Scalar::Uint(UintTy::Usize)).intern(&Interner),
),
);
let repeat_expr = &self.body.exprs[*repeat];
let repeat_expr = &self.body.exprs[repeat];
consteval::eval_usize(repeat_expr)
}
};
TyKind::Array(elem_ty, consteval::usize_const(len)).intern(&Interner)
TyKind::Array(coerce.complete(), consteval::usize_const(len)).intern(&Interner)
}
Expr::Literal(lit) => match lit {
Literal::Bool(..) => TyKind::Scalar(Scalar::Bool).intern(&Interner),
@ -872,9 +870,7 @@ impl<'a> InferenceContext<'a> {
self.table.new_maybe_never_var()
} else {
if let Some(t) = expected.only_has_type(&mut self.table) {
if let Ok(ok) = self.coerce(&TyBuilder::unit(), &t) {
self.write_expr_adj(expr, ok.value.0);
}
let _ = self.coerce(Some(expr), &TyBuilder::unit(), &t);
}
TyBuilder::unit()
}