auto merge of #12103 : alexcrichton/rust/unix, r=brson

There's a few parts to this PR

* Implement unix pipes in libnative for unix platforms (thanks @Geal!)
* Implement named pipes in libnative for windows (terrible, terrible code)
* Remove `#[cfg(unix)]` from `mod unix` in `std::io::net`. This is a terrible name for what it is, but that's the topic of #12093.

The windows implementation was significantly more complicated than I thought it would be, but it seems to be passing all the tests. now.

Closes #11201
This commit is contained in:
bors 2014-02-17 20:01:52 -08:00
commit 62d7d0079f
6 changed files with 927 additions and 45 deletions

View File

@ -60,6 +60,14 @@ pub mod timer;
#[path = "timer_win32.rs"]
pub mod timer;
#[cfg(unix)]
#[path = "pipe_unix.rs"]
pub mod pipe;
#[cfg(windows)]
#[path = "pipe_win32.rs"]
pub mod pipe;
mod timer_helper;
pub type IoResult<T> = Result<T, IoError>;
@ -77,6 +85,9 @@ fn translate_error(errno: i32, detail: bool) -> IoError {
fn get_err(errno: i32) -> (io::IoErrorKind, &'static str) {
match errno {
libc::EOF => (io::EndOfFile, "end of file"),
libc::ERROR_NO_DATA => (io::BrokenPipe, "the pipe is being closed"),
libc::ERROR_FILE_NOT_FOUND => (io::FileNotFound, "file not found"),
libc::ERROR_INVALID_NAME => (io::InvalidInput, "invalid file name"),
libc::WSAECONNREFUSED => (io::ConnectionRefused, "connection refused"),
libc::WSAECONNRESET => (io::ConnectionReset, "connection reset"),
libc::WSAEACCES => (io::PermissionDenied, "permission denied"),
@ -86,6 +97,7 @@ fn translate_error(errno: i32, detail: bool) -> IoError {
libc::WSAECONNABORTED => (io::ConnectionAborted, "connection aborted"),
libc::WSAEADDRNOTAVAIL => (io::ConnectionRefused, "address not available"),
libc::WSAEADDRINUSE => (io::ConnectionRefused, "address in use"),
libc::ERROR_BROKEN_PIPE => (io::BrokenPipe, "the pipe has ended"),
x => {
debug!("ignoring {}: {}", x, os::last_os_error());
@ -108,6 +120,7 @@ fn translate_error(errno: i32, detail: bool) -> IoError {
libc::ECONNABORTED => (io::ConnectionAborted, "connection aborted"),
libc::EADDRNOTAVAIL => (io::ConnectionRefused, "address not available"),
libc::EADDRINUSE => (io::ConnectionRefused, "address in use"),
libc::ENOENT => (io::FileNotFound, "no such file or directory"),
// These two constants can have the same value on some systems, but
// different values on others, so we can't use a match clause
@ -196,11 +209,11 @@ impl rtio::IoFactory for IoFactory {
fn udp_bind(&mut self, addr: SocketAddr) -> IoResult<~RtioUdpSocket> {
net::UdpSocket::bind(addr).map(|u| ~u as ~RtioUdpSocket)
}
fn unix_bind(&mut self, _path: &CString) -> IoResult<~RtioUnixListener> {
Err(unimpl())
fn unix_bind(&mut self, path: &CString) -> IoResult<~RtioUnixListener> {
pipe::UnixListener::bind(path).map(|s| ~s as ~RtioUnixListener)
}
fn unix_connect(&mut self, _path: &CString) -> IoResult<~RtioPipe> {
Err(unimpl())
fn unix_connect(&mut self, path: &CString) -> IoResult<~RtioPipe> {
pipe::UnixStream::connect(path).map(|s| ~s as ~RtioPipe)
}
fn get_host_addresses(&mut self, host: Option<&str>, servname: Option<&str>,
hint: Option<ai::Hint>) -> IoResult<~[ai::Info]> {

View File

@ -0,0 +1,285 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::c_str::CString;
use std::cast;
use std::io;
use std::libc;
use std::mem;
use std::rt::rtio;
use std::sync::arc::UnsafeArc;
use std::unstable::intrinsics;
use super::{IoResult, retry};
use super::file::{keep_going, fd_t};
fn unix_socket(ty: libc::c_int) -> IoResult<fd_t> {
match unsafe { libc::socket(libc::AF_UNIX, ty, 0) } {
-1 => Err(super::last_error()),
fd => Ok(fd)
}
}
fn addr_to_sockaddr_un(addr: &CString) -> IoResult<(libc::sockaddr_storage, uint)> {
// the sun_path length is limited to SUN_LEN (with null)
assert!(mem::size_of::<libc::sockaddr_storage>() >=
mem::size_of::<libc::sockaddr_un>());
let mut storage: libc::sockaddr_storage = unsafe { intrinsics::init() };
let s: &mut libc::sockaddr_un = unsafe { cast::transmute(&mut storage) };
let len = addr.len();
if len > s.sun_path.len() - 1 {
return Err(io::IoError {
kind: io::InvalidInput,
desc: "path must be smaller than SUN_LEN",
detail: None,
})
}
s.sun_family = libc::AF_UNIX as libc::sa_family_t;
for (slot, value) in s.sun_path.mut_iter().zip(addr.iter()) {
*slot = value;
}
// count the null terminator
let len = mem::size_of::<libc::sa_family_t>() + len + 1;
return Ok((storage, len));
}
fn sockaddr_to_unix(storage: &libc::sockaddr_storage,
len: uint) -> IoResult<CString> {
match storage.ss_family as libc::c_int {
libc::AF_UNIX => {
assert!(len as uint <= mem::size_of::<libc::sockaddr_un>());
let storage: &libc::sockaddr_un = unsafe {
cast::transmute(storage)
};
unsafe {
Ok(CString::new(storage.sun_path.as_ptr(), false).clone())
}
}
_ => Err(io::standard_error(io::InvalidInput))
}
}
struct Inner {
fd: fd_t,
}
impl Drop for Inner {
fn drop(&mut self) { unsafe { let _ = libc::close(self.fd); } }
}
fn connect(addr: &CString, ty: libc::c_int) -> IoResult<Inner> {
let (addr, len) = if_ok!(addr_to_sockaddr_un(addr));
let inner = Inner { fd: if_ok!(unix_socket(ty)) };
let addrp = &addr as *libc::sockaddr_storage;
match retry(|| unsafe {
libc::connect(inner.fd, addrp as *libc::sockaddr,
len as libc::socklen_t)
}) {
-1 => Err(super::last_error()),
_ => Ok(inner)
}
}
fn bind(addr: &CString, ty: libc::c_int) -> IoResult<Inner> {
let (addr, len) = if_ok!(addr_to_sockaddr_un(addr));
let inner = Inner { fd: if_ok!(unix_socket(ty)) };
let addrp = &addr as *libc::sockaddr_storage;
match unsafe {
libc::bind(inner.fd, addrp as *libc::sockaddr, len as libc::socklen_t)
} {
-1 => Err(super::last_error()),
_ => Ok(inner)
}
}
////////////////////////////////////////////////////////////////////////////////
// Unix Streams
////////////////////////////////////////////////////////////////////////////////
pub struct UnixStream {
priv inner: UnsafeArc<Inner>,
}
impl UnixStream {
pub fn connect(addr: &CString) -> IoResult<UnixStream> {
connect(addr, libc::SOCK_STREAM).map(|inner| {
UnixStream { inner: UnsafeArc::new(inner) }
})
}
fn fd(&self) -> fd_t { unsafe { (*self.inner.get()).fd } }
}
impl rtio::RtioPipe for UnixStream {
fn read(&mut self, buf: &mut [u8]) -> IoResult<uint> {
let ret = retry(|| unsafe {
libc::recv(self.fd(),
buf.as_ptr() as *mut libc::c_void,
buf.len() as libc::size_t,
0) as libc::c_int
});
if ret == 0 {
Err(io::standard_error(io::EndOfFile))
} else if ret < 0 {
Err(super::last_error())
} else {
Ok(ret as uint)
}
}
fn write(&mut self, buf: &[u8]) -> IoResult<()> {
let ret = keep_going(buf, |buf, len| unsafe {
libc::send(self.fd(),
buf as *mut libc::c_void,
len as libc::size_t,
0) as i64
});
if ret < 0 {
Err(super::last_error())
} else {
Ok(())
}
}
fn clone(&self) -> ~rtio::RtioPipe {
~UnixStream { inner: self.inner.clone() } as ~rtio::RtioPipe
}
}
////////////////////////////////////////////////////////////////////////////////
// Unix Datagram
////////////////////////////////////////////////////////////////////////////////
pub struct UnixDatagram {
priv inner: UnsafeArc<Inner>,
}
impl UnixDatagram {
pub fn connect(addr: &CString) -> IoResult<UnixDatagram> {
connect(addr, libc::SOCK_DGRAM).map(|inner| {
UnixDatagram { inner: UnsafeArc::new(inner) }
})
}
pub fn bind(addr: &CString) -> IoResult<UnixDatagram> {
bind(addr, libc::SOCK_DGRAM).map(|inner| {
UnixDatagram { inner: UnsafeArc::new(inner) }
})
}
fn fd(&self) -> fd_t { unsafe { (*self.inner.get()).fd } }
pub fn recvfrom(&mut self, buf: &mut [u8]) -> IoResult<(uint, CString)> {
let mut storage: libc::sockaddr_storage = unsafe { intrinsics::init() };
let storagep = &mut storage as *mut libc::sockaddr_storage;
let mut addrlen: libc::socklen_t =
mem::size_of::<libc::sockaddr_storage>() as libc::socklen_t;
let ret = retry(|| unsafe {
libc::recvfrom(self.fd(),
buf.as_ptr() as *mut libc::c_void,
buf.len() as libc::size_t,
0,
storagep as *mut libc::sockaddr,
&mut addrlen) as libc::c_int
});
if ret < 0 { return Err(super::last_error()) }
sockaddr_to_unix(&storage, addrlen as uint).and_then(|addr| {
Ok((ret as uint, addr))
})
}
pub fn sendto(&mut self, buf: &[u8], dst: &CString) -> IoResult<()> {
let (dst, len) = if_ok!(addr_to_sockaddr_un(dst));
let dstp = &dst as *libc::sockaddr_storage;
let ret = retry(|| unsafe {
libc::sendto(self.fd(),
buf.as_ptr() as *libc::c_void,
buf.len() as libc::size_t,
0,
dstp as *libc::sockaddr,
len as libc::socklen_t) as libc::c_int
});
match ret {
-1 => Err(super::last_error()),
n if n as uint != buf.len() => {
Err(io::IoError {
kind: io::OtherIoError,
desc: "couldn't send entire packet at once",
detail: None,
})
}
_ => Ok(())
}
}
pub fn clone(&mut self) -> UnixDatagram {
UnixDatagram { inner: self.inner.clone() }
}
}
////////////////////////////////////////////////////////////////////////////////
// Unix Listener
////////////////////////////////////////////////////////////////////////////////
pub struct UnixListener {
priv inner: Inner,
}
impl UnixListener {
pub fn bind(addr: &CString) -> IoResult<UnixListener> {
bind(addr, libc::SOCK_STREAM).map(|fd| UnixListener { inner: fd })
}
fn fd(&self) -> fd_t { self.inner.fd }
pub fn native_listen(self, backlog: int) -> IoResult<UnixAcceptor> {
match unsafe { libc::listen(self.fd(), backlog as libc::c_int) } {
-1 => Err(super::last_error()),
_ => Ok(UnixAcceptor { listener: self })
}
}
}
impl rtio::RtioUnixListener for UnixListener {
fn listen(~self) -> IoResult<~rtio::RtioUnixAcceptor> {
self.native_listen(128).map(|a| ~a as ~rtio::RtioUnixAcceptor)
}
}
pub struct UnixAcceptor {
priv listener: UnixListener,
}
impl UnixAcceptor {
fn fd(&self) -> fd_t { self.listener.fd() }
pub fn native_accept(&mut self) -> IoResult<UnixStream> {
let mut storage: libc::sockaddr_storage = unsafe { intrinsics::init() };
let storagep = &mut storage as *mut libc::sockaddr_storage;
let size = mem::size_of::<libc::sockaddr_storage>();
let mut size = size as libc::socklen_t;
match retry(|| unsafe {
libc::accept(self.fd(),
storagep as *mut libc::sockaddr,
&mut size as *mut libc::socklen_t) as libc::c_int
}) {
-1 => Err(super::last_error()),
fd => Ok(UnixStream { inner: UnsafeArc::new(Inner { fd: fd }) })
}
}
}
impl rtio::RtioUnixAcceptor for UnixAcceptor {
fn accept(&mut self) -> IoResult<~rtio::RtioPipe> {
self.native_accept().map(|s| ~s as ~rtio::RtioPipe)
}
}

View File

@ -0,0 +1,492 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Named pipes implementation for windows
//!
//! If are unfortunate enough to be reading this code, I would like to first
//! apologize. This was my first encounter with windows named pipes, and it
//! didn't exactly turn out very cleanly. If you, too, are new to named pipes,
//! read on as I'll try to explain some fun things that I ran into.
//!
//! # Unix pipes vs Named pipes
//!
//! As with everything else, named pipes on windows are pretty different from
//! unix pipes on unix. On unix, you use one "server pipe" to accept new client
//! pipes. So long as this server pipe is active, new children pipes can
//! connect. On windows, you instead have a number of "server pipes", and each
//! of these server pipes can throughout their lifetime be attached to a client
//! or not. Once attached to a client, a server pipe may then disconnect at a
//! later date.
//!
//! # Accepting clients
//!
//! As with most other I/O interfaces, our Listener/Acceptor/Stream interfaces
//! are built around the unix flavors. This means that we have one "server
//! pipe" to which many clients can connect. In order to make this compatible
//! with the windows model, each connected client consumes ownership of a server
//! pipe, and then a new server pipe is created for the next client.
//!
//! Note that the server pipes attached to clients are never given back to the
//! listener for recycling. This could possibly be implemented with a channel so
//! the listener half can re-use server pipes, but for now I err'd on the simple
//! side of things. Each stream accepted by a listener will destroy the server
//! pipe after the stream is dropped.
//!
//! This model ends up having a small race or two, and you can find more details
//! on the `native_accept` method.
//!
//! # Simultaneous reads and writes
//!
//! In testing, I found that two simultaneous writes and two simultaneous reads
//! on a pipe ended up working out just fine, but problems were encountered when
//! a read was executed simultaneously with a write. After some googling around,
//! it sounded like named pipes just weren't built for this kind of interaction,
//! and the suggested solution was to use overlapped I/O.
//!
//! I don't realy know what overlapped I/O is, but my basic understanding after
//! reading about it is that you have an external Event which is used to signal
//! I/O completion, passed around in some OVERLAPPED structures. As to what this
//! is, I'm not exactly sure.
//!
//! This problem implies that all named pipes are created with the
//! FILE_FLAG_OVERLAPPED option. This means that all of their I/O is
//! asynchronous. Each I/O operation has an associated OVERLAPPED structure, and
//! inside of this structure is a HANDLE from CreateEvent. After the I/O is
//! determined to be pending (may complete in the future), the
//! GetOverlappedResult function is used to block on the event, waiting for the
//! I/O to finish.
//!
//! This scheme ended up working well enough. There were two snags that I ran
//! into, however:
//!
//! * Each UnixStream instance needs its own read/write events to wait on. These
//! can't be shared among clones of the same stream because the documentation
//! states that it unsets the event when the I/O is started (would possibly
//! corrupt other events simultaneously waiting). For convenience's sake,
//! these events are lazily initialized.
//!
//! * Each server pipe needs to be created with FILE_FLAG_OVERLAPPED in addition
//! to all pipes created through `connect`. Notably this means that the
//! ConnectNamedPipe function is nonblocking, implying that the Listener needs
//! to have yet another event to do the actual blocking.
//!
//! # Conclusion
//!
//! The conclusion here is that I probably don't know the best way to work with
//! windows named pipes, but the solution here seems to work well enough to get
//! the test suite passing (the suite is in libstd), and that's good enough for
//! me!
use std::c_str::CString;
use std::libc;
use std::os::win32::as_utf16_p;
use std::ptr;
use std::rt::rtio;
use std::sync::arc::UnsafeArc;
use std::unstable::intrinsics;
use super::IoResult;
struct Event(libc::HANDLE);
impl Event {
fn new(manual_reset: bool, initial_state: bool) -> IoResult<Event> {
let event = unsafe {
libc::CreateEventW(ptr::mut_null(),
manual_reset as libc::BOOL,
initial_state as libc::BOOL,
ptr::null())
};
if event as uint == 0 {
Err(super::last_error())
} else {
Ok(Event(event))
}
}
fn handle(&self) -> libc::HANDLE { let Event(handle) = *self; handle }
}
impl Drop for Event {
fn drop(&mut self) {
unsafe { let _ = libc::CloseHandle(self.handle()); }
}
}
struct Inner {
handle: libc::HANDLE,
}
impl Drop for Inner {
fn drop(&mut self) {
unsafe {
let _ = libc::FlushFileBuffers(self.handle);
let _ = libc::CloseHandle(self.handle);
}
}
}
unsafe fn pipe(name: *u16, init: bool) -> libc::HANDLE {
libc::CreateNamedPipeW(
name,
libc::PIPE_ACCESS_DUPLEX |
if init {libc::FILE_FLAG_FIRST_PIPE_INSTANCE} else {0} |
libc::FILE_FLAG_OVERLAPPED,
libc::PIPE_TYPE_BYTE | libc::PIPE_READMODE_BYTE |
libc::PIPE_WAIT,
libc::PIPE_UNLIMITED_INSTANCES,
65536,
65536,
0,
ptr::mut_null()
)
}
////////////////////////////////////////////////////////////////////////////////
// Unix Streams
////////////////////////////////////////////////////////////////////////////////
pub struct UnixStream {
priv inner: UnsafeArc<Inner>,
priv write: Option<Event>,
priv read: Option<Event>,
}
impl UnixStream {
fn try_connect(p: *u16) -> Option<libc::HANDLE> {
// Note that most of this is lifted from the libuv implementation.
// The idea is that if we fail to open a pipe in read/write mode
// that we try afterwards in just read or just write
let mut result = unsafe {
libc::CreateFileW(p,
libc::GENERIC_READ | libc::GENERIC_WRITE,
0,
ptr::mut_null(),
libc::OPEN_EXISTING,
libc::FILE_FLAG_OVERLAPPED,
ptr::mut_null())
};
if result != libc::INVALID_HANDLE_VALUE as libc::HANDLE {
return Some(result)
}
let err = unsafe { libc::GetLastError() };
if err == libc::ERROR_ACCESS_DENIED as libc::DWORD {
result = unsafe {
libc::CreateFileW(p,
libc::GENERIC_READ | libc::FILE_WRITE_ATTRIBUTES,
0,
ptr::mut_null(),
libc::OPEN_EXISTING,
libc::FILE_FLAG_OVERLAPPED,
ptr::mut_null())
};
if result != libc::INVALID_HANDLE_VALUE as libc::HANDLE {
return Some(result)
}
}
let err = unsafe { libc::GetLastError() };
if err == libc::ERROR_ACCESS_DENIED as libc::DWORD {
result = unsafe {
libc::CreateFileW(p,
libc::GENERIC_WRITE | libc::FILE_READ_ATTRIBUTES,
0,
ptr::mut_null(),
libc::OPEN_EXISTING,
libc::FILE_FLAG_OVERLAPPED,
ptr::mut_null())
};
if result != libc::INVALID_HANDLE_VALUE as libc::HANDLE {
return Some(result)
}
}
None
}
pub fn connect(addr: &CString) -> IoResult<UnixStream> {
as_utf16_p(addr.as_str().unwrap(), |p| {
loop {
match UnixStream::try_connect(p) {
Some(handle) => {
let inner = Inner { handle: handle };
let mut mode = libc::PIPE_TYPE_BYTE |
libc::PIPE_READMODE_BYTE |
libc::PIPE_WAIT;
let ret = unsafe {
libc::SetNamedPipeHandleState(inner.handle,
&mut mode,
ptr::mut_null(),
ptr::mut_null())
};
return if ret == 0 {
Err(super::last_error())
} else {
Ok(UnixStream {
inner: UnsafeArc::new(inner),
read: None,
write: None,
})
}
}
None => {}
}
// On windows, if you fail to connect, you may need to call the
// `WaitNamedPipe` function, and this is indicated with an error
// code of ERROR_PIPE_BUSY.
let code = unsafe { libc::GetLastError() };
if code as int != libc::ERROR_PIPE_BUSY as int {
return Err(super::last_error())
}
// An example I found on microsoft's website used 20 seconds,
// libuv uses 30 seconds, hence we make the obvious choice of
// waiting for 25 seconds.
if unsafe { libc::WaitNamedPipeW(p, 25000) } == 0 {
return Err(super::last_error())
}
}
})
}
fn handle(&self) -> libc::HANDLE { unsafe { (*self.inner.get()).handle } }
}
impl rtio::RtioPipe for UnixStream {
fn read(&mut self, buf: &mut [u8]) -> IoResult<uint> {
if self.read.is_none() {
self.read = Some(if_ok!(Event::new(true, false)));
}
let mut bytes_read = 0;
let mut overlapped: libc::OVERLAPPED = unsafe { intrinsics::init() };
overlapped.hEvent = self.read.get_ref().handle();
let ret = unsafe {
libc::ReadFile(self.handle(),
buf.as_ptr() as libc::LPVOID,
buf.len() as libc::DWORD,
&mut bytes_read,
&mut overlapped)
};
if ret == 0 {
let err = unsafe { libc::GetLastError() };
if err == libc::ERROR_IO_PENDING as libc::DWORD {
let ret = unsafe {
libc::GetOverlappedResult(self.handle(),
&mut overlapped,
&mut bytes_read,
libc::TRUE)
};
if ret == 0 {
return Err(super::last_error())
}
} else {
return Err(super::last_error())
}
}
Ok(bytes_read as uint)
}
fn write(&mut self, buf: &[u8]) -> IoResult<()> {
if self.write.is_none() {
self.write = Some(if_ok!(Event::new(true, false)));
}
let mut offset = 0;
let mut overlapped: libc::OVERLAPPED = unsafe { intrinsics::init() };
overlapped.hEvent = self.write.get_ref().handle();
while offset < buf.len() {
let mut bytes_written = 0;
let ret = unsafe {
libc::WriteFile(self.handle(),
buf.slice_from(offset).as_ptr() as libc::LPVOID,
(buf.len() - offset) as libc::DWORD,
&mut bytes_written,
&mut overlapped)
};
if ret == 0 {
let err = unsafe { libc::GetLastError() };
if err == libc::ERROR_IO_PENDING as libc::DWORD {
let ret = unsafe {
libc::GetOverlappedResult(self.handle(),
&mut overlapped,
&mut bytes_written,
libc::TRUE)
};
if ret == 0 {
return Err(super::last_error())
}
} else {
return Err(super::last_error())
}
}
offset += bytes_written as uint;
}
Ok(())
}
fn clone(&self) -> ~rtio::RtioPipe {
~UnixStream {
inner: self.inner.clone(),
read: None,
write: None,
} as ~rtio::RtioPipe
}
}
////////////////////////////////////////////////////////////////////////////////
// Unix Listener
////////////////////////////////////////////////////////////////////////////////
pub struct UnixListener {
priv handle: libc::HANDLE,
priv name: CString,
}
impl UnixListener {
pub fn bind(addr: &CString) -> IoResult<UnixListener> {
// Although we technically don't need the pipe until much later, we
// create the initial handle up front to test the validity of the name
// and such.
as_utf16_p(addr.as_str().unwrap(), |p| {
let ret = unsafe { pipe(p, true) };
if ret == libc::INVALID_HANDLE_VALUE as libc::HANDLE {
Err(super::last_error())
} else {
Ok(UnixListener { handle: ret, name: addr.clone() })
}
})
}
pub fn native_listen(self) -> IoResult<UnixAcceptor> {
Ok(UnixAcceptor {
listener: self,
event: if_ok!(Event::new(true, false)),
})
}
}
impl Drop for UnixListener {
fn drop(&mut self) {
unsafe { let _ = libc::CloseHandle(self.handle); }
}
}
impl rtio::RtioUnixListener for UnixListener {
fn listen(~self) -> IoResult<~rtio::RtioUnixAcceptor> {
self.native_listen().map(|a| ~a as ~rtio::RtioUnixAcceptor)
}
}
pub struct UnixAcceptor {
priv listener: UnixListener,
priv event: Event,
}
impl UnixAcceptor {
pub fn native_accept(&mut self) -> IoResult<UnixStream> {
// This function has some funky implementation details when working with
// unix pipes. On windows, each server named pipe handle can be
// connected to a one or zero clients. To the best of my knowledge, a
// named server is considered active and present if there exists at
// least one server named pipe for it.
//
// The model of this function is to take the current known server
// handle, connect a client to it, and then transfer ownership to the
// UnixStream instance. The next time accept() is invoked, it'll need a
// different server handle to connect a client to.
//
// Note that there is a possible race here. Once our server pipe is
// handed off to a `UnixStream` object, the stream could be closed,
// meaning that there would be no active server pipes, hence even though
// we have a valid `UnixAcceptor`, no one can connect to it. For this
// reason, we generate the next accept call's server pipe at the end of
// this function call.
//
// This provides us an invariant that we always have at least one server
// connection open at a time, meaning that all connects to this acceptor
// should succeed while this is active.
//
// The actual implementation of doing this is a little tricky. Once a
// server pipe is created, a client can connect to it at any time. I
// assume that which server a client connects to is nondeterministic, so
// we also need to guarantee that the only server able to be connected
// to is the one that we're calling ConnectNamedPipe on. This means that
// we have to create the second server pipe *after* we've already
// accepted a connection. In order to at least somewhat gracefully
// handle errors, this means that if the second server pipe creation
// fails that we disconnect the connected client and then just keep
// using the original server pipe.
let handle = self.listener.handle;
// Once we've got a "server handle", we need to wait for a client to
// connect. The ConnectNamedPipe function will block this thread until
// someone on the other end connects. This function can "fail" if a
// client connects after we created the pipe but before we got down
// here. Thanks windows.
let mut overlapped: libc::OVERLAPPED = unsafe { intrinsics::init() };
overlapped.hEvent = self.event.handle();
if unsafe { libc::ConnectNamedPipe(handle, &mut overlapped) == 0 } {
let mut err = unsafe { libc::GetLastError() };
if err == libc::ERROR_IO_PENDING as libc::DWORD {
let ret = unsafe {
let mut transfer = 0;
libc::GetOverlappedResult(handle,
&mut overlapped,
&mut transfer,
libc::TRUE)
};
if ret == 0 {
err = unsafe { libc::GetLastError() };
} else {
// we succeeded, bypass the check below
err = libc::ERROR_PIPE_CONNECTED as libc::DWORD;
}
}
if err != libc::ERROR_PIPE_CONNECTED as libc::DWORD {
return Err(super::last_error())
}
}
// Now that we've got a connected client to our handle, we need to
// create a second server pipe. If this fails, we disconnect the
// connected client and return an error (see comments above).
let new_handle = as_utf16_p(self.listener.name.as_str().unwrap(), |p| {
unsafe { pipe(p, false) }
});
if new_handle == libc::INVALID_HANDLE_VALUE as libc::HANDLE {
let ret = Err(super::last_error());
// If our disconnection fails, then there's not really a whole lot
// that we can do, so fail the task.
let err = unsafe { libc::DisconnectNamedPipe(handle) };
assert!(err != 0);
return ret;
} else {
self.listener.handle = new_handle;
}
// Transfer ownership of our handle into this stream
Ok(UnixStream {
inner: UnsafeArc::new(Inner { handle: handle }),
read: None,
write: None,
})
}
}
impl rtio::RtioUnixAcceptor for UnixAcceptor {
fn accept(&mut self) -> IoResult<~rtio::RtioPipe> {
self.native_accept().map(|s| ~s as ~rtio::RtioPipe)
}
}

View File

@ -14,5 +14,5 @@ pub mod addrinfo;
pub mod tcp;
pub mod udp;
pub mod ip;
#[cfg(unix)]
// FIXME(#12093) - this should not be called unix
pub mod unix;

View File

@ -134,7 +134,7 @@ mod tests {
use io::*;
use io::test::*;
fn smalltest(server: proc(UnixStream), client: proc(UnixStream)) {
pub fn smalltest(server: proc(UnixStream), client: proc(UnixStream)) {
let path1 = next_test_unix();
let path2 = path1.clone();
let (port, chan) = Chan::new();
@ -149,25 +149,32 @@ mod tests {
server(acceptor.accept().unwrap());
}
#[test]
fn bind_error() {
match UnixListener::bind(&("path/to/nowhere")) {
iotest!(fn bind_error() {
let path = "path/to/nowhere";
match UnixListener::bind(&path) {
Ok(..) => fail!(),
Err(e) => assert_eq!(e.kind, PermissionDenied),
Err(e) => {
assert!(e.kind == PermissionDenied || e.kind == FileNotFound ||
e.kind == InvalidInput);
}
}
}
})
#[test]
fn connect_error() {
match UnixStream::connect(&("path/to/nowhere")) {
iotest!(fn connect_error() {
let path = if cfg!(windows) {
r"\\.\pipe\this_should_not_exist_ever"
} else {
"path/to/nowhere"
};
match UnixStream::connect(&path) {
Ok(..) => fail!(),
Err(e) => assert_eq!(e.kind,
if cfg!(windows) {OtherIoError} else {FileNotFound})
Err(e) => {
assert!(e.kind == FileNotFound || e.kind == OtherIoError);
}
}
}
})
#[test]
fn smoke() {
iotest!(fn smoke() {
smalltest(proc(mut server) {
let mut buf = [0];
server.read(buf).unwrap();
@ -175,10 +182,9 @@ mod tests {
}, proc(mut client) {
client.write([99]).unwrap();
})
}
})
#[test]
fn read_eof() {
iotest!(fn read_eof() {
smalltest(proc(mut server) {
let mut buf = [0];
assert!(server.read(buf).is_err());
@ -186,17 +192,18 @@ mod tests {
}, proc(_client) {
// drop the client
})
}
})
#[test]
fn write_begone() {
iotest!(fn write_begone() {
smalltest(proc(mut server) {
let buf = [0];
loop {
match server.write(buf) {
Ok(..) => {}
Err(e) => {
assert!(e.kind == BrokenPipe || e.kind == NotConnected,
assert!(e.kind == BrokenPipe ||
e.kind == NotConnected ||
e.kind == ConnectionReset,
"unknown error {:?}", e);
break;
}
@ -205,10 +212,9 @@ mod tests {
}, proc(_client) {
// drop the client
})
}
})
#[test]
fn accept_lots() {
iotest!(fn accept_lots() {
let times = 10;
let path1 = next_test_unix();
let path2 = path1.clone();
@ -218,38 +224,49 @@ mod tests {
port.recv();
for _ in range(0, times) {
let mut stream = UnixStream::connect(&path2);
stream.write([100]).unwrap();
match stream.write([100]) {
Ok(..) => {}
Err(e) => fail!("failed write: {}", e)
}
}
});
let mut acceptor = UnixListener::bind(&path1).listen();
let mut acceptor = match UnixListener::bind(&path1).listen() {
Ok(a) => a,
Err(e) => fail!("failed listen: {}", e),
};
chan.send(());
for _ in range(0, times) {
let mut client = acceptor.accept();
let mut buf = [0];
client.read(buf).unwrap();
match client.read(buf) {
Ok(..) => {}
Err(e) => fail!("failed read/accept: {}", e),
}
assert_eq!(buf[0], 100);
}
}
})
#[test]
fn path_exists() {
#[cfg(unix)]
iotest!(fn path_exists() {
let path = next_test_unix();
let _acceptor = UnixListener::bind(&path).listen();
assert!(path.exists());
}
})
#[test]
fn unix_clone_smoke() {
iotest!(fn unix_clone_smoke() {
let addr = next_test_unix();
let mut acceptor = UnixListener::bind(&addr).listen();
spawn(proc() {
let mut s = UnixStream::connect(&addr);
let mut buf = [0, 0];
debug!("client reading");
assert_eq!(s.read(buf), Ok(1));
assert_eq!(buf[0], 1);
debug!("client writing");
s.write([2]).unwrap();
debug!("client dropping");
});
let mut s1 = acceptor.accept().unwrap();
@ -260,17 +277,20 @@ mod tests {
spawn(proc() {
let mut s2 = s2;
p1.recv();
debug!("writer writing");
s2.write([1]).unwrap();
debug!("writer done");
c2.send(());
});
c1.send(());
let mut buf = [0, 0];
debug!("reader reading");
assert_eq!(s1.read(buf), Ok(1));
debug!("reader done");
p2.recv();
}
})
#[test]
fn unix_clone_two_read() {
iotest!(fn unix_clone_two_read() {
let addr = next_test_unix();
let mut acceptor = UnixListener::bind(&addr).listen();
let (p, c) = Chan::new();
@ -300,10 +320,9 @@ mod tests {
c.send(());
p.recv();
}
})
#[test]
fn unix_clone_two_write() {
iotest!(fn unix_clone_two_write() {
let addr = next_test_unix();
let mut acceptor = UnixListener::bind(&addr).listen();
@ -326,5 +345,5 @@ mod tests {
s1.write([2]).unwrap();
p.recv();
}
})
}

View File

@ -319,6 +319,10 @@ pub mod types {
ai_canonname: *c_char,
ai_next: *addrinfo
}
pub struct sockaddr_un {
sun_family: sa_family_t,
sun_path: [c_char, ..108]
}
}
}
@ -691,6 +695,11 @@ pub mod types {
ai_addr: *sockaddr,
ai_next: *addrinfo
}
pub struct sockaddr_un {
sun_len: u8,
sun_family: sa_family_t,
sun_path: [c_char, ..104]
}
}
}
@ -884,6 +893,10 @@ pub mod types {
ai_addr: *sockaddr,
ai_next: *addrinfo
}
pub struct sockaddr_un {
sun_family: sa_family_t,
sun_path: [c_char, ..108]
}
}
}
@ -1252,6 +1265,11 @@ pub mod types {
ai_addr: *sockaddr,
ai_next: *addrinfo
}
pub struct sockaddr_un {
sun_len: u8,
sun_family: sa_family_t,
sun_path: [c_char, ..104]
}
}
}
@ -1605,11 +1623,19 @@ pub mod consts {
pub static O_NOINHERIT: c_int = 128;
pub static ERROR_SUCCESS : c_int = 0;
pub static ERROR_FILE_NOT_FOUND: c_int = 2;
pub static ERROR_ACCESS_DENIED: c_int = 5;
pub static ERROR_INVALID_HANDLE : c_int = 6;
pub static ERROR_BROKEN_PIPE: c_int = 109;
pub static ERROR_DISK_FULL : c_int = 112;
pub static ERROR_INSUFFICIENT_BUFFER : c_int = 122;
pub static ERROR_INVALID_NAME : c_int = 123;
pub static ERROR_ALREADY_EXISTS : c_int = 183;
pub static ERROR_PIPE_BUSY: c_int = 231;
pub static ERROR_NO_DATA: c_int = 232;
pub static ERROR_INVALID_ADDRESS : c_int = 487;
pub static ERROR_PIPE_CONNECTED: c_int = 535;
pub static ERROR_IO_PENDING: c_int = 997;
pub static ERROR_FILE_INVALID : c_int = 1006;
pub static INVALID_HANDLE_VALUE : c_int = -1;
@ -1748,6 +1774,7 @@ pub mod consts {
pub static FILE_FLAG_SESSION_AWARE: DWORD = 0x00800000;
pub static FILE_FLAG_SEQUENTIAL_SCAN: DWORD = 0x08000000;
pub static FILE_FLAG_WRITE_THROUGH: DWORD = 0x80000000;
pub static FILE_FLAG_FIRST_PIPE_INSTANCE: DWORD = 0x00080000;
pub static FILE_NAME_NORMALIZED: DWORD = 0x0;
pub static FILE_NAME_OPENED: DWORD = 0x8;
@ -1761,6 +1788,8 @@ pub mod consts {
pub static GENERIC_WRITE: DWORD = 0x40000000;
pub static GENERIC_EXECUTE: DWORD = 0x20000000;
pub static GENERIC_ALL: DWORD = 0x10000000;
pub static FILE_WRITE_ATTRIBUTES: DWORD = 0x00000100;
pub static FILE_READ_ATTRIBUTES: DWORD = 0x00000080;
pub static FILE_BEGIN: DWORD = 0;
pub static FILE_CURRENT: DWORD = 1;
@ -1772,6 +1801,19 @@ pub mod consts {
pub static DETACHED_PROCESS: DWORD = 0x00000008;
pub static CREATE_NEW_PROCESS_GROUP: DWORD = 0x00000200;
pub static PIPE_ACCESS_DUPLEX: DWORD = 0x00000003;
pub static PIPE_ACCESS_INBOUND: DWORD = 0x00000001;
pub static PIPE_ACCESS_OUTBOUND: DWORD = 0x00000002;
pub static PIPE_TYPE_BYTE: DWORD = 0x00000000;
pub static PIPE_TYPE_MESSAGE: DWORD = 0x00000004;
pub static PIPE_READMODE_BYTE: DWORD = 0x00000000;
pub static PIPE_READMODE_MESSAGE: DWORD = 0x00000002;
pub static PIPE_WAIT: DWORD = 0x00000000;
pub static PIPE_NOWAIT: DWORD = 0x00000001;
pub static PIPE_ACCEPT_REMOTE_CLIENTS: DWORD = 0x00000000;
pub static PIPE_REJECT_REMOTE_CLIENTS: DWORD = 0x00000008;
pub static PIPE_UNLIMITED_INSTANCES: DWORD = 255;
}
pub mod sysconf {
}
@ -2310,6 +2352,7 @@ pub mod consts {
pub static MADV_UNMERGEABLE : c_int = 13;
pub static MADV_HWPOISON : c_int = 100;
pub static AF_UNIX: c_int = 1;
pub static AF_INET: c_int = 2;
pub static AF_INET6: c_int = 10;
pub static SOCK_STREAM: c_int = 1;
@ -2761,6 +2804,7 @@ pub mod consts {
pub static AF_INET: c_int = 2;
pub static AF_INET6: c_int = 28;
pub static AF_UNIX: c_int = 1;
pub static SOCK_STREAM: c_int = 1;
pub static SOCK_DGRAM: c_int = 2;
pub static IPPROTO_TCP: c_int = 6;
@ -3137,6 +3181,7 @@ pub mod consts {
pub static MINCORE_REFERENCED_OTHER : c_int = 0x8;
pub static MINCORE_MODIFIED_OTHER : c_int = 0x10;
pub static AF_UNIX: c_int = 1;
pub static AF_INET: c_int = 2;
pub static AF_INET6: c_int = 30;
pub static SOCK_STREAM: c_int = 1;
@ -4153,6 +4198,34 @@ pub mod funcs {
lpPerformanceCount: *mut LARGE_INTEGER) -> BOOL;
pub fn GetCurrentProcessId() -> DWORD;
pub fn CreateNamedPipeW(
lpName: LPCWSTR,
dwOpenMode: DWORD,
dwPipeMode: DWORD,
nMaxInstances: DWORD,
nOutBufferSize: DWORD,
nInBufferSize: DWORD,
nDefaultTimeOut: DWORD,
lpSecurityAttributes: LPSECURITY_ATTRIBUTES
) -> HANDLE;
pub fn ConnectNamedPipe(hNamedPipe: HANDLE,
lpOverlapped: LPOVERLAPPED) -> BOOL;
pub fn WaitNamedPipeW(lpNamedPipeName: LPCWSTR,
nTimeOut: DWORD) -> BOOL;
pub fn SetNamedPipeHandleState(hNamedPipe: HANDLE,
lpMode: LPDWORD,
lpMaxCollectionCount: LPDWORD,
lpCollectDataTimeout: LPDWORD)
-> BOOL;
pub fn CreateEventW(lpEventAttributes: LPSECURITY_ATTRIBUTES,
bManualReset: BOOL,
bInitialState: BOOL,
lpName: LPCWSTR) -> HANDLE;
pub fn GetOverlappedResult(hFile: HANDLE,
lpOverlapped: LPOVERLAPPED,
lpNumberOfBytesTransferred: LPDWORD,
bWait: BOOL) -> BOOL;
pub fn DisconnectNamedPipe(hNamedPipe: HANDLE) -> BOOL;
}
}