Refactor Lock implementation

This commit is contained in:
John Kåre Alsaker 2023-09-02 23:19:34 +02:00
parent 8fc160b742
commit 61cc00d238
3 changed files with 239 additions and 269 deletions

View File

@ -1,7 +1,7 @@
use crate::fx::{FxHashMap, FxHasher};
#[cfg(parallel_compiler)]
use crate::sync::{is_dyn_thread_safe, CacheAligned};
use crate::sync::{Lock, LockGuard};
use crate::sync::{Assume, Lock, LockGuard};
#[cfg(parallel_compiler)]
use itertools::Either;
use std::borrow::Borrow;
@ -75,6 +75,7 @@ impl<T> Sharded<T> {
/// The shard is selected by hashing `val` with `FxHasher`.
#[inline]
#[track_caller]
pub fn lock_shard_by_value<K: Hash + ?Sized>(&self, _val: &K) -> LockGuard<'_, T> {
match self {
Self::Single(single) => {
@ -83,7 +84,7 @@ impl<T> Sharded<T> {
// SAFETY: We know `is_dyn_thread_safe` was false when creating the lock thus
// `might_be_dyn_thread_safe` was also false.
unsafe { single.lock_assume_no_sync() }
unsafe { single.lock_assume(Assume::NoSync) }
}
#[cfg(parallel_compiler)]
Self::Shards(..) => self.lock_shard_by_hash(make_hash(_val)),
@ -91,11 +92,13 @@ impl<T> Sharded<T> {
}
#[inline]
#[track_caller]
pub fn lock_shard_by_hash(&self, hash: u64) -> LockGuard<'_, T> {
self.lock_shard_by_index(get_shard_hash(hash))
}
#[inline]
#[track_caller]
pub fn lock_shard_by_index(&self, _i: usize) -> LockGuard<'_, T> {
match self {
Self::Single(single) => {
@ -104,7 +107,7 @@ impl<T> Sharded<T> {
// SAFETY: We know `is_dyn_thread_safe` was false when creating the lock thus
// `might_be_dyn_thread_safe` was also false.
unsafe { single.lock_assume_no_sync() }
unsafe { single.lock_assume(Assume::NoSync) }
}
#[cfg(parallel_compiler)]
Self::Shards(shards) => {
@ -115,7 +118,7 @@ impl<T> Sharded<T> {
// always inbounds.
// SAFETY (lock_assume_sync): We know `is_dyn_thread_safe` was true when creating
// the lock thus `might_be_dyn_thread_safe` was also true.
unsafe { shards.get_unchecked(_i & (SHARDS - 1)).0.lock_assume_sync() }
unsafe { shards.get_unchecked(_i & (SHARDS - 1)).0.lock_assume(Assume::Sync) }
}
}
}

View File

@ -49,7 +49,7 @@ use std::ops::{Deref, DerefMut};
use std::panic::{catch_unwind, resume_unwind, AssertUnwindSafe};
mod lock;
pub use lock::{Lock, LockGuard};
pub use lock::{Assume, Lock, LockGuard};
mod worker_local;
pub use worker_local::{Registry, WorkerLocal};
@ -86,7 +86,6 @@ mod mode {
// Whether thread safety might be enabled.
#[inline]
#[cfg(parallel_compiler)]
pub fn might_be_dyn_thread_safe() -> bool {
DYN_THREAD_SAFE_MODE.load(Ordering::Relaxed) != DYN_NOT_THREAD_SAFE
}

View File

@ -3,283 +3,257 @@
//!
//! When `cfg(parallel_compiler)` is not set, the lock is instead a wrapper around `RefCell`.
#[cfg(not(parallel_compiler))]
use std::cell::RefCell;
#[cfg(parallel_compiler)]
use {
crate::cold_path,
crate::sync::DynSend,
crate::sync::DynSync,
parking_lot::lock_api::RawMutex,
std::cell::Cell,
std::cell::UnsafeCell,
std::fmt,
std::intrinsics::{likely, unlikely},
std::marker::PhantomData,
std::mem::ManuallyDrop,
std::ops::{Deref, DerefMut},
};
#![allow(dead_code)]
use std::fmt;
#[cfg(not(parallel_compiler))]
pub use std::cell::RefMut as LockGuard;
pub use disabled::*;
#[cfg(parallel_compiler)]
pub use enabled::*;
#[cfg(not(parallel_compiler))]
#[derive(Debug)]
pub struct Lock<T>(RefCell<T>);
#[cfg(not(parallel_compiler))]
impl<T> Lock<T> {
#[inline(always)]
pub fn new(inner: T) -> Self {
Lock(RefCell::new(inner))
}
#[inline(always)]
pub fn into_inner(self) -> T {
self.0.into_inner()
}
#[inline(always)]
pub fn get_mut(&mut self) -> &mut T {
self.0.get_mut()
}
#[inline(always)]
pub fn try_lock(&self) -> Option<LockGuard<'_, T>> {
self.0.try_borrow_mut().ok()
}
#[inline(always)]
#[track_caller]
// This is unsafe to match the API for the `parallel_compiler` case.
pub unsafe fn lock_assume_no_sync(&self) -> LockGuard<'_, T> {
self.0.borrow_mut()
}
#[inline(always)]
#[track_caller]
// This is unsafe to match the API for the `parallel_compiler` case.
pub unsafe fn lock_assume_sync(&self) -> LockGuard<'_, T> {
self.0.borrow_mut()
}
#[inline(always)]
#[track_caller]
pub fn lock(&self) -> LockGuard<'_, T> {
self.0.borrow_mut()
}
#[derive(Clone, Copy, PartialEq)]
pub enum Assume {
NoSync,
Sync,
}
/// A guard holding mutable access to a `Lock` which is in a locked state.
#[cfg(parallel_compiler)]
#[must_use = "if unused the Lock will immediately unlock"]
pub struct LockGuard<'a, T> {
lock: &'a Lock<T>,
marker: PhantomData<&'a mut T>,
}
mod enabled {
use super::Assume;
use crate::sync::mode;
#[cfg(parallel_compiler)]
use crate::sync::{DynSend, DynSync};
use parking_lot::lock_api::RawMutex as _;
use parking_lot::RawMutex;
use std::cell::Cell;
use std::cell::UnsafeCell;
use std::hint::unreachable_unchecked;
use std::intrinsics::unlikely;
use std::marker::PhantomData;
use std::ops::{Deref, DerefMut};
#[cfg(parallel_compiler)]
impl<'a, T: 'a> Deref for LockGuard<'a, T> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
// SAFETY: We have shared access to the mutable access owned by this type,
// so we can give out a shared reference.
unsafe { &*self.lock.data.get() }
/// A guard holding mutable access to a `Lock` which is in a locked state.
#[must_use = "if unused the Lock will immediately unlock"]
pub struct LockGuard<'a, T> {
lock: &'a Lock<T>,
marker: PhantomData<&'a mut T>,
/// The syncronization mode of the lock. This is explicitly passed to let LLVM relate it
/// to the original lock operation.
assume: Assume,
}
}
#[cfg(parallel_compiler)]
impl<'a, T: 'a> DerefMut for LockGuard<'a, T> {
#[inline]
fn deref_mut(&mut self) -> &mut T {
// SAFETY: We have mutable access to the data so we can give out a mutable reference.
unsafe { &mut *self.lock.data.get() }
}
}
#[cfg(parallel_compiler)]
impl<'a, T: 'a> Drop for LockGuard<'a, T> {
#[inline]
fn drop(&mut self) {
// SAFETY: We know that the lock is in a locked
// state because it is a invariant of this type.
unsafe { self.lock.raw.unlock() };
}
}
#[cfg(parallel_compiler)]
union LockRawUnion {
/// Indicates if the cell is locked. Only used if `LockRaw.sync` is false.
cell: ManuallyDrop<Cell<bool>>,
/// A lock implementation that's only used if `LockRaw.sync` is true.
lock: ManuallyDrop<parking_lot::RawMutex>,
}
/// A raw lock which only uses synchronization if `might_be_dyn_thread_safe` is true.
/// It contains no associated data and is used in the implementation of `Lock` which does have such data.
///
/// A manual implementation of a tagged union is used with the `sync` field and the `LockRawUnion` instead
/// of using enums as it results in better code generation.
#[cfg(parallel_compiler)]
struct LockRaw {
/// Indicates if synchronization is used via `opt.lock` if true,
/// or if a non-thread safe cell is used via `opt.cell`. This is set on initialization and never changed.
sync: bool,
opt: LockRawUnion,
}
#[cfg(parallel_compiler)]
impl LockRaw {
fn new() -> Self {
if unlikely(super::mode::might_be_dyn_thread_safe()) {
// Create the lock with synchronization enabled using the `RawMutex` type.
LockRaw {
sync: true,
opt: LockRawUnion { lock: ManuallyDrop::new(parking_lot::RawMutex::INIT) },
}
} else {
// Create the lock with synchronization disabled.
LockRaw { sync: false, opt: LockRawUnion { cell: ManuallyDrop::new(Cell::new(false)) } }
impl<'a, T: 'a> Deref for LockGuard<'a, T> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
// SAFETY: We have shared access to the mutable access owned by this type,
// so we can give out a shared reference.
unsafe { &*self.lock.data.get() }
}
}
#[inline(always)]
fn try_lock(&self) -> bool {
// SAFETY: This is safe since the union fields are used in accordance with `self.sync`.
unsafe {
if likely(!self.sync) {
if self.opt.cell.get() {
false
impl<'a, T: 'a> DerefMut for LockGuard<'a, T> {
#[inline]
fn deref_mut(&mut self) -> &mut T {
// SAFETY: We have mutable access to the data so we can give out a mutable reference.
unsafe { &mut *self.lock.data.get() }
}
}
impl<'a, T: 'a> Drop for LockGuard<'a, T> {
#[inline]
fn drop(&mut self) {
// SAFETY (dispatch): We get `self.assume` from the lock operation so it is consistent
// with the lock state.
// SAFETY (unlock): We know that the lock is locked as this type is a proof of that.
unsafe {
self.lock.dispatch(
self.assume,
|cell| {
debug_assert_eq!(cell.get(), true);
cell.set(false);
Some(())
},
|lock| lock.unlock(),
);
};
}
}
enum LockMode {
NoSync(Cell<bool>),
Sync(RawMutex),
}
impl LockMode {
#[inline(always)]
fn to_assume(&self) -> Assume {
match self {
LockMode::NoSync(..) => Assume::NoSync,
LockMode::Sync(..) => Assume::Sync,
}
}
}
/// The value representing a locked state for the `Cell`.
const LOCKED: bool = true;
/// A lock which only uses synchronization if `might_be_dyn_thread_safe` is true.
/// It implements `DynSend` and `DynSync` instead of the typical `Send` and `Sync`.
pub struct Lock<T> {
mode: LockMode,
data: UnsafeCell<T>,
}
impl<T> Lock<T> {
#[inline(always)]
pub fn new(inner: T) -> Self {
Lock {
mode: if unlikely(mode::might_be_dyn_thread_safe()) {
// Create the lock with synchronization enabled using the `RawMutex` type.
LockMode::Sync(RawMutex::INIT)
} else {
self.opt.cell.set(true);
true
// Create the lock with synchronization disabled.
LockMode::NoSync(Cell::new(!LOCKED))
},
data: UnsafeCell::new(inner),
}
}
#[inline(always)]
pub fn into_inner(self) -> T {
self.data.into_inner()
}
#[inline(always)]
pub fn get_mut(&mut self) -> &mut T {
self.data.get_mut()
}
/// This dispatches on the `LockMode` and gives access to its variants depending on
/// `assume`. If `no_sync` returns `None` this will panic.
///
/// Safety
/// This method must only be called if `might_be_dyn_thread_safe` on lock creation matches
/// matches the `assume` argument.
#[inline(always)]
#[track_caller]
unsafe fn dispatch<R>(
&self,
assume: Assume,
no_sync: impl FnOnce(&Cell<bool>) -> Option<R>,
sync: impl FnOnce(&RawMutex) -> R,
) -> R {
#[inline(never)]
#[track_caller]
#[cold]
fn lock_held() -> ! {
panic!("lock was already held")
}
match assume {
Assume::NoSync => {
let LockMode::NoSync(cell) = &self.mode else {
unsafe { unreachable_unchecked() }
};
if let Some(v) = no_sync(cell) {
v
} else {
// Call this here instead of in `no_sync` so `track_caller` gets properly
// passed along.
lock_held()
}
}
Assume::Sync => {
let LockMode::Sync(lock) = &self.mode else {
unsafe { unreachable_unchecked() }
};
sync(lock)
}
} else {
self.opt.lock.try_lock()
}
}
#[inline(always)]
pub fn try_lock(&self) -> Option<LockGuard<'_, T>> {
let assume = self.mode.to_assume();
unsafe {
self.dispatch(
assume,
|cell| Some((cell.get() != LOCKED).then(|| cell.set(LOCKED)).is_some()),
RawMutex::try_lock,
)
.then(|| LockGuard { lock: self, marker: PhantomData, assume })
}
}
#[inline(always)]
#[track_caller]
pub unsafe fn lock_assume(&self, assume: Assume) -> LockGuard<'_, T> {
unsafe {
self.dispatch(
assume,
|cell| (cell.replace(LOCKED) != LOCKED).then(|| ()),
RawMutex::lock,
);
LockGuard { lock: self, marker: PhantomData, assume }
}
}
#[inline(always)]
#[track_caller]
pub fn lock(&self) -> LockGuard<'_, T> {
unsafe { self.lock_assume(self.mode.to_assume()) }
}
}
#[inline(always)]
fn lock(&self) {
// SAFETY: This is safe since `self.sync` is used in accordance with the preconditions of
// `lock_assume_no_sync` and `lock_assume_sync`.
unsafe {
if likely(!self.sync) {
self.lock_assume_no_sync()
} else {
self.lock_assume_sync();
}
}
}
/// This acquires the lock assuming no syncronization is required.
///
/// Safety
/// This method must only be called if `might_be_dyn_thread_safe` was false on lock creation.
#[inline(always)]
unsafe fn lock_assume_no_sync(&self) {
// SAFETY: This is safe since `self.opt.cell` is the union field used due to the
// precondition on this function.
unsafe {
if unlikely(self.opt.cell.replace(true)) {
cold_path(|| panic!("lock was already held"))
}
}
}
/// This acquires the lock assuming syncronization is required.
///
/// Safety
/// This method must only be called if `might_be_dyn_thread_safe` was true on lock creation.
#[inline(always)]
unsafe fn lock_assume_sync(&self) {
// SAFETY: This is safe since `self.opt.lock` is the union field used due to the
// precondition on this function.
unsafe {
self.opt.lock.lock();
}
}
/// This unlocks the lock.
///
/// Safety
/// This method may only be called if the lock is currently held.
#[inline(always)]
unsafe fn unlock(&self) {
// SAFETY: The union use is safe since the union fields are used in accordance with
// `self.sync` and the `unlock` method precondition is upheld by the caller.
unsafe {
if likely(!self.sync) {
debug_assert_eq!(self.opt.cell.get(), true);
self.opt.cell.set(false);
} else {
self.opt.lock.unlock();
}
}
}
#[cfg(parallel_compiler)]
unsafe impl<T: DynSend> DynSend for Lock<T> {}
#[cfg(parallel_compiler)]
unsafe impl<T: DynSend> DynSync for Lock<T> {}
}
/// A lock which only uses synchronization if `might_be_dyn_thread_safe` is true.
/// It implements `DynSend` and `DynSync` instead of the typical `Send` and `Sync`.
#[cfg(parallel_compiler)]
pub struct Lock<T> {
raw: LockRaw,
data: UnsafeCell<T>,
}
mod disabled {
use super::Assume;
use std::cell::RefCell;
#[cfg(parallel_compiler)]
impl<T> Lock<T> {
#[inline(always)]
pub fn new(inner: T) -> Self {
Lock { raw: LockRaw::new(), data: UnsafeCell::new(inner) }
}
pub use std::cell::RefMut as LockGuard;
#[inline(always)]
pub fn into_inner(self) -> T {
self.data.into_inner()
}
pub struct Lock<T>(RefCell<T>);
#[inline(always)]
pub fn get_mut(&mut self) -> &mut T {
self.data.get_mut()
}
#[inline(always)]
pub fn try_lock(&self) -> Option<LockGuard<'_, T>> {
if self.raw.try_lock() { Some(LockGuard { lock: self, marker: PhantomData }) } else { None }
}
/// This acquires the lock assuming no syncronization is required.
///
/// Safety
/// This method must only be called if `might_be_dyn_thread_safe` was false on lock creation.
#[inline(always)]
pub(crate) unsafe fn lock_assume_no_sync(&self) -> LockGuard<'_, T> {
unsafe {
self.raw.lock_assume_no_sync();
impl<T> Lock<T> {
#[inline(always)]
pub fn new(inner: T) -> Self {
Lock(RefCell::new(inner))
}
LockGuard { lock: self, marker: PhantomData }
}
/// This acquires the lock assuming syncronization is required.
///
/// Safety
/// This method must only be called if `might_be_dyn_thread_safe` was true on lock creation.
#[inline(always)]
pub(crate) unsafe fn lock_assume_sync(&self) -> LockGuard<'_, T> {
unsafe {
self.raw.lock_assume_sync();
#[inline(always)]
pub fn into_inner(self) -> T {
self.0.into_inner()
}
LockGuard { lock: self, marker: PhantomData }
}
#[inline(always)]
pub fn lock(&self) -> LockGuard<'_, T> {
self.raw.lock();
LockGuard { lock: self, marker: PhantomData }
#[inline(always)]
pub fn get_mut(&mut self) -> &mut T {
self.0.get_mut()
}
#[inline(always)]
pub fn try_lock(&self) -> Option<LockGuard<'_, T>> {
self.0.try_borrow_mut().ok()
}
#[inline(always)]
#[track_caller]
// This is unsafe to match the API for the `parallel_compiler` case.
pub unsafe fn lock_assume(&self, _assume: Assume) -> LockGuard<'_, T> {
self.0.borrow_mut()
}
#[inline(always)]
#[track_caller]
pub fn lock(&self) -> LockGuard<'_, T> {
self.0.borrow_mut()
}
}
}
@ -303,12 +277,13 @@ impl<T> Lock<T> {
}
}
#[cfg(parallel_compiler)]
unsafe impl<T: DynSend> DynSend for Lock<T> {}
#[cfg(parallel_compiler)]
unsafe impl<T: DynSend> DynSync for Lock<T> {}
impl<T: Default> Default for Lock<T> {
#[inline]
fn default() -> Self {
Lock::new(T::default())
}
}
#[cfg(parallel_compiler)]
impl<T: fmt::Debug> fmt::Debug for Lock<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.try_lock() {
@ -326,10 +301,3 @@ impl<T: fmt::Debug> fmt::Debug for Lock<T> {
}
}
}
impl<T: Default> Default for Lock<T> {
#[inline]
fn default() -> Self {
Lock::new(T::default())
}
}