Auto merge of #132514 - Zalathar:print-target-cpus, r=jieyouxu

Port most of `--print=target-cpus` to Rust

The logic and formatting needed by `--print=target-cpus` has historically been carried out in C++ code. Originally it used `printf` to write directly to the console, but later it switched over to writing to a `std::ostringstream` and then passing its buffer to a callback function pointer.

This PR replaces that C++ code with a very simple function that writes a list of CPU names to a `&RustString`, with the rest of the logic and formatting being handled by ordinary safe Rust code.
This commit is contained in:
bors 2024-11-03 11:09:38 +00:00
commit 59ae5eba7e
4 changed files with 131 additions and 90 deletions

View File

@ -2190,12 +2190,8 @@ unsafe extern "C" {
pub fn LLVMRustHasFeature(T: &TargetMachine, s: *const c_char) -> bool; pub fn LLVMRustHasFeature(T: &TargetMachine, s: *const c_char) -> bool;
pub fn LLVMRustPrintTargetCPUs( #[allow(improper_ctypes)]
T: &TargetMachine, pub(crate) fn LLVMRustPrintTargetCPUs(TM: &TargetMachine, OutStr: &RustString);
cpu: *const c_char,
print: unsafe extern "C" fn(out: *mut c_void, string: *const c_char, len: usize),
out: *mut c_void,
);
pub fn LLVMRustGetTargetFeaturesCount(T: &TargetMachine) -> size_t; pub fn LLVMRustGetTargetFeaturesCount(T: &TargetMachine) -> size_t;
pub fn LLVMRustGetTargetFeature( pub fn LLVMRustGetTargetFeature(
T: &TargetMachine, T: &TargetMachine,
@ -2204,7 +2200,7 @@ unsafe extern "C" {
Desc: &mut *const c_char, Desc: &mut *const c_char,
); );
pub fn LLVMRustGetHostCPUName(len: *mut usize) -> *const c_char; pub fn LLVMRustGetHostCPUName(LenOut: &mut size_t) -> *const u8;
// This function makes copies of pointed to data, so the data's lifetime may end after this // This function makes copies of pointed to data, so the data's lifetime may end after this
// function returns. // function returns.

View File

@ -1,4 +1,5 @@
use std::ffi::{CStr, CString, c_char, c_void}; use std::collections::VecDeque;
use std::ffi::{CStr, CString};
use std::fmt::Write; use std::fmt::Write;
use std::path::Path; use std::path::Path;
use std::sync::Once; use std::sync::Once;
@ -387,7 +388,65 @@ fn llvm_target_features(tm: &llvm::TargetMachine) -> Vec<(&str, &str)> {
ret ret
} }
fn print_target_features(out: &mut String, sess: &Session, tm: &llvm::TargetMachine) { pub(crate) fn print(req: &PrintRequest, out: &mut String, sess: &Session) {
require_inited();
let tm = create_informational_target_machine(sess, false);
match req.kind {
PrintKind::TargetCPUs => print_target_cpus(sess, &tm, out),
PrintKind::TargetFeatures => print_target_features(sess, &tm, out),
_ => bug!("rustc_codegen_llvm can't handle print request: {:?}", req),
}
}
fn print_target_cpus(sess: &Session, tm: &llvm::TargetMachine, out: &mut String) {
let cpu_names = llvm::build_string(|s| unsafe {
llvm::LLVMRustPrintTargetCPUs(&tm, s);
})
.unwrap();
struct Cpu<'a> {
cpu_name: &'a str,
remark: String,
}
// Compare CPU against current target to label the default.
let target_cpu = handle_native(&sess.target.cpu);
let make_remark = |cpu_name| {
if cpu_name == target_cpu {
// FIXME(#132514): This prints the LLVM target string, which can be
// different from the Rust target string. Is that intended?
let target = &sess.target.llvm_target;
format!(
" - This is the default target CPU for the current build target (currently {target})."
)
} else {
"".to_owned()
}
};
let mut cpus = cpu_names
.lines()
.map(|cpu_name| Cpu { cpu_name, remark: make_remark(cpu_name) })
.collect::<VecDeque<_>>();
// Only print the "native" entry when host and target are the same arch,
// since otherwise it could be wrong or misleading.
if sess.host.arch == sess.target.arch {
let host = get_host_cpu_name();
cpus.push_front(Cpu {
cpu_name: "native",
remark: format!(" - Select the CPU of the current host (currently {host})."),
});
}
let max_name_width = cpus.iter().map(|cpu| cpu.cpu_name.len()).max().unwrap_or(0);
writeln!(out, "Available CPUs for this target:").unwrap();
for Cpu { cpu_name, remark } in cpus {
// Only pad the CPU name if there's a remark to print after it.
let width = if remark.is_empty() { 0 } else { max_name_width };
writeln!(out, " {cpu_name:<width$}{remark}").unwrap();
}
}
fn print_target_features(sess: &Session, tm: &llvm::TargetMachine, out: &mut String) {
let mut llvm_target_features = llvm_target_features(tm); let mut llvm_target_features = llvm_target_features(tm);
let mut known_llvm_target_features = FxHashSet::<&'static str>::default(); let mut known_llvm_target_features = FxHashSet::<&'static str>::default();
let mut rustc_target_features = sess let mut rustc_target_features = sess
@ -447,52 +506,31 @@ fn print_target_features(out: &mut String, sess: &Session, tm: &llvm::TargetMach
writeln!(out, "and may be renamed or removed in a future version of LLVM or rustc.\n").unwrap(); writeln!(out, "and may be renamed or removed in a future version of LLVM or rustc.\n").unwrap();
} }
pub(crate) fn print(req: &PrintRequest, mut out: &mut String, sess: &Session) { /// Returns the host CPU name, according to LLVM.
require_inited(); fn get_host_cpu_name() -> &'static str {
let tm = create_informational_target_machine(sess, false); let mut len = 0;
match req.kind { // SAFETY: The underlying C++ global function returns a `StringRef` that
PrintKind::TargetCPUs => { // isn't tied to any particular backing buffer, so it must be 'static.
// SAFETY generate a C compatible string from a byte slice to pass let slice: &'static [u8] = unsafe {
// the target CPU name into LLVM, the lifetime of the reference is let ptr = llvm::LLVMRustGetHostCPUName(&mut len);
// at least as long as the C function assert!(!ptr.is_null());
let cpu_cstring = CString::new(handle_native(sess.target.cpu.as_ref())) slice::from_raw_parts(ptr, len)
.unwrap_or_else(|e| bug!("failed to convert to cstring: {}", e)); };
unsafe extern "C" fn callback(out: *mut c_void, string: *const c_char, len: usize) { str::from_utf8(slice).expect("host CPU name should be UTF-8")
let out = unsafe { &mut *(out as *mut &mut String) };
let bytes = unsafe { slice::from_raw_parts(string as *const u8, len) };
write!(out, "{}", String::from_utf8_lossy(bytes)).unwrap();
}
unsafe {
llvm::LLVMRustPrintTargetCPUs(
&tm,
cpu_cstring.as_ptr(),
callback,
(&raw mut out) as *mut c_void,
);
}
}
PrintKind::TargetFeatures => print_target_features(out, sess, &tm),
_ => bug!("rustc_codegen_llvm can't handle print request: {:?}", req),
}
} }
fn handle_native(name: &str) -> &str { /// If the given string is `"native"`, returns the host CPU name according to
if name != "native" { /// LLVM. Otherwise, the string is returned as-is.
return name; fn handle_native(cpu_name: &str) -> &str {
} match cpu_name {
"native" => get_host_cpu_name(),
unsafe { _ => cpu_name,
let mut len = 0;
let ptr = llvm::LLVMRustGetHostCPUName(&mut len);
str::from_utf8(slice::from_raw_parts(ptr as *const u8, len)).unwrap()
} }
} }
pub(crate) fn target_cpu(sess: &Session) -> &str { pub(crate) fn target_cpu(sess: &Session) -> &str {
match sess.opts.cg.target_cpu { let cpu_name = sess.opts.cg.target_cpu.as_deref().unwrap_or_else(|| &sess.target.cpu);
Some(ref name) => handle_native(name), handle_native(cpu_name)
None => handle_native(sess.target.cpu.as_ref()),
}
} }
/// The list of LLVM features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`, /// The list of LLVM features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`,

View File

@ -317,49 +317,17 @@ template <typename KV> static size_t getLongestEntryLength(ArrayRef<KV> Table) {
return MaxLen; return MaxLen;
} }
using PrintBackendInfo = void(void *, const char *Data, size_t Len);
extern "C" void LLVMRustPrintTargetCPUs(LLVMTargetMachineRef TM, extern "C" void LLVMRustPrintTargetCPUs(LLVMTargetMachineRef TM,
const char *TargetCPU, RustStringRef OutStr) {
PrintBackendInfo Print, void *Out) { ArrayRef<SubtargetSubTypeKV> CPUTable =
const TargetMachine *Target = unwrap(TM); unwrap(TM)->getMCSubtargetInfo()->getAllProcessorDescriptions();
const Triple::ArchType HostArch = auto OS = RawRustStringOstream(OutStr);
Triple(sys::getDefaultTargetTriple()).getArch();
const Triple::ArchType TargetArch = Target->getTargetTriple().getArch();
std::ostringstream Buf; // Just print a bare list of target CPU names, and let Rust-side code handle
// the full formatting of `--print=target-cpus`.
const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo();
const ArrayRef<SubtargetSubTypeKV> CPUTable =
MCInfo->getAllProcessorDescriptions();
unsigned MaxCPULen = getLongestEntryLength(CPUTable);
Buf << "Available CPUs for this target:\n";
// Don't print the "native" entry when the user specifies --target with a
// different arch since that could be wrong or misleading.
if (HostArch == TargetArch) {
MaxCPULen = std::max(MaxCPULen, (unsigned)std::strlen("native"));
const StringRef HostCPU = sys::getHostCPUName();
Buf << " " << std::left << std::setw(MaxCPULen) << "native"
<< " - Select the CPU of the current host "
"(currently "
<< HostCPU.str() << ").\n";
}
for (auto &CPU : CPUTable) { for (auto &CPU : CPUTable) {
// Compare cpu against current target to label the default OS << CPU.Key << "\n";
if (strcmp(CPU.Key, TargetCPU) == 0) {
Buf << " " << std::left << std::setw(MaxCPULen) << CPU.Key
<< " - This is the default target CPU for the current build target "
"(currently "
<< Target->getTargetTriple().str() << ").";
} else {
Buf << " " << CPU.Key;
}
Buf << "\n";
} }
const auto &BufString = Buf.str();
Print(Out, BufString.data(), BufString.size());
} }
extern "C" size_t LLVMRustGetTargetFeaturesCount(LLVMTargetMachineRef TM) { extern "C" size_t LLVMRustGetTargetFeaturesCount(LLVMTargetMachineRef TM) {
@ -382,9 +350,9 @@ extern "C" void LLVMRustGetTargetFeature(LLVMTargetMachineRef TM, size_t Index,
*Desc = Feat.Desc; *Desc = Feat.Desc;
} }
extern "C" const char *LLVMRustGetHostCPUName(size_t *len) { extern "C" const char *LLVMRustGetHostCPUName(size_t *OutLen) {
StringRef Name = sys::getHostCPUName(); StringRef Name = sys::getHostCPUName();
*len = Name.size(); *OutLen = Name.size();
return Name.data(); return Name.data();
} }

View File

@ -0,0 +1,39 @@
//@ ignore-cross-compile
//@ needs-llvm-components: aarch64 x86
// FIXME(#132514): Is needs-llvm-components actually necessary for this test?
use run_make_support::{assert_contains_regex, rfs, rustc, target};
// Test that when querying `--print=target-cpus` for a target with the same
// architecture as the host, the first CPU is "native" with a suitable remark.
fn main() {
let expected = r"^Available CPUs for this target:
native +- Select the CPU of the current host \(currently [^ )]+\)\.
";
// Without an explicit target.
rustc().print("target-cpus").run().assert_stdout_contains_regex(expected);
// With an explicit target that happens to be the host.
let host = target(); // Because of ignore-cross-compile, assume host == target.
rustc().print("target-cpus").target(host).run().assert_stdout_contains_regex(expected);
// With an explicit output path.
rustc().print("target-cpus=./xyzzy.txt").run().assert_stdout_equals("");
assert_contains_regex(rfs::read_to_string("./xyzzy.txt"), expected);
// Now try some cross-target queries with the same arch as the host.
// (Specify multiple targets so that at least one of them is not the host.)
let cross_targets: &[&str] = if cfg!(target_arch = "aarch64") {
&["aarch64-unknown-linux-gnu", "aarch64-apple-darwin"]
} else if cfg!(target_arch = "x86_64") {
&["x86_64-unknown-linux-gnu", "x86_64-apple-darwin"]
} else {
&[]
};
for target in cross_targets {
println!("Trying target: {target}");
rustc().print("target-cpus").target(target).run().assert_stdout_contains_regex(expected);
}
}