Auto merge of #124780 - Mark-Simulacrum:lockless-cache, r=lcnr

Improve VecCache under parallel frontend

This replaces the single Vec allocation with a series of progressively larger buckets. With the cfg for parallel enabled but with -Zthreads=1, this looks like a slight regression in i-count and cycle counts (~1%).

With the parallel frontend at -Zthreads=4, this is an improvement (-5% wall-time from 5.788 to 5.4688 on libcore) than our current Lock-based approach, likely due to reducing the bouncing of the cache line holding the lock. At -Zthreads=32 it's a huge improvement (-46%: 8.829 -> 4.7319 seconds).

try-job: i686-gnu-nopt
try-job: dist-x86_64-linux
This commit is contained in:
bors 2024-11-19 02:07:48 +00:00
commit 5926e82dd1
6 changed files with 458 additions and 65 deletions

View File

@ -21,6 +21,7 @@
#![feature(auto_traits)] #![feature(auto_traits)]
#![feature(cfg_match)] #![feature(cfg_match)]
#![feature(core_intrinsics)] #![feature(core_intrinsics)]
#![feature(dropck_eyepatch)]
#![feature(extend_one)] #![feature(extend_one)]
#![feature(file_buffered)] #![feature(file_buffered)]
#![feature(hash_raw_entry)] #![feature(hash_raw_entry)]
@ -78,6 +79,7 @@ pub mod thinvec;
pub mod transitive_relation; pub mod transitive_relation;
pub mod unhash; pub mod unhash;
pub mod unord; pub mod unord;
pub mod vec_cache;
pub mod work_queue; pub mod work_queue;
mod atomic_ref; mod atomic_ref;

View File

@ -0,0 +1,324 @@
//! VecCache maintains a mapping from K -> (V, I) pairing. K and I must be roughly u32-sized, and V
//! must be Copy.
//!
//! VecCache supports efficient concurrent put/get across the key space, with write-once semantics
//! (i.e., a given key can only be put once). Subsequent puts will panic.
//!
//! This is currently used for query caching.
use std::fmt::Debug;
use std::marker::PhantomData;
use std::sync::atomic::{AtomicPtr, AtomicU32, AtomicUsize, Ordering};
use rustc_index::Idx;
struct Slot<V> {
// We never construct &Slot<V> so it's fine for this to not be in an UnsafeCell.
value: V,
// This is both an index and a once-lock.
//
// 0: not yet initialized.
// 1: lock held, initializing.
// 2..u32::MAX - 2: initialized.
index_and_lock: AtomicU32,
}
/// This uniquely identifies a single `Slot<V>` entry in the buckets map, and provides accessors for
/// either getting the value or putting a value.
#[derive(Copy, Clone, Debug)]
struct SlotIndex {
// the index of the bucket in VecCache (0 to 20)
bucket_idx: usize,
// number of entries in that bucket
entries: usize,
// the index of the slot within the bucket
index_in_bucket: usize,
}
// This makes sure the counts are consistent with what we allocate, precomputing each bucket a
// compile-time. Visiting all powers of two is enough to hit all the buckets.
//
// We confirm counts are accurate in the slot_index_exhaustive test.
const ENTRIES_BY_BUCKET: [usize; 21] = {
let mut entries = [0; 21];
let mut key = 0;
loop {
let si = SlotIndex::from_index(key);
entries[si.bucket_idx] = si.entries;
if key == 0 {
key = 1;
} else if key == (1 << 31) {
break;
} else {
key <<= 1;
}
}
entries
};
impl SlotIndex {
// This unpacks a flat u32 index into identifying which bucket it belongs to and the offset
// within that bucket. As noted in the VecCache docs, buckets double in size with each index.
// Typically that would mean 31 buckets (2^0 + 2^1 ... + 2^31 = u32::MAX - 1), but to reduce
// the size of the VecCache struct and avoid uselessly small allocations, we instead have the
// first bucket have 2**12 entries. To simplify the math, the second bucket also 2**12 entries,
// and buckets double from there.
//
// We assert that [0, 2**32 - 1] uniquely map through this function to individual, consecutive
// slots (see `slot_index_exhaustive` in tests).
#[inline]
const fn from_index(idx: u32) -> Self {
let mut bucket = match idx.checked_ilog2() {
Some(x) => x as usize,
None => 0,
};
let entries;
let running_sum;
if bucket <= 11 {
entries = 1 << 12;
running_sum = 0;
bucket = 0;
} else {
entries = 1 << bucket;
running_sum = entries;
bucket = bucket - 11;
}
SlotIndex { bucket_idx: bucket, entries, index_in_bucket: idx as usize - running_sum }
}
// SAFETY: Buckets must be managed solely by functions here (i.e., get/put on SlotIndex) and
// `self` comes from SlotIndex::from_index
#[inline]
unsafe fn get<V: Copy>(&self, buckets: &[AtomicPtr<Slot<V>>; 21]) -> Option<(V, u32)> {
// SAFETY: `bucket_idx` is ilog2(u32).saturating_sub(11), which is at most 21, i.e.,
// in-bounds of buckets. See `from_index` for computation.
let bucket = unsafe { buckets.get_unchecked(self.bucket_idx) };
let ptr = bucket.load(Ordering::Acquire);
// Bucket is not yet initialized: then we obviously won't find this entry in that bucket.
if ptr.is_null() {
return None;
}
assert!(self.index_in_bucket < self.entries);
// SAFETY: `bucket` was allocated (so <= isize in total bytes) to hold `entries`, so this
// must be inbounds.
let slot = unsafe { ptr.add(self.index_in_bucket) };
// SAFETY: initialized bucket has zeroed all memory within the bucket, so we are valid for
// AtomicU32 access.
let index_and_lock = unsafe { &(*slot).index_and_lock };
let current = index_and_lock.load(Ordering::Acquire);
let index = match current {
0 => return None,
// Treat "initializing" as actually just not initialized at all.
// The only reason this is a separate state is that `complete` calls could race and
// we can't allow that, but from load perspective there's no difference.
1 => return None,
_ => current - 2,
};
// SAFETY:
// * slot is a valid pointer (buckets are always valid for the index we get).
// * value is initialized since we saw a >= 2 index above.
// * `V: Copy`, so safe to read.
let value = unsafe { (*slot).value };
Some((value, index))
}
fn bucket_ptr<V>(&self, bucket: &AtomicPtr<Slot<V>>) -> *mut Slot<V> {
let ptr = bucket.load(Ordering::Acquire);
if ptr.is_null() { self.initialize_bucket(bucket) } else { ptr }
}
#[cold]
fn initialize_bucket<V>(&self, bucket: &AtomicPtr<Slot<V>>) -> *mut Slot<V> {
static LOCK: std::sync::Mutex<()> = std::sync::Mutex::new(());
// If we are initializing the bucket, then acquire a global lock.
//
// This path is quite cold, so it's cheap to use a global lock. This ensures that we never
// have multiple allocations for the same bucket.
let _allocator_guard = LOCK.lock().unwrap_or_else(|e| e.into_inner());
let ptr = bucket.load(Ordering::Acquire);
// OK, now under the allocator lock, if we're still null then it's definitely us that will
// initialize this bucket.
if ptr.is_null() {
let bucket_layout =
std::alloc::Layout::array::<Slot<V>>(self.entries as usize).unwrap();
// This is more of a sanity check -- this code is very cold, so it's safe to pay a
// little extra cost here.
assert!(bucket_layout.size() > 0);
// SAFETY: Just checked that size is non-zero.
let allocated = unsafe { std::alloc::alloc_zeroed(bucket_layout).cast::<Slot<V>>() };
if allocated.is_null() {
std::alloc::handle_alloc_error(bucket_layout);
}
bucket.store(allocated, Ordering::Release);
allocated
} else {
// Otherwise some other thread initialized this bucket after we took the lock. In that
// case, just return early.
ptr
}
}
/// Returns true if this successfully put into the map.
#[inline]
fn put<V>(&self, buckets: &[AtomicPtr<Slot<V>>; 21], value: V, extra: u32) -> bool {
// SAFETY: `bucket_idx` is ilog2(u32).saturating_sub(11), which is at most 21, i.e.,
// in-bounds of buckets.
let bucket = unsafe { buckets.get_unchecked(self.bucket_idx) };
let ptr = self.bucket_ptr(bucket);
assert!(self.index_in_bucket < self.entries);
// SAFETY: `bucket` was allocated (so <= isize in total bytes) to hold `entries`, so this
// must be inbounds.
let slot = unsafe { ptr.add(self.index_in_bucket) };
// SAFETY: initialized bucket has zeroed all memory within the bucket, so we are valid for
// AtomicU32 access.
let index_and_lock = unsafe { &(*slot).index_and_lock };
match index_and_lock.compare_exchange(0, 1, Ordering::AcqRel, Ordering::Acquire) {
Ok(_) => {
// We have acquired the initialization lock. It is our job to write `value` and
// then set the lock to the real index.
unsafe {
(&raw mut (*slot).value).write(value);
}
index_and_lock.store(extra.checked_add(2).unwrap(), Ordering::Release);
true
}
// Treat "initializing" as the caller's fault. Callers are responsible for ensuring that
// there are no races on initialization. In the compiler's current usage for query
// caches, that's the "active query map" which ensures each query actually runs once
// (even if concurrently started).
Err(1) => panic!("caller raced calls to put()"),
// This slot was already populated. Also ignore, currently this is the same as
// "initializing".
Err(_) => false,
}
}
}
pub struct VecCache<K: Idx, V, I> {
// Entries per bucket:
// Bucket 0: 4096 2^12
// Bucket 1: 4096 2^12
// Bucket 2: 8192
// Bucket 3: 16384
// ...
// Bucket 19: 1073741824
// Bucket 20: 2147483648
// The total number of entries if all buckets are initialized is u32::MAX-1.
buckets: [AtomicPtr<Slot<V>>; 21],
// In the compiler's current usage these are only *read* during incremental and self-profiling.
// They are an optimization over iterating the full buckets array.
present: [AtomicPtr<Slot<()>>; 21],
len: AtomicUsize,
key: PhantomData<(K, I)>,
}
impl<K: Idx, V, I> Default for VecCache<K, V, I> {
fn default() -> Self {
VecCache {
buckets: Default::default(),
key: PhantomData,
len: Default::default(),
present: Default::default(),
}
}
}
// SAFETY: No access to `V` is made.
unsafe impl<K: Idx, #[may_dangle] V, I> Drop for VecCache<K, V, I> {
fn drop(&mut self) {
// We have unique ownership, so no locks etc. are needed. Since `K` and `V` are both `Copy`,
// we are also guaranteed to just need to deallocate any large arrays (not iterate over
// contents).
//
// Confirm no need to deallocate invidual entries. Note that `V: Copy` is asserted on
// insert/lookup but not necessarily construction, primarily to avoid annoyingly propagating
// the bounds into struct definitions everywhere.
assert!(!std::mem::needs_drop::<K>());
assert!(!std::mem::needs_drop::<V>());
for (idx, bucket) in self.buckets.iter().enumerate() {
let bucket = bucket.load(Ordering::Acquire);
if !bucket.is_null() {
let layout = std::alloc::Layout::array::<Slot<V>>(ENTRIES_BY_BUCKET[idx]).unwrap();
unsafe {
std::alloc::dealloc(bucket.cast(), layout);
}
}
}
for (idx, bucket) in self.present.iter().enumerate() {
let bucket = bucket.load(Ordering::Acquire);
if !bucket.is_null() {
let layout = std::alloc::Layout::array::<Slot<()>>(ENTRIES_BY_BUCKET[idx]).unwrap();
unsafe {
std::alloc::dealloc(bucket.cast(), layout);
}
}
}
}
}
impl<K, V, I> VecCache<K, V, I>
where
K: Eq + Idx + Copy + Debug,
V: Copy,
I: Idx + Copy,
{
#[inline(always)]
pub fn lookup(&self, key: &K) -> Option<(V, I)> {
let key = u32::try_from(key.index()).unwrap();
let slot_idx = SlotIndex::from_index(key);
match unsafe { slot_idx.get(&self.buckets) } {
Some((value, idx)) => Some((value, I::new(idx as usize))),
None => None,
}
}
#[inline]
pub fn complete(&self, key: K, value: V, index: I) {
let key = u32::try_from(key.index()).unwrap();
let slot_idx = SlotIndex::from_index(key);
if slot_idx.put(&self.buckets, value, index.index() as u32) {
let present_idx = self.len.fetch_add(1, Ordering::Relaxed);
let slot = SlotIndex::from_index(present_idx as u32);
// We should always be uniquely putting due to `len` fetch_add returning unique values.
assert!(slot.put(&self.present, (), key));
}
}
pub fn iter(&self, f: &mut dyn FnMut(&K, &V, I)) {
for idx in 0..self.len.load(Ordering::Acquire) {
let key = SlotIndex::from_index(idx as u32);
match unsafe { key.get(&self.present) } {
// This shouldn't happen in our current usage (iter is really only
// used long after queries are done running), but if we hit this in practice it's
// probably fine to just break early.
None => unreachable!(),
Some(((), key)) => {
let key = K::new(key as usize);
// unwrap() is OK: present entries are always written only after we put the real
// entry.
let value = self.lookup(&key).unwrap();
f(&key, &value.0, value.1);
}
}
}
}
}
#[cfg(test)]
mod tests;

View File

@ -0,0 +1,95 @@
use super::*;
#[test]
#[cfg(not(miri))]
fn vec_cache_empty() {
let cache: VecCache<u32, u32, u32> = VecCache::default();
for key in 0..u32::MAX {
assert!(cache.lookup(&key).is_none());
}
}
#[test]
fn vec_cache_insert_and_check() {
let cache: VecCache<u32, u32, u32> = VecCache::default();
cache.complete(0, 1, 2);
assert_eq!(cache.lookup(&0), Some((1, 2)));
}
#[test]
fn sparse_inserts() {
let cache: VecCache<u32, u8, u32> = VecCache::default();
let end = if cfg!(target_pointer_width = "64") && cfg!(target_os = "linux") {
// For paged memory, 64-bit systems we should be able to sparsely allocate all of the pages
// needed for these inserts cheaply (without needing to actually have gigabytes of resident
// memory).
31
} else {
// Otherwise, still run the test but scaled back:
//
// Each slot is 5 bytes, so 2^25 entries (on non-virtual memory systems, like e.g. Windows) will
// mean 160 megabytes of allocated memory. Going beyond that is probably not reasonable for
// tests.
25
};
for shift in 0..end {
let key = 1u32 << shift;
cache.complete(key, shift, key);
assert_eq!(cache.lookup(&key), Some((shift, key)));
}
}
#[test]
fn concurrent_stress_check() {
let cache: VecCache<u32, u32, u32> = VecCache::default();
std::thread::scope(|s| {
for idx in 0..100 {
let cache = &cache;
s.spawn(move || {
cache.complete(idx, idx, idx);
});
}
});
for idx in 0..100 {
assert_eq!(cache.lookup(&idx), Some((idx, idx)));
}
}
#[test]
fn slot_entries_table() {
assert_eq!(ENTRIES_BY_BUCKET, [
4096, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304,
8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824,
2147483648
]);
}
#[test]
#[cfg(not(miri))]
fn slot_index_exhaustive() {
let mut buckets = [0u32; 21];
for idx in 0..=u32::MAX {
buckets[SlotIndex::from_index(idx).bucket_idx] += 1;
}
let mut prev = None::<SlotIndex>;
for idx in 0..=u32::MAX {
let slot_idx = SlotIndex::from_index(idx);
if let Some(p) = prev {
if p.bucket_idx == slot_idx.bucket_idx {
assert_eq!(p.index_in_bucket + 1, slot_idx.index_in_bucket);
} else {
assert_eq!(slot_idx.index_in_bucket, 0);
}
} else {
assert_eq!(idx, 0);
assert_eq!(slot_idx.index_in_bucket, 0);
assert_eq!(slot_idx.bucket_idx, 0);
}
assert_eq!(buckets[slot_idx.bucket_idx], slot_idx.entries as u32);
assert_eq!(ENTRIES_BY_BUCKET[slot_idx.bucket_idx], slot_idx.entries, "{}", idx);
prev = Some(slot_idx);
}
}

View File

@ -2,6 +2,7 @@
use rustc_hir::def_id::{CrateNum, DefId, LOCAL_CRATE, LocalDefId, LocalModDefId, ModDefId}; use rustc_hir::def_id::{CrateNum, DefId, LOCAL_CRATE, LocalDefId, LocalModDefId, ModDefId};
use rustc_hir::hir_id::{HirId, OwnerId}; use rustc_hir::hir_id::{HirId, OwnerId};
use rustc_query_system::dep_graph::DepNodeIndex;
use rustc_query_system::query::{DefIdCache, DefaultCache, SingleCache, VecCache}; use rustc_query_system::query::{DefIdCache, DefaultCache, SingleCache, VecCache};
use rustc_span::symbol::{Ident, Symbol}; use rustc_span::symbol::{Ident, Symbol};
use rustc_span::{DUMMY_SP, Span}; use rustc_span::{DUMMY_SP, Span};
@ -111,7 +112,7 @@ impl<'tcx> Key for mir::interpret::LitToConstInput<'tcx> {
} }
impl Key for CrateNum { impl Key for CrateNum {
type Cache<V> = VecCache<Self, V>; type Cache<V> = VecCache<Self, V, DepNodeIndex>;
fn default_span(&self, _: TyCtxt<'_>) -> Span { fn default_span(&self, _: TyCtxt<'_>) -> Span {
DUMMY_SP DUMMY_SP
@ -128,7 +129,7 @@ impl AsLocalKey for CrateNum {
} }
impl Key for OwnerId { impl Key for OwnerId {
type Cache<V> = VecCache<Self, V>; type Cache<V> = VecCache<Self, V, DepNodeIndex>;
fn default_span(&self, tcx: TyCtxt<'_>) -> Span { fn default_span(&self, tcx: TyCtxt<'_>) -> Span {
self.to_def_id().default_span(tcx) self.to_def_id().default_span(tcx)
@ -140,7 +141,7 @@ impl Key for OwnerId {
} }
impl Key for LocalDefId { impl Key for LocalDefId {
type Cache<V> = VecCache<Self, V>; type Cache<V> = VecCache<Self, V, DepNodeIndex>;
fn default_span(&self, tcx: TyCtxt<'_>) -> Span { fn default_span(&self, tcx: TyCtxt<'_>) -> Span {
self.to_def_id().default_span(tcx) self.to_def_id().default_span(tcx)

View File

@ -2,6 +2,7 @@
#![allow(rustc::potential_query_instability, internal_features)] #![allow(rustc::potential_query_instability, internal_features)]
#![feature(assert_matches)] #![feature(assert_matches)]
#![feature(core_intrinsics)] #![feature(core_intrinsics)]
#![feature(dropck_eyepatch)]
#![feature(hash_raw_entry)] #![feature(hash_raw_entry)]
#![feature(let_chains)] #![feature(let_chains)]
#![feature(min_specialization)] #![feature(min_specialization)]

View File

@ -3,9 +3,10 @@ use std::hash::Hash;
use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sharded::{self, Sharded}; use rustc_data_structures::sharded::{self, Sharded};
use rustc_data_structures::sync::{Lock, OnceLock}; use rustc_data_structures::sync::OnceLock;
pub use rustc_data_structures::vec_cache::VecCache;
use rustc_hir::def_id::LOCAL_CRATE; use rustc_hir::def_id::LOCAL_CRATE;
use rustc_index::{Idx, IndexVec}; use rustc_index::Idx;
use rustc_span::def_id::{DefId, DefIndex}; use rustc_span::def_id::{DefId, DefIndex};
use crate::dep_graph::DepNodeIndex; use crate::dep_graph::DepNodeIndex;
@ -100,52 +101,10 @@ where
} }
} }
pub struct VecCache<K: Idx, V> {
cache: Lock<IndexVec<K, Option<(V, DepNodeIndex)>>>,
}
impl<K: Idx, V> Default for VecCache<K, V> {
fn default() -> Self {
VecCache { cache: Default::default() }
}
}
impl<K, V> QueryCache for VecCache<K, V>
where
K: Eq + Idx + Copy + Debug,
V: Copy,
{
type Key = K;
type Value = V;
#[inline(always)]
fn lookup(&self, key: &K) -> Option<(V, DepNodeIndex)> {
let lock = self.cache.lock();
if let Some(Some(value)) = lock.get(*key) { Some(*value) } else { None }
}
#[inline]
fn complete(&self, key: K, value: V, index: DepNodeIndex) {
let mut lock = self.cache.lock();
lock.insert(key, (value, index));
}
fn iter(&self, f: &mut dyn FnMut(&Self::Key, &Self::Value, DepNodeIndex)) {
for (k, v) in self.cache.lock().iter_enumerated() {
if let Some(v) = v {
f(&k, &v.0, v.1);
}
}
}
}
pub struct DefIdCache<V> { pub struct DefIdCache<V> {
/// Stores the local DefIds in a dense map. Local queries are much more often dense, so this is /// Stores the local DefIds in a dense map. Local queries are much more often dense, so this is
/// a win over hashing query keys at marginal memory cost (~5% at most) compared to FxHashMap. /// a win over hashing query keys at marginal memory cost (~5% at most) compared to FxHashMap.
/// local: VecCache<DefIndex, V, DepNodeIndex>,
/// The second element of the tuple is the set of keys actually present in the IndexVec, used
/// for faster iteration in `iter()`.
local: Lock<(IndexVec<DefIndex, Option<(V, DepNodeIndex)>>, Vec<DefIndex>)>,
foreign: DefaultCache<DefId, V>, foreign: DefaultCache<DefId, V>,
} }
@ -165,8 +124,7 @@ where
#[inline(always)] #[inline(always)]
fn lookup(&self, key: &DefId) -> Option<(V, DepNodeIndex)> { fn lookup(&self, key: &DefId) -> Option<(V, DepNodeIndex)> {
if key.krate == LOCAL_CRATE { if key.krate == LOCAL_CRATE {
let cache = self.local.lock(); self.local.lookup(&key.index)
cache.0.get(key.index).and_then(|v| *v)
} else { } else {
self.foreign.lookup(key) self.foreign.lookup(key)
} }
@ -175,27 +133,39 @@ where
#[inline] #[inline]
fn complete(&self, key: DefId, value: V, index: DepNodeIndex) { fn complete(&self, key: DefId, value: V, index: DepNodeIndex) {
if key.krate == LOCAL_CRATE { if key.krate == LOCAL_CRATE {
let mut cache = self.local.lock(); self.local.complete(key.index, value, index)
let (cache, present) = &mut *cache;
let slot = cache.ensure_contains_elem(key.index, Default::default);
if slot.is_none() {
// FIXME: Only store the present set when running in incremental mode. `iter` is not
// used outside of saving caches to disk and self-profile.
present.push(key.index);
}
*slot = Some((value, index));
} else { } else {
self.foreign.complete(key, value, index) self.foreign.complete(key, value, index)
} }
} }
fn iter(&self, f: &mut dyn FnMut(&Self::Key, &Self::Value, DepNodeIndex)) { fn iter(&self, f: &mut dyn FnMut(&Self::Key, &Self::Value, DepNodeIndex)) {
let guard = self.local.lock(); self.local.iter(&mut |key, value, index| {
let (cache, present) = &*guard; f(&DefId { krate: LOCAL_CRATE, index: *key }, value, index);
for &idx in present.iter() { });
let value = cache[idx].unwrap();
f(&DefId { krate: LOCAL_CRATE, index: idx }, &value.0, value.1);
}
self.foreign.iter(f); self.foreign.iter(f);
} }
} }
impl<K, V> QueryCache for VecCache<K, V, DepNodeIndex>
where
K: Idx + Eq + Hash + Copy + Debug,
V: Copy,
{
type Key = K;
type Value = V;
#[inline(always)]
fn lookup(&self, key: &K) -> Option<(V, DepNodeIndex)> {
self.lookup(key)
}
#[inline]
fn complete(&self, key: K, value: V, index: DepNodeIndex) {
self.complete(key, value, index)
}
fn iter(&self, f: &mut dyn FnMut(&Self::Key, &Self::Value, DepNodeIndex)) {
self.iter(f)
}
}