Rollup merge of #116754 - Zalathar:spans, r=oli-obk

coverage: Several small cleanups in `spans`

While investigating the details of coverage span processing, I noticed several opportunities to make the code simpler and clearer.

---

`@rustbot` label +A-code-coverage
This commit is contained in:
Guillaume Gomez 2023-10-16 23:58:03 +02:00 committed by GitHub
commit 581f88deda
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -3,7 +3,7 @@ use std::cell::OnceCell;
use rustc_data_structures::graph::WithNumNodes;
use rustc_index::IndexVec;
use rustc_middle::mir::{self, AggregateKind, Rvalue, Statement, StatementKind};
use rustc_span::{BytePos, ExpnKind, MacroKind, Span, Symbol};
use rustc_span::{BytePos, ExpnKind, MacroKind, Span, Symbol, DUMMY_SP};
use super::graph::{BasicCoverageBlock, CoverageGraph, START_BCB};
@ -215,9 +215,6 @@ struct CoverageSpansGenerator<'a> {
/// is mutated.
prev_original_span: Span,
/// A copy of the expn_span from the prior iteration.
prev_expn_span: Option<Span>,
/// One or more `CoverageSpan`s with the same `Span` but different `BasicCoverageBlock`s, and
/// no `BasicCoverageBlock` in this list dominates another `BasicCoverageBlock` in the list.
/// If a new `curr` span also fits this criteria (compared to an existing list of
@ -272,13 +269,12 @@ impl<'a> CoverageSpansGenerator<'a> {
body_span,
basic_coverage_blocks,
sorted_spans_iter: sorted_spans.into_iter(),
refined_spans: Vec::with_capacity(basic_coverage_blocks.num_nodes() * 2),
some_curr: None,
curr_original_span: Span::with_root_ctxt(BytePos(0), BytePos(0)),
curr_original_span: DUMMY_SP,
some_prev: None,
prev_original_span: Span::with_root_ctxt(BytePos(0), BytePos(0)),
prev_expn_span: None,
prev_original_span: DUMMY_SP,
pending_dups: Vec::new(),
refined_spans: Vec::with_capacity(basic_coverage_blocks.num_nodes() * 2),
};
coverage_spans.to_refined_spans()
@ -288,43 +284,48 @@ impl<'a> CoverageSpansGenerator<'a> {
/// de-duplicated `CoverageSpan`s.
fn to_refined_spans(mut self) -> Vec<CoverageSpan> {
while self.next_coverage_span() {
// For the first span we don't have `prev` set, so most of the
// span-processing steps don't make sense yet.
if self.some_prev.is_none() {
debug!(" initial span");
self.check_invoked_macro_name_span();
} else if self.curr().is_mergeable(self.prev()) {
debug!(" same bcb (and neither is a closure), merge with prev={:?}", self.prev());
self.maybe_push_macro_name_span();
continue;
}
// The remaining cases assume that `prev` and `curr` are set.
let prev = self.prev();
let curr = self.curr();
if curr.is_mergeable(prev) {
debug!(" same bcb (and neither is a closure), merge with prev={prev:?}");
let prev = self.take_prev();
self.curr_mut().merge_from(prev);
self.check_invoked_macro_name_span();
self.maybe_push_macro_name_span();
// Note that curr.span may now differ from curr_original_span
} else if self.prev_ends_before_curr() {
} else if prev.span.hi() <= curr.span.lo() {
debug!(
" different bcbs and disjoint spans, so keep curr for next iter, and add \
prev={:?}",
self.prev()
" different bcbs and disjoint spans, so keep curr for next iter, and add prev={prev:?}",
);
let prev = self.take_prev();
self.push_refined_span(prev);
self.check_invoked_macro_name_span();
} else if self.prev().is_closure {
self.maybe_push_macro_name_span();
} else if prev.is_closure {
// drop any equal or overlapping span (`curr`) and keep `prev` to test again in the
// next iter
debug!(
" curr overlaps a closure (prev). Drop curr and keep prev for next iter. \
prev={:?}",
self.prev()
" curr overlaps a closure (prev). Drop curr and keep prev for next iter. prev={prev:?}",
);
self.take_curr();
} else if self.curr().is_closure {
self.take_curr(); // Discards curr.
} else if curr.is_closure {
self.carve_out_span_for_closure();
} else if self.prev_original_span == self.curr().span {
} else if self.prev_original_span == curr.span {
// Note that this compares the new (`curr`) span to `prev_original_span`.
// In this branch, the actual span byte range of `prev_original_span` is not
// important. What is important is knowing whether the new `curr` span was
// **originally** the same as the original span of `prev()`. The original spans
// reflect their original sort order, and for equal spans, conveys a partial
// ordering based on CFG dominator priority.
if self.prev().is_macro_expansion() && self.curr().is_macro_expansion() {
if prev.is_macro_expansion() && curr.is_macro_expansion() {
// Macros that expand to include branching (such as
// `assert_eq!()`, `assert_ne!()`, `info!()`, `debug!()`, or
// `trace!()`) typically generate callee spans with identical
@ -338,23 +339,24 @@ impl<'a> CoverageSpansGenerator<'a> {
debug!(
" curr and prev are part of a macro expansion, and curr has the same span \
as prev, but is in a different bcb. Drop curr and keep prev for next iter. \
prev={:?}",
self.prev()
prev={prev:?}",
);
self.take_curr();
self.take_curr(); // Discards curr.
} else {
self.hold_pending_dups_unless_dominated();
self.update_pending_dups();
}
} else {
self.cutoff_prev_at_overlapping_curr();
self.check_invoked_macro_name_span();
self.maybe_push_macro_name_span();
}
}
debug!(" AT END, adding last prev={:?}", self.prev());
let prev = self.take_prev();
let pending_dups = self.pending_dups.split_off(0);
for dup in pending_dups {
debug!(" AT END, adding last prev={prev:?}");
// Take `pending_dups` so that we can drain it while calling self methods.
// It is never used as a field after this point.
for dup in std::mem::take(&mut self.pending_dups) {
debug!(" ...adding at least one pending dup={:?}", dup);
self.push_refined_span(dup);
}
@ -384,43 +386,40 @@ impl<'a> CoverageSpansGenerator<'a> {
}
fn push_refined_span(&mut self, covspan: CoverageSpan) {
let len = self.refined_spans.len();
if len > 0 {
let last = &mut self.refined_spans[len - 1];
if last.is_mergeable(&covspan) {
debug!(
"merging new refined span with last refined span, last={:?}, covspan={:?}",
last, covspan
);
last.merge_from(covspan);
return;
}
if let Some(last) = self.refined_spans.last_mut()
&& last.is_mergeable(&covspan)
{
// Instead of pushing the new span, merge it with the last refined span.
debug!(?last, ?covspan, "merging new refined span with last refined span");
last.merge_from(covspan);
} else {
self.refined_spans.push(covspan);
}
self.refined_spans.push(covspan)
}
fn check_invoked_macro_name_span(&mut self) {
if let Some(visible_macro) = self.curr().visible_macro(self.body_span) {
if !self
.prev_expn_span
.is_some_and(|prev_expn_span| self.curr().expn_span.ctxt() == prev_expn_span.ctxt())
{
let merged_prefix_len = self.curr_original_span.lo() - self.curr().span.lo();
let after_macro_bang =
merged_prefix_len + BytePos(visible_macro.as_str().len() as u32 + 1);
let mut macro_name_cov = self.curr().clone();
self.curr_mut().span =
self.curr().span.with_lo(self.curr().span.lo() + after_macro_bang);
macro_name_cov.span =
macro_name_cov.span.with_hi(macro_name_cov.span.lo() + after_macro_bang);
debug!(
" and curr starts a new macro expansion, so add a new span just for \
the macro `{}!`, new span={:?}",
visible_macro, macro_name_cov
);
self.push_refined_span(macro_name_cov);
}
/// If `curr` is part of a new macro expansion, carve out and push a separate
/// span that ends just after the macro name and its subsequent `!`.
fn maybe_push_macro_name_span(&mut self) {
let curr = self.curr();
let Some(visible_macro) = curr.visible_macro(self.body_span) else { return };
if let Some(prev) = &self.some_prev
&& prev.expn_span.ctxt() == curr.expn_span.ctxt()
{
return;
}
let merged_prefix_len = self.curr_original_span.lo() - curr.span.lo();
let after_macro_bang = merged_prefix_len + BytePos(visible_macro.as_str().len() as u32 + 1);
let mut macro_name_cov = curr.clone();
self.curr_mut().span = curr.span.with_lo(curr.span.lo() + after_macro_bang);
macro_name_cov.span =
macro_name_cov.span.with_hi(macro_name_cov.span.lo() + after_macro_bang);
debug!(
" and curr starts a new macro expansion, so add a new span just for \
the macro `{visible_macro}!`, new span={macro_name_cov:?}",
);
self.push_refined_span(macro_name_cov);
}
fn curr(&self) -> &CoverageSpan {
@ -435,6 +434,12 @@ impl<'a> CoverageSpansGenerator<'a> {
.unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_curr"))
}
/// If called, then the next call to `next_coverage_span()` will *not* update `prev` with the
/// `curr` coverage span.
fn take_curr(&mut self) -> CoverageSpan {
self.some_curr.take().unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_curr"))
}
fn prev(&self) -> &CoverageSpan {
self.some_prev
.as_ref()
@ -460,84 +465,78 @@ impl<'a> CoverageSpansGenerator<'a> {
/// `pending_dups` could have as few as one span)
/// In either case, no more spans will match the span of `pending_dups`, so
/// add the `pending_dups` if they don't overlap `curr`, and clear the list.
fn check_pending_dups(&mut self) {
if let Some(dup) = self.pending_dups.last()
&& dup.span != self.prev().span
{
debug!(
" SAME spans, but pending_dups are NOT THE SAME, so BCBs matched on \
previous iteration, or prev started a new disjoint span"
);
if dup.span.hi() <= self.curr().span.lo() {
let pending_dups = self.pending_dups.split_off(0);
for dup in pending_dups.into_iter() {
debug!(" ...adding at least one pending={:?}", dup);
self.push_refined_span(dup);
}
} else {
self.pending_dups.clear();
fn maybe_flush_pending_dups(&mut self) {
let Some(last_dup) = self.pending_dups.last() else { return };
if last_dup.span == self.prev().span {
return;
}
debug!(
" SAME spans, but pending_dups are NOT THE SAME, so BCBs matched on \
previous iteration, or prev started a new disjoint span"
);
if last_dup.span.hi() <= self.curr().span.lo() {
// Temporarily steal `pending_dups` into a local, so that we can
// drain it while calling other self methods.
let mut pending_dups = std::mem::take(&mut self.pending_dups);
for dup in pending_dups.drain(..) {
debug!(" ...adding at least one pending={:?}", dup);
self.push_refined_span(dup);
}
// The list of dups is now empty, but we can recycle its capacity.
assert!(pending_dups.is_empty() && self.pending_dups.is_empty());
self.pending_dups = pending_dups;
} else {
self.pending_dups.clear();
}
}
/// Advance `prev` to `curr` (if any), and `curr` to the next `CoverageSpan` in sorted order.
fn next_coverage_span(&mut self) -> bool {
if let Some(curr) = self.some_curr.take() {
self.prev_expn_span = Some(curr.expn_span);
self.some_prev = Some(curr);
self.prev_original_span = self.curr_original_span;
}
while let Some(curr) = self.sorted_spans_iter.next() {
debug!("FOR curr={:?}", curr);
if self.some_prev.is_some() && self.prev_starts_after_next(&curr) {
if let Some(prev) = &self.some_prev && prev.span.lo() > curr.span.lo() {
// Skip curr because prev has already advanced beyond the end of curr.
// This can only happen if a prior iteration updated `prev` to skip past
// a region of code, such as skipping past a closure.
debug!(
" prev.span starts after curr.span, so curr will be dropped (skipping past \
closure?); prev={:?}",
self.prev()
closure?); prev={prev:?}",
);
} else {
// Save a copy of the original span for `curr` in case the `CoverageSpan` is changed
// by `self.curr_mut().merge_from(prev)`.
self.curr_original_span = curr.span;
self.some_curr.replace(curr);
self.check_pending_dups();
self.maybe_flush_pending_dups();
return true;
}
}
false
}
/// If called, then the next call to `next_coverage_span()` will *not* update `prev` with the
/// `curr` coverage span.
fn take_curr(&mut self) -> CoverageSpan {
self.some_curr.take().unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_curr"))
}
/// Returns true if the curr span should be skipped because prev has already advanced beyond the
/// end of curr. This can only happen if a prior iteration updated `prev` to skip past a region
/// of code, such as skipping past a closure.
fn prev_starts_after_next(&self, next_curr: &CoverageSpan) -> bool {
self.prev().span.lo() > next_curr.span.lo()
}
/// Returns true if the curr span starts past the end of the prev span, which means they don't
/// overlap, so we now know the prev can be added to the refined coverage spans.
fn prev_ends_before_curr(&self) -> bool {
self.prev().span.hi() <= self.curr().span.lo()
}
/// If `prev`s span extends left of the closure (`curr`), carve out the closure's span from
/// `prev`'s span. (The closure's coverage counters will be injected when processing the
/// closure's own MIR.) Add the portion of the span to the left of the closure; and if the span
/// extends to the right of the closure, update `prev` to that portion of the span. For any
/// `pending_dups`, repeat the same process.
fn carve_out_span_for_closure(&mut self) {
let curr_span = self.curr().span;
let left_cutoff = curr_span.lo();
let right_cutoff = curr_span.hi();
let has_pre_closure_span = self.prev().span.lo() < right_cutoff;
let has_post_closure_span = self.prev().span.hi() > right_cutoff;
let mut pending_dups = self.pending_dups.split_off(0);
let prev = self.prev();
let curr = self.curr();
let left_cutoff = curr.span.lo();
let right_cutoff = curr.span.hi();
let has_pre_closure_span = prev.span.lo() < right_cutoff;
let has_post_closure_span = prev.span.hi() > right_cutoff;
// Temporarily steal `pending_dups` into a local, so that we can
// mutate and/or drain it while calling other self methods.
let mut pending_dups = std::mem::take(&mut self.pending_dups);
if has_pre_closure_span {
let mut pre_closure = self.prev().clone();
pre_closure.span = pre_closure.span.with_hi(left_cutoff);
@ -551,6 +550,7 @@ impl<'a> CoverageSpansGenerator<'a> {
}
self.push_refined_span(pre_closure);
}
if has_post_closure_span {
// Mutate `prev.span()` to start after the closure (and discard curr).
// (**NEVER** update `prev_original_span` because it affects the assumptions
@ -561,12 +561,15 @@ impl<'a> CoverageSpansGenerator<'a> {
debug!(" ...and at least one overlapping dup={:?}", dup);
dup.span = dup.span.with_lo(right_cutoff);
}
self.pending_dups.append(&mut pending_dups);
let closure_covspan = self.take_curr();
let closure_covspan = self.take_curr(); // Prevent this curr from becoming prev.
self.push_refined_span(closure_covspan); // since self.prev() was already updated
} else {
pending_dups.clear();
}
// Restore the modified post-closure spans, or the empty vector's capacity.
assert!(self.pending_dups.is_empty());
self.pending_dups = pending_dups;
}
/// Called if `curr.span` equals `prev_original_span` (and potentially equal to all
@ -583,26 +586,28 @@ impl<'a> CoverageSpansGenerator<'a> {
/// neither `CoverageSpan` dominates the other, both (or possibly more than two) are held,
/// until their disposition is determined. In this latter case, the `prev` dup is moved into
/// `pending_dups` so the new `curr` dup can be moved to `prev` for the next iteration.
fn hold_pending_dups_unless_dominated(&mut self) {
fn update_pending_dups(&mut self) {
let prev_bcb = self.prev().bcb;
let curr_bcb = self.curr().bcb;
// Equal coverage spans are ordered by dominators before dominated (if any), so it should be
// impossible for `curr` to dominate any previous `CoverageSpan`.
debug_assert!(!self.span_bcb_dominates(self.curr(), self.prev()));
debug_assert!(!self.basic_coverage_blocks.dominates(curr_bcb, prev_bcb));
let initial_pending_count = self.pending_dups.len();
if initial_pending_count > 0 {
let mut pending_dups = self.pending_dups.split_off(0);
pending_dups.retain(|dup| !self.span_bcb_dominates(dup, self.curr()));
self.pending_dups.append(&mut pending_dups);
if self.pending_dups.len() < initial_pending_count {
self.pending_dups
.retain(|dup| !self.basic_coverage_blocks.dominates(dup.bcb, curr_bcb));
let n_discarded = initial_pending_count - self.pending_dups.len();
if n_discarded > 0 {
debug!(
" discarded {} of {} pending_dups that dominated curr",
initial_pending_count - self.pending_dups.len(),
initial_pending_count
" discarded {n_discarded} of {initial_pending_count} pending_dups that dominated curr",
);
}
}
if self.span_bcb_dominates(self.prev(), self.curr()) {
if self.basic_coverage_blocks.dominates(prev_bcb, curr_bcb) {
debug!(
" different bcbs but SAME spans, and prev dominates curr. Discard prev={:?}",
self.prev()
@ -667,8 +672,4 @@ impl<'a> CoverageSpansGenerator<'a> {
self.pending_dups.clear();
}
}
fn span_bcb_dominates(&self, dom_covspan: &CoverageSpan, covspan: &CoverageSpan) -> bool {
self.basic_coverage_blocks.dominates(dom_covspan.bcb, covspan.bcb)
}
}