7250: Improve analysis stats legibility r=matklad a=matklad

bors r+
🤖

Co-authored-by: Aleksey Kladov <aleksey.kladov@gmail.com>
This commit is contained in:
bors[bot] 2021-01-11 19:18:34 +00:00 committed by GitHub
commit 52fa926f00
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -58,7 +58,7 @@ impl AnalysisStatsCmd {
let mut db_load_sw = self.stop_watch();
let (host, vfs) = load_cargo(&self.path, self.load_output_dirs, self.with_proc_macro)?;
let db = host.raw_database();
eprintln!("Database loaded {}", db_load_sw.elapsed());
eprintln!("{:<20} {}", "Database loaded:", db_load_sw.elapsed());
let mut analysis_sw = self.stop_watch();
let mut num_crates = 0;
@ -85,7 +85,7 @@ impl AnalysisStatsCmd {
shuffle(&mut rng, &mut visit_queue);
}
eprintln!("Crates in this dir: {}", num_crates);
eprint!(" crates: {}", num_crates);
let mut num_decls = 0;
let mut funcs = Vec::new();
while let Some(module) = visit_queue.pop() {
@ -109,10 +109,8 @@ impl AnalysisStatsCmd {
}
}
}
eprintln!("Total modules found: {}", visited_modules.len());
eprintln!("Total declarations: {}", num_decls);
eprintln!("Total functions: {}", funcs.len());
eprintln!("Item Collection: {}", analysis_sw.elapsed());
eprintln!(", mods: {}, decls: {}, fns: {}", visited_modules.len(), num_decls, funcs.len());
eprintln!("{:<20} {}", "Item Collection:", analysis_sw.elapsed());
if self.randomize {
shuffle(&mut rng, &mut funcs);
@ -135,7 +133,7 @@ impl AnalysisStatsCmd {
snap.0.infer(f_id.into());
})
.count();
eprintln!("Parallel Inference: {}", inference_sw.elapsed());
eprintln!("{:<20} {}", "Parallel Inference:", inference_sw.elapsed());
}
let mut inference_sw = self.stop_watch();
@ -273,27 +271,22 @@ impl AnalysisStatsCmd {
bar.inc(1);
}
bar.finish_and_clear();
eprintln!("Total expressions: {}", num_exprs);
eprintln!(
"Expressions of unknown type: {} ({}%)",
" exprs: {}, ??ty: {} ({}%), ?ty: {} ({}%), !ty: {}",
num_exprs,
num_exprs_unknown,
if num_exprs > 0 { num_exprs_unknown * 100 / num_exprs } else { 100 }
percentage(num_exprs_unknown, num_exprs),
num_exprs_partially_unknown,
percentage(num_exprs_partially_unknown, num_exprs),
num_type_mismatches
);
report_metric("unknown type", num_exprs_unknown, "#");
eprintln!(
"Expressions of partially unknown type: {} ({}%)",
num_exprs_partially_unknown,
if num_exprs > 0 { num_exprs_partially_unknown * 100 / num_exprs } else { 100 }
);
eprintln!("Type mismatches: {}", num_type_mismatches);
report_metric("type mismatches", num_type_mismatches, "#");
eprintln!("Inference: {}", inference_sw.elapsed());
eprintln!("{:<20} {}", "Inference:", inference_sw.elapsed());
let total_span = analysis_sw.elapsed();
eprintln!("Total: {}", total_span);
eprintln!("{:<20} {}", "Total:", total_span);
report_metric("total time", total_span.time.as_millis() as u64, "ms");
if let Some(instructions) = total_span.instructions {
report_metric("total instructions", instructions, "#instr");
@ -325,3 +318,7 @@ fn shuffle<T>(rng: &mut Rand32, slice: &mut [T]) {
slice.swap(0, idx);
}
}
fn percentage(n: u64, total: u64) -> u64 {
(n * 100).checked_div(total).unwrap_or(100)
}