mirror of
https://github.com/rust-lang/rust.git
synced 2024-11-22 23:04:33 +00:00
add more niches to rawvec
This commit is contained in:
parent
7e452c123c
commit
502df1b7d4
@ -25,6 +25,16 @@ enum AllocInit {
|
||||
Zeroed,
|
||||
}
|
||||
|
||||
#[repr(transparent)]
|
||||
#[cfg_attr(target_pointer_width = "16", rustc_layout_scalar_valid_range_end(0x7fff))]
|
||||
#[cfg_attr(target_pointer_width = "32", rustc_layout_scalar_valid_range_end(0x7fff_ffff))]
|
||||
#[cfg_attr(target_pointer_width = "64", rustc_layout_scalar_valid_range_end(0x7fff_ffff_ffff_ffff))]
|
||||
struct Cap(usize);
|
||||
|
||||
impl Cap {
|
||||
const ZERO: Cap = unsafe { Cap(0) };
|
||||
}
|
||||
|
||||
/// A low-level utility for more ergonomically allocating, reallocating, and deallocating
|
||||
/// a buffer of memory on the heap without having to worry about all the corner cases
|
||||
/// involved. This type is excellent for building your own data structures like Vec and VecDeque.
|
||||
@ -50,7 +60,7 @@ enum AllocInit {
|
||||
#[allow(missing_debug_implementations)]
|
||||
pub(crate) struct RawVec<T, A: Allocator = Global> {
|
||||
ptr: Unique<T>,
|
||||
cap: usize,
|
||||
cap: Cap,
|
||||
alloc: A,
|
||||
}
|
||||
|
||||
@ -119,7 +129,7 @@ impl<T, A: Allocator> RawVec<T, A> {
|
||||
/// the returned `RawVec`.
|
||||
pub const fn new_in(alloc: A) -> Self {
|
||||
// `cap: 0` means "unallocated". zero-sized types are ignored.
|
||||
Self { ptr: Unique::dangling(), cap: 0, alloc }
|
||||
Self { ptr: Unique::dangling(), cap: Cap::ZERO, alloc }
|
||||
}
|
||||
|
||||
/// Like `with_capacity`, but parameterized over the choice of
|
||||
@ -194,7 +204,7 @@ impl<T, A: Allocator> RawVec<T, A> {
|
||||
// here should change to `ptr.len() / mem::size_of::<T>()`.
|
||||
Self {
|
||||
ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
|
||||
cap: capacity,
|
||||
cap: unsafe { Cap(capacity) },
|
||||
alloc,
|
||||
}
|
||||
}
|
||||
@ -207,12 +217,13 @@ impl<T, A: Allocator> RawVec<T, A> {
|
||||
/// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
|
||||
/// `capacity`.
|
||||
/// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
|
||||
/// systems). ZST vectors may have a capacity up to `usize::MAX`.
|
||||
/// systems). For ZSTs capacity is ignored.
|
||||
/// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
|
||||
/// guaranteed.
|
||||
#[inline]
|
||||
pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
|
||||
Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap: capacity, alloc }
|
||||
let cap = if T::IS_ZST { Cap::ZERO } else { unsafe { Cap(capacity) } };
|
||||
Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap, alloc }
|
||||
}
|
||||
|
||||
/// Gets a raw pointer to the start of the allocation. Note that this is
|
||||
@ -228,7 +239,7 @@ impl<T, A: Allocator> RawVec<T, A> {
|
||||
/// This will always be `usize::MAX` if `T` is zero-sized.
|
||||
#[inline(always)]
|
||||
pub fn capacity(&self) -> usize {
|
||||
if T::IS_ZST { usize::MAX } else { self.cap }
|
||||
if T::IS_ZST { usize::MAX } else { self.cap.0 }
|
||||
}
|
||||
|
||||
/// Returns a shared reference to the allocator backing this `RawVec`.
|
||||
@ -237,7 +248,7 @@ impl<T, A: Allocator> RawVec<T, A> {
|
||||
}
|
||||
|
||||
fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> {
|
||||
if T::IS_ZST || self.cap == 0 {
|
||||
if T::IS_ZST || self.cap.0 == 0 {
|
||||
None
|
||||
} else {
|
||||
// We could use Layout::array here which ensures the absence of isize and usize overflows
|
||||
@ -247,7 +258,7 @@ impl<T, A: Allocator> RawVec<T, A> {
|
||||
let _: () = const { assert!(mem::size_of::<T>() % mem::align_of::<T>() == 0) };
|
||||
unsafe {
|
||||
let align = mem::align_of::<T>();
|
||||
let size = mem::size_of::<T>().unchecked_mul(self.cap);
|
||||
let size = mem::size_of::<T>().unchecked_mul(self.cap.0);
|
||||
let layout = Layout::from_size_align_unchecked(size, align);
|
||||
Some((self.ptr.cast().into(), layout))
|
||||
}
|
||||
@ -375,12 +386,15 @@ impl<T, A: Allocator> RawVec<T, A> {
|
||||
additional > self.capacity().wrapping_sub(len)
|
||||
}
|
||||
|
||||
fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) {
|
||||
/// # Safety:
|
||||
///
|
||||
/// `cap` must not exceed `isize::MAX`.
|
||||
unsafe fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) {
|
||||
// Allocators currently return a `NonNull<[u8]>` whose length matches
|
||||
// the size requested. If that ever changes, the capacity here should
|
||||
// change to `ptr.len() / mem::size_of::<T>()`.
|
||||
self.ptr = unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) };
|
||||
self.cap = cap;
|
||||
self.cap = unsafe { Cap(cap) };
|
||||
}
|
||||
|
||||
// This method is usually instantiated many times. So we want it to be as
|
||||
@ -405,14 +419,15 @@ impl<T, A: Allocator> RawVec<T, A> {
|
||||
|
||||
// This guarantees exponential growth. The doubling cannot overflow
|
||||
// because `cap <= isize::MAX` and the type of `cap` is `usize`.
|
||||
let cap = cmp::max(self.cap * 2, required_cap);
|
||||
let cap = cmp::max(self.cap.0 * 2, required_cap);
|
||||
let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap);
|
||||
|
||||
let new_layout = Layout::array::<T>(cap);
|
||||
|
||||
// `finish_grow` is non-generic over `T`.
|
||||
let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
|
||||
self.set_ptr_and_cap(ptr, cap);
|
||||
// SAFETY: finish_grow would have resulted in a capacity overflow if we tried to allocate more than isize::MAX items
|
||||
unsafe { self.set_ptr_and_cap(ptr, cap) };
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -431,7 +446,10 @@ impl<T, A: Allocator> RawVec<T, A> {
|
||||
|
||||
// `finish_grow` is non-generic over `T`.
|
||||
let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
|
||||
self.set_ptr_and_cap(ptr, cap);
|
||||
// SAFETY: finish_grow would have resulted in a capacity overflow if we tried to allocate more than isize::MAX items
|
||||
unsafe {
|
||||
self.set_ptr_and_cap(ptr, cap);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -449,7 +467,7 @@ impl<T, A: Allocator> RawVec<T, A> {
|
||||
if cap == 0 {
|
||||
unsafe { self.alloc.deallocate(ptr, layout) };
|
||||
self.ptr = Unique::dangling();
|
||||
self.cap = 0;
|
||||
self.cap = Cap::ZERO;
|
||||
} else {
|
||||
let ptr = unsafe {
|
||||
// `Layout::array` cannot overflow here because it would have
|
||||
@ -460,7 +478,10 @@ impl<T, A: Allocator> RawVec<T, A> {
|
||||
.shrink(ptr, layout, new_layout)
|
||||
.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
|
||||
};
|
||||
self.set_ptr_and_cap(ptr, cap);
|
||||
// SAFETY: if the allocation is valid, then the capacity is too
|
||||
unsafe {
|
||||
self.set_ptr_and_cap(ptr, cap);
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
@ -1,4 +1,5 @@
|
||||
use super::*;
|
||||
use core::mem::size_of;
|
||||
use std::cell::Cell;
|
||||
|
||||
#[test]
|
||||
@ -161,3 +162,11 @@ fn zst_reserve_exact_panic() {
|
||||
|
||||
v.reserve_exact(101, usize::MAX - 100);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn niches() {
|
||||
let baseline = size_of::<RawVec<u8>>();
|
||||
assert_eq!(size_of::<Option<RawVec<u8>>>(), baseline);
|
||||
assert_eq!(size_of::<Option<Option<RawVec<u8>>>>(), baseline);
|
||||
assert_eq!(size_of::<Option<Option<Option<RawVec<u8>>>>>(), baseline);
|
||||
}
|
||||
|
@ -9,9 +9,12 @@
|
||||
// CHECK-LABEL: define {{(dso_local )?}}void @string_new
|
||||
#[no_mangle]
|
||||
pub fn string_new() -> String {
|
||||
// CHECK: store ptr inttoptr
|
||||
// CHECK-NOT: load i8
|
||||
// CHECK: store i{{32|64}}
|
||||
// CHECK-NEXT: getelementptr
|
||||
// CHECK-NEXT: call void @llvm.memset
|
||||
// CHECK-NEXT: store ptr
|
||||
// CHECK-NEXT: getelementptr
|
||||
// CHECK-NEXT: store i{{32|64}}
|
||||
// CHECK-NEXT: ret void
|
||||
String::new()
|
||||
}
|
||||
@ -19,9 +22,12 @@ pub fn string_new() -> String {
|
||||
// CHECK-LABEL: define {{(dso_local )?}}void @empty_to_string
|
||||
#[no_mangle]
|
||||
pub fn empty_to_string() -> String {
|
||||
// CHECK: store ptr inttoptr
|
||||
// CHECK-NOT: load i8
|
||||
// CHECK: store i{{32|64}}
|
||||
// CHECK-NEXT: getelementptr
|
||||
// CHECK-NEXT: call void @llvm.memset
|
||||
// CHECK-NEXT: store ptr
|
||||
// CHECK-NEXT: getelementptr
|
||||
// CHECK-NEXT: store i{{32|64}}
|
||||
// CHECK-NEXT: ret void
|
||||
"".to_string()
|
||||
}
|
||||
@ -32,9 +38,12 @@ pub fn empty_to_string() -> String {
|
||||
// CHECK-LABEL: @empty_vec
|
||||
#[no_mangle]
|
||||
pub fn empty_vec() -> Vec<u8> {
|
||||
// CHECK: store ptr inttoptr
|
||||
// CHECK: store i{{32|64}}
|
||||
// CHECK-NOT: load i8
|
||||
// CHECK-NEXT: getelementptr
|
||||
// CHECK-NEXT: call void @llvm.memset
|
||||
// CHECK-NEXT: store ptr
|
||||
// CHECK-NEXT: getelementptr
|
||||
// CHECK-NEXT: store i{{32|64}}
|
||||
// CHECK-NEXT: ret void
|
||||
vec![]
|
||||
}
|
||||
@ -42,9 +51,12 @@ pub fn empty_vec() -> Vec<u8> {
|
||||
// CHECK-LABEL: @empty_vec_clone
|
||||
#[no_mangle]
|
||||
pub fn empty_vec_clone() -> Vec<u8> {
|
||||
// CHECK: store ptr inttoptr
|
||||
// CHECK: store i{{32|64}}
|
||||
// CHECK-NOT: load i8
|
||||
// CHECK-NEXT: getelementptr
|
||||
// CHECK-NEXT: call void @llvm.memset
|
||||
// CHECK-NEXT: store ptr
|
||||
// CHECK-NEXT: getelementptr
|
||||
// CHECK-NEXT: store i{{32|64}}
|
||||
// CHECK-NEXT: ret void
|
||||
vec![].clone()
|
||||
}
|
||||
|
@ -1,3 +1,3 @@
|
||||
thread 'main' panicked at library/alloc/src/raw_vec.rs:545:5:
|
||||
thread 'main' panicked at library/alloc/src/raw_vec.rs:571:5:
|
||||
capacity overflow
|
||||
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
|
||||
|
Loading…
Reference in New Issue
Block a user