Rename TypeCx -> PatCx

This commit is contained in:
Nadrieril 2024-03-13 13:56:06 +01:00
parent cb15bf6256
commit 4fc35c46ff
6 changed files with 68 additions and 68 deletions

View File

@ -40,7 +40,7 @@
//! - That have no non-trivial intersection with any of the constructors in the column (i.e. they're
//! each either disjoint with or covered by any given column constructor).
//!
//! We compute this in two steps: first [`TypeCx::ctors_for_ty`] determines the
//! We compute this in two steps: first [`PatCx::ctors_for_ty`] determines the
//! set of all possible constructors for the type. Then [`ConstructorSet::split`] looks at the
//! column of constructors and splits the set into groups accordingly. The precise invariants of
//! [`ConstructorSet::split`] is described in [`SplitConstructorSet`].
@ -136,7 +136,7 @@
//! the algorithm can't distinguish them from a nonempty constructor. The only known case where this
//! could happen is the `[..]` pattern on `[!; N]` with `N > 0` so we must take care to not emit it.
//!
//! This is all handled by [`TypeCx::ctors_for_ty`] and
//! This is all handled by [`PatCx::ctors_for_ty`] and
//! [`ConstructorSet::split`]. The invariants of [`SplitConstructorSet`] are also of interest.
//!
//!
@ -162,7 +162,7 @@ use self::MaybeInfiniteInt::*;
use self::SliceKind::*;
use crate::index;
use crate::TypeCx;
use crate::PatCx;
/// Whether we have seen a constructor in the column or not.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
@ -651,7 +651,7 @@ impl OpaqueId {
/// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
/// `Fields`.
#[derive(Debug)]
pub enum Constructor<Cx: TypeCx> {
pub enum Constructor<Cx: PatCx> {
/// Tuples and structs.
Struct,
/// Enum variants.
@ -696,7 +696,7 @@ pub enum Constructor<Cx: TypeCx> {
PrivateUninhabited,
}
impl<Cx: TypeCx> Clone for Constructor<Cx> {
impl<Cx: PatCx> Clone for Constructor<Cx> {
fn clone(&self) -> Self {
match self {
Constructor::Struct => Constructor::Struct,
@ -720,7 +720,7 @@ impl<Cx: TypeCx> Clone for Constructor<Cx> {
}
}
impl<Cx: TypeCx> Constructor<Cx> {
impl<Cx: PatCx> Constructor<Cx> {
pub(crate) fn is_non_exhaustive(&self) -> bool {
matches!(self, NonExhaustive)
}
@ -838,7 +838,7 @@ pub enum VariantVisibility {
/// In terms of division of responsibility, [`ConstructorSet::split`] handles all of the
/// `exhaustive_patterns` feature.
#[derive(Debug)]
pub enum ConstructorSet<Cx: TypeCx> {
pub enum ConstructorSet<Cx: PatCx> {
/// The type is a tuple or struct. `empty` tracks whether the type is empty.
Struct { empty: bool },
/// This type has the following list of constructors. If `variants` is empty and
@ -889,13 +889,13 @@ pub enum ConstructorSet<Cx: TypeCx> {
/// of the `ConstructorSet` for the type, yet if we forgot to include them in `present` we would be
/// ignoring any row with `Opaque`s in the algorithm. Hence the importance of point 4.
#[derive(Debug)]
pub struct SplitConstructorSet<Cx: TypeCx> {
pub struct SplitConstructorSet<Cx: PatCx> {
pub present: SmallVec<[Constructor<Cx>; 1]>,
pub missing: Vec<Constructor<Cx>>,
pub missing_empty: Vec<Constructor<Cx>>,
}
impl<Cx: TypeCx> ConstructorSet<Cx> {
impl<Cx: PatCx> ConstructorSet<Cx> {
/// This analyzes a column of constructors to 1/ determine which constructors of the type (if
/// any) are missing; 2/ split constructors to handle non-trivial intersections e.g. on ranges
/// or slices. This can get subtle; see [`SplitConstructorSet`] for details of this operation

View File

@ -84,7 +84,7 @@ pub struct PrivateUninhabitedField(pub bool);
/// Context that provides type information about constructors.
///
/// Most of the crate is parameterized on a type that implements this trait.
pub trait TypeCx: Sized + fmt::Debug {
pub trait PatCx: Sized + fmt::Debug {
/// The type of a pattern.
type Ty: Clone + fmt::Debug;
/// Errors that can abort analysis.
@ -155,19 +155,19 @@ pub trait TypeCx: Sized + fmt::Debug {
/// The arm of a match expression.
#[derive(Debug)]
pub struct MatchArm<'p, Cx: TypeCx> {
pub struct MatchArm<'p, Cx: PatCx> {
pub pat: &'p DeconstructedPat<Cx>,
pub has_guard: bool,
pub arm_data: Cx::ArmData,
}
impl<'p, Cx: TypeCx> Clone for MatchArm<'p, Cx> {
impl<'p, Cx: PatCx> Clone for MatchArm<'p, Cx> {
fn clone(&self) -> Self {
Self { pat: self.pat, has_guard: self.has_guard, arm_data: self.arm_data }
}
}
impl<'p, Cx: TypeCx> Copy for MatchArm<'p, Cx> {}
impl<'p, Cx: PatCx> Copy for MatchArm<'p, Cx> {}
/// The entrypoint for this crate. Computes whether a match is exhaustive and which of its arms are
/// useful, and runs some lints.

View File

@ -5,7 +5,7 @@ use std::fmt;
use smallvec::{smallvec, SmallVec};
use crate::constructor::{Constructor, Slice, SliceKind};
use crate::{PrivateUninhabitedField, TypeCx};
use crate::{PatCx, PrivateUninhabitedField};
use self::Constructor::*;
@ -21,7 +21,7 @@ impl PatId {
}
/// A pattern with an index denoting which field it corresponds to.
pub struct IndexedPat<Cx: TypeCx> {
pub struct IndexedPat<Cx: PatCx> {
pub idx: usize,
pub pat: DeconstructedPat<Cx>,
}
@ -29,7 +29,7 @@ pub struct IndexedPat<Cx: TypeCx> {
/// Values and patterns can be represented as a constructor applied to some fields. This represents
/// a pattern in this form. A `DeconstructedPat` will almost always come from user input; the only
/// exception are some `Wildcard`s introduced during pattern lowering.
pub struct DeconstructedPat<Cx: TypeCx> {
pub struct DeconstructedPat<Cx: PatCx> {
ctor: Constructor<Cx>,
fields: Vec<IndexedPat<Cx>>,
/// The number of fields in this pattern. E.g. if the pattern is `SomeStruct { field12: true, ..
@ -43,7 +43,7 @@ pub struct DeconstructedPat<Cx: TypeCx> {
pub(crate) uid: PatId,
}
impl<Cx: TypeCx> DeconstructedPat<Cx> {
impl<Cx: PatCx> DeconstructedPat<Cx> {
pub fn new(
ctor: Constructor<Cx>,
fields: Vec<IndexedPat<Cx>>,
@ -136,7 +136,7 @@ impl<Cx: TypeCx> DeconstructedPat<Cx> {
}
/// This is best effort and not good enough for a `Display` impl.
impl<Cx: TypeCx> fmt::Debug for DeconstructedPat<Cx> {
impl<Cx: PatCx> fmt::Debug for DeconstructedPat<Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let pat = self;
let mut first = true;
@ -219,14 +219,14 @@ impl<Cx: TypeCx> fmt::Debug for DeconstructedPat<Cx> {
/// algorithm. Do not use `Wild` to represent a wildcard pattern comping from user input.
///
/// This is morally `Option<&'p DeconstructedPat>` where `None` is interpreted as a wildcard.
pub(crate) enum PatOrWild<'p, Cx: TypeCx> {
pub(crate) enum PatOrWild<'p, Cx: PatCx> {
/// A non-user-provided wildcard, created during specialization.
Wild,
/// A user-provided pattern.
Pat(&'p DeconstructedPat<Cx>),
}
impl<'p, Cx: TypeCx> Clone for PatOrWild<'p, Cx> {
impl<'p, Cx: PatCx> Clone for PatOrWild<'p, Cx> {
fn clone(&self) -> Self {
match self {
PatOrWild::Wild => PatOrWild::Wild,
@ -235,9 +235,9 @@ impl<'p, Cx: TypeCx> Clone for PatOrWild<'p, Cx> {
}
}
impl<'p, Cx: TypeCx> Copy for PatOrWild<'p, Cx> {}
impl<'p, Cx: PatCx> Copy for PatOrWild<'p, Cx> {}
impl<'p, Cx: TypeCx> PatOrWild<'p, Cx> {
impl<'p, Cx: PatCx> PatOrWild<'p, Cx> {
pub(crate) fn as_pat(&self) -> Option<&'p DeconstructedPat<Cx>> {
match self {
PatOrWild::Wild => None,
@ -283,7 +283,7 @@ impl<'p, Cx: TypeCx> PatOrWild<'p, Cx> {
}
}
impl<'p, Cx: TypeCx> fmt::Debug for PatOrWild<'p, Cx> {
impl<'p, Cx: PatCx> fmt::Debug for PatOrWild<'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
PatOrWild::Wild => write!(f, "_"),
@ -295,19 +295,19 @@ impl<'p, Cx: TypeCx> fmt::Debug for PatOrWild<'p, Cx> {
/// Same idea as `DeconstructedPat`, except this is a fictitious pattern built up for diagnostics
/// purposes. As such they don't use interning and can be cloned.
#[derive(Debug)]
pub struct WitnessPat<Cx: TypeCx> {
pub struct WitnessPat<Cx: PatCx> {
ctor: Constructor<Cx>,
pub(crate) fields: Vec<WitnessPat<Cx>>,
ty: Cx::Ty,
}
impl<Cx: TypeCx> Clone for WitnessPat<Cx> {
impl<Cx: PatCx> Clone for WitnessPat<Cx> {
fn clone(&self) -> Self {
Self { ctor: self.ctor.clone(), fields: self.fields.clone(), ty: self.ty.clone() }
}
}
impl<Cx: TypeCx> WitnessPat<Cx> {
impl<Cx: PatCx> WitnessPat<Cx> {
pub(crate) fn new(ctor: Constructor<Cx>, fields: Vec<Self>, ty: Cx::Ty) -> Self {
Self { ctor, fields, ty }
}

View File

@ -1,6 +1,6 @@
use crate::constructor::{Constructor, SplitConstructorSet};
use crate::pat::{DeconstructedPat, PatOrWild};
use crate::{Captures, MatchArm, TypeCx};
use crate::{Captures, MatchArm, PatCx};
/// A column of patterns in a match, where a column is the intuitive notion of "subpatterns that
/// inspect the same subvalue/place".
@ -11,12 +11,12 @@ use crate::{Captures, MatchArm, TypeCx};
///
/// This is not used in the usefulness algorithm; only in lints.
#[derive(Debug)]
pub struct PatternColumn<'p, Cx: TypeCx> {
pub struct PatternColumn<'p, Cx: PatCx> {
/// This must not contain an or-pattern. `expand_and_push` takes care to expand them.
patterns: Vec<&'p DeconstructedPat<Cx>>,
}
impl<'p, Cx: TypeCx> PatternColumn<'p, Cx> {
impl<'p, Cx: PatCx> PatternColumn<'p, Cx> {
pub fn new(arms: &[MatchArm<'p, Cx>]) -> Self {
let patterns = Vec::with_capacity(arms.len());
let mut column = PatternColumn { patterns };

View File

@ -18,7 +18,7 @@ use rustc_target::abi::{FieldIdx, Integer, VariantIdx, FIRST_VARIANT};
use crate::constructor::{
IntRange, MaybeInfiniteInt, OpaqueId, RangeEnd, Slice, SliceKind, VariantVisibility,
};
use crate::{errors, Captures, PrivateUninhabitedField, TypeCx};
use crate::{errors, Captures, PatCx, PrivateUninhabitedField};
use crate::constructor::Constructor::*;
@ -843,7 +843,7 @@ impl<'p, 'tcx: 'p> RustcMatchCheckCtxt<'p, 'tcx> {
}
}
impl<'p, 'tcx: 'p> TypeCx for RustcMatchCheckCtxt<'p, 'tcx> {
impl<'p, 'tcx: 'p> PatCx for RustcMatchCheckCtxt<'p, 'tcx> {
type Ty = RevealedTy<'tcx>;
type Error = ErrorGuaranteed;
type VariantIdx = VariantIdx;

View File

@ -242,7 +242,7 @@
//! Therefore `usefulness(tp_1, tp_2, tq)` returns the single witness-tuple `[Variant2(Some(true), 0)]`.
//!
//!
//! Computing the set of constructors for a type is done in [`TypeCx::ctors_for_ty`]. See
//! Computing the set of constructors for a type is done in [`PatCx::ctors_for_ty`]. See
//! the following sections for more accurate versions of the algorithm and corresponding links.
//!
//!
@ -716,7 +716,7 @@ use std::fmt;
use crate::constructor::{Constructor, ConstructorSet, IntRange};
use crate::pat::{DeconstructedPat, PatId, PatOrWild, WitnessPat};
use crate::{Captures, MatchArm, PrivateUninhabitedField, TypeCx};
use crate::{Captures, MatchArm, PatCx, PrivateUninhabitedField};
use self::PlaceValidity::*;
@ -728,7 +728,7 @@ pub fn ensure_sufficient_stack<R>(f: impl FnOnce() -> R) -> R {
}
/// Context that provides information for usefulness checking.
struct UsefulnessCtxt<'a, Cx: TypeCx> {
struct UsefulnessCtxt<'a, Cx: PatCx> {
/// The context for type information.
tycx: &'a Cx,
/// Collect the patterns found useful during usefulness checking. This is used to lint
@ -738,7 +738,7 @@ struct UsefulnessCtxt<'a, Cx: TypeCx> {
complexity_level: usize,
}
impl<'a, Cx: TypeCx> UsefulnessCtxt<'a, Cx> {
impl<'a, Cx: PatCx> UsefulnessCtxt<'a, Cx> {
fn increase_complexity_level(&mut self, complexity_add: usize) -> Result<(), Cx::Error> {
self.complexity_level += complexity_add;
if self
@ -752,26 +752,26 @@ impl<'a, Cx: TypeCx> UsefulnessCtxt<'a, Cx> {
}
/// Context that provides information local to a place under investigation.
struct PlaceCtxt<'a, Cx: TypeCx> {
struct PlaceCtxt<'a, Cx: PatCx> {
cx: &'a Cx,
/// Type of the place under investigation.
ty: &'a Cx::Ty,
}
impl<'a, Cx: TypeCx> Copy for PlaceCtxt<'a, Cx> {}
impl<'a, Cx: TypeCx> Clone for PlaceCtxt<'a, Cx> {
impl<'a, Cx: PatCx> Copy for PlaceCtxt<'a, Cx> {}
impl<'a, Cx: PatCx> Clone for PlaceCtxt<'a, Cx> {
fn clone(&self) -> Self {
Self { cx: self.cx, ty: self.ty }
}
}
impl<'a, Cx: TypeCx> fmt::Debug for PlaceCtxt<'a, Cx> {
impl<'a, Cx: PatCx> fmt::Debug for PlaceCtxt<'a, Cx> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("PlaceCtxt").field("ty", self.ty).finish()
}
}
impl<'a, Cx: TypeCx> PlaceCtxt<'a, Cx> {
impl<'a, Cx: PatCx> PlaceCtxt<'a, Cx> {
fn ctor_arity(&self, ctor: &Constructor<Cx>) -> usize {
self.cx.ctor_arity(ctor, self.ty)
}
@ -802,7 +802,7 @@ impl PlaceValidity {
///
/// Pending further opsem decisions, the current behavior is: validity is preserved, except
/// inside `&` and union fields where validity is reset to `MaybeInvalid`.
fn specialize<Cx: TypeCx>(self, ctor: &Constructor<Cx>) -> Self {
fn specialize<Cx: PatCx>(self, ctor: &Constructor<Cx>) -> Self {
// We preserve validity except when we go inside a reference or a union field.
if matches!(ctor, Constructor::Ref | Constructor::UnionField) {
// Validity of `x: &T` does not imply validity of `*x: T`.
@ -825,7 +825,7 @@ impl fmt::Display for PlaceValidity {
/// Data about a place under investigation. Its methods contain a lot of the logic used to analyze
/// the constructors in the matrix.
struct PlaceInfo<Cx: TypeCx> {
struct PlaceInfo<Cx: PatCx> {
/// The type of the place.
ty: Cx::Ty,
/// Whether the place is a private uninhabited field. If so we skip this field during analysis
@ -837,7 +837,7 @@ struct PlaceInfo<Cx: TypeCx> {
is_scrutinee: bool,
}
impl<Cx: TypeCx> PlaceInfo<Cx> {
impl<Cx: PatCx> PlaceInfo<Cx> {
/// Given a constructor for the current place, we return one `PlaceInfo` for each field of the
/// constructor.
fn specialize<'a>(
@ -932,7 +932,7 @@ impl<Cx: TypeCx> PlaceInfo<Cx> {
}
}
impl<Cx: TypeCx> Clone for PlaceInfo<Cx> {
impl<Cx: PatCx> Clone for PlaceInfo<Cx> {
fn clone(&self) -> Self {
Self {
ty: self.ty.clone(),
@ -947,7 +947,7 @@ impl<Cx: TypeCx> Clone for PlaceInfo<Cx> {
// The three lifetimes are:
// - 'p coming from the input
// - Cx global compilation context
struct PatStack<'p, Cx: TypeCx> {
struct PatStack<'p, Cx: PatCx> {
// Rows of len 1 are very common, which is why `SmallVec[_; 2]` works well.
pats: SmallVec<[PatOrWild<'p, Cx>; 2]>,
/// Sometimes we know that as far as this row is concerned, the current case is already handled
@ -956,13 +956,13 @@ struct PatStack<'p, Cx: TypeCx> {
relevant: bool,
}
impl<'p, Cx: TypeCx> Clone for PatStack<'p, Cx> {
impl<'p, Cx: PatCx> Clone for PatStack<'p, Cx> {
fn clone(&self) -> Self {
Self { pats: self.pats.clone(), relevant: self.relevant }
}
}
impl<'p, Cx: TypeCx> PatStack<'p, Cx> {
impl<'p, Cx: PatCx> PatStack<'p, Cx> {
fn from_pattern(pat: &'p DeconstructedPat<Cx>) -> Self {
PatStack { pats: smallvec![PatOrWild::Pat(pat)], relevant: true }
}
@ -1022,7 +1022,7 @@ impl<'p, Cx: TypeCx> PatStack<'p, Cx> {
}
}
impl<'p, Cx: TypeCx> fmt::Debug for PatStack<'p, Cx> {
impl<'p, Cx: PatCx> fmt::Debug for PatStack<'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// We pretty-print similarly to the `Debug` impl of `Matrix`.
write!(f, "+")?;
@ -1035,7 +1035,7 @@ impl<'p, Cx: TypeCx> fmt::Debug for PatStack<'p, Cx> {
/// A row of the matrix.
#[derive(Clone)]
struct MatrixRow<'p, Cx: TypeCx> {
struct MatrixRow<'p, Cx: PatCx> {
// The patterns in the row.
pats: PatStack<'p, Cx>,
/// Whether the original arm had a guard. This is inherited when specializing.
@ -1055,7 +1055,7 @@ struct MatrixRow<'p, Cx: TypeCx> {
intersects: BitSet<usize>,
}
impl<'p, Cx: TypeCx> MatrixRow<'p, Cx> {
impl<'p, Cx: PatCx> MatrixRow<'p, Cx> {
fn is_empty(&self) -> bool {
self.pats.is_empty()
}
@ -1104,7 +1104,7 @@ impl<'p, Cx: TypeCx> MatrixRow<'p, Cx> {
}
}
impl<'p, Cx: TypeCx> fmt::Debug for MatrixRow<'p, Cx> {
impl<'p, Cx: PatCx> fmt::Debug for MatrixRow<'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.pats.fmt(f)
}
@ -1121,7 +1121,7 @@ impl<'p, Cx: TypeCx> fmt::Debug for MatrixRow<'p, Cx> {
/// specializing `(,)` and `Some` on a pattern of type `(Option<u32>, bool)`, the first column of
/// the matrix will correspond to `scrutinee.0.Some.0` and the second column to `scrutinee.1`.
#[derive(Clone)]
struct Matrix<'p, Cx: TypeCx> {
struct Matrix<'p, Cx: PatCx> {
/// Vector of rows. The rows must form a rectangular 2D array. Moreover, all the patterns of
/// each column must have the same type. Each column corresponds to a place within the
/// scrutinee.
@ -1134,7 +1134,7 @@ struct Matrix<'p, Cx: TypeCx> {
wildcard_row_is_relevant: bool,
}
impl<'p, Cx: TypeCx> Matrix<'p, Cx> {
impl<'p, Cx: PatCx> Matrix<'p, Cx> {
/// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
/// expands it. Internal method, prefer [`Matrix::new`].
fn expand_and_push(&mut self, mut row: MatrixRow<'p, Cx>) {
@ -1256,7 +1256,7 @@ impl<'p, Cx: TypeCx> Matrix<'p, Cx> {
/// + _ + [_, _, tail @ ..] +
/// | ✓ | ? | // column validity
/// ```
impl<'p, Cx: TypeCx> fmt::Debug for Matrix<'p, Cx> {
impl<'p, Cx: PatCx> fmt::Debug for Matrix<'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "\n")?;
@ -1347,15 +1347,15 @@ impl<'p, Cx: TypeCx> fmt::Debug for Matrix<'p, Cx> {
///
/// See the top of the file for more detailed explanations and examples.
#[derive(Debug)]
struct WitnessStack<Cx: TypeCx>(Vec<WitnessPat<Cx>>);
struct WitnessStack<Cx: PatCx>(Vec<WitnessPat<Cx>>);
impl<Cx: TypeCx> Clone for WitnessStack<Cx> {
impl<Cx: PatCx> Clone for WitnessStack<Cx> {
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
impl<Cx: TypeCx> WitnessStack<Cx> {
impl<Cx: PatCx> WitnessStack<Cx> {
/// Asserts that the witness contains a single pattern, and returns it.
fn single_pattern(self) -> WitnessPat<Cx> {
assert_eq!(self.0.len(), 1);
@ -1400,15 +1400,15 @@ impl<Cx: TypeCx> WitnessStack<Cx> {
/// Just as the `Matrix` starts with a single column, by the end of the algorithm, this has a single
/// column, which contains the patterns that are missing for the match to be exhaustive.
#[derive(Debug)]
struct WitnessMatrix<Cx: TypeCx>(Vec<WitnessStack<Cx>>);
struct WitnessMatrix<Cx: PatCx>(Vec<WitnessStack<Cx>>);
impl<Cx: TypeCx> Clone for WitnessMatrix<Cx> {
impl<Cx: PatCx> Clone for WitnessMatrix<Cx> {
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
impl<Cx: TypeCx> WitnessMatrix<Cx> {
impl<Cx: PatCx> WitnessMatrix<Cx> {
/// New matrix with no witnesses.
fn empty() -> Self {
WitnessMatrix(Vec::new())
@ -1482,7 +1482,7 @@ impl<Cx: TypeCx> WitnessMatrix<Cx> {
///
/// We can however get false negatives because exhaustiveness does not explore all cases. See the
/// section on relevancy at the top of the file.
fn collect_overlapping_range_endpoints<'p, Cx: TypeCx>(
fn collect_overlapping_range_endpoints<'p, Cx: PatCx>(
cx: &Cx,
overlap_range: IntRange,
matrix: &Matrix<'p, Cx>,
@ -1541,7 +1541,7 @@ fn collect_overlapping_range_endpoints<'p, Cx: TypeCx>(
}
/// Collect ranges that have a singleton gap between them.
fn collect_non_contiguous_range_endpoints<'p, Cx: TypeCx>(
fn collect_non_contiguous_range_endpoints<'p, Cx: PatCx>(
cx: &Cx,
gap_range: &IntRange,
matrix: &Matrix<'p, Cx>,
@ -1582,7 +1582,7 @@ fn collect_non_contiguous_range_endpoints<'p, Cx: TypeCx>(
/// (using `apply_constructor` and by updating `row.useful` for each parent row).
/// This is all explained at the top of the file.
#[instrument(level = "debug", skip(mcx), ret)]
fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: TypeCx>(
fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: PatCx>(
mcx: &mut UsefulnessCtxt<'a, Cx>,
matrix: &mut Matrix<'p, Cx>,
) -> Result<WitnessMatrix<Cx>, Cx::Error> {
@ -1679,7 +1679,7 @@ fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: TypeCx>(
/// Indicates whether or not a given arm is useful.
#[derive(Clone, Debug)]
pub enum Usefulness<'p, Cx: TypeCx> {
pub enum Usefulness<'p, Cx: PatCx> {
/// The arm is useful. This additionally carries a set of or-pattern branches that have been
/// found to be redundant despite the overall arm being useful. Used only in the presence of
/// or-patterns, otherwise it stays empty.
@ -1690,11 +1690,11 @@ pub enum Usefulness<'p, Cx: TypeCx> {
}
/// Report whether this pattern was found useful, and its subpatterns that were not useful if any.
fn collect_pattern_usefulness<'p, Cx: TypeCx>(
fn collect_pattern_usefulness<'p, Cx: PatCx>(
useful_subpatterns: &FxHashSet<PatId>,
pat: &'p DeconstructedPat<Cx>,
) -> Usefulness<'p, Cx> {
fn pat_is_useful<'p, Cx: TypeCx>(
fn pat_is_useful<'p, Cx: PatCx>(
useful_subpatterns: &FxHashSet<PatId>,
pat: &'p DeconstructedPat<Cx>,
) -> bool {
@ -1732,7 +1732,7 @@ fn collect_pattern_usefulness<'p, Cx: TypeCx>(
}
/// The output of checking a match for exhaustiveness and arm usefulness.
pub struct UsefulnessReport<'p, Cx: TypeCx> {
pub struct UsefulnessReport<'p, Cx: PatCx> {
/// For each arm of the input, whether that arm is useful after the arms above it.
pub arm_usefulness: Vec<(MatchArm<'p, Cx>, Usefulness<'p, Cx>)>,
/// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
@ -1742,7 +1742,7 @@ pub struct UsefulnessReport<'p, Cx: TypeCx> {
/// Computes whether a match is exhaustive and which of its arms are useful.
#[instrument(skip(tycx, arms), level = "debug")]
pub fn compute_match_usefulness<'p, Cx: TypeCx>(
pub fn compute_match_usefulness<'p, Cx: PatCx>(
tycx: &Cx,
arms: &[MatchArm<'p, Cx>],
scrut_ty: Cx::Ty,