coverage: Migrate tests/coverage-map into tests/coverage

This commit is contained in:
Zalathar 2023-11-01 21:28:53 +11:00
parent e9d04c5e24
commit 49127c64d6
106 changed files with 5 additions and 2764 deletions

View File

@ -1433,24 +1433,16 @@ impl Step for Coverage {
}
fn run(self, builder: &Builder<'_>) {
builder.ensure(Compiletest {
compiler: self.compiler,
target: self.target,
mode: "coverage-map",
suite: "coverage-map",
path: "tests/coverage-map",
compare_mode: None,
});
self.run_unified_suite(builder, CoverageMap::MODE);
self.run_unified_suite(builder, RunCoverage::MODE);
}
}
default_test!(CoverageMap {
path: "tests/coverage-map",
mode: "coverage-map",
suite: "coverage-map"
coverage_test_alias!(CoverageMap {
alias_and_mode: "coverage-map",
default: true,
only_hosts: false,
});
coverage_test_alias!(RunCoverage {
alias_and_mode: "run-coverage",
default: true,

View File

@ -1,66 +0,0 @@
#![feature(c_unwind)]
#![allow(unused_assignments)]
extern "C" fn might_abort(should_abort: bool) {
if should_abort {
println!("aborting...");
panic!("panics and aborts");
} else {
println!("Don't Panic");
}
}
fn main() -> Result<(), u8> {
let mut countdown = 10;
while countdown > 0 {
if countdown < 5 {
might_abort(false);
}
// See discussion (below the `Notes` section) on coverage results for the closing brace.
if countdown < 5 { might_abort(false); } // Counts for different regions on one line.
// For the following example, the closing brace is the last character on the line.
// This shows the character after the closing brace is highlighted, even if that next
// character is a newline.
if countdown < 5 { might_abort(false); }
countdown -= 1;
}
Ok(())
}
// Notes:
// 1. Compare this program and its coverage results to those of the similar tests
// `panic_unwind.rs` and `try_error_result.rs`.
// 2. This test confirms the coverage generated when a program includes `UnwindAction::Terminate`.
// 3. The test does not invoke the abort. By executing to a successful completion, the coverage
// results show where the program did and did not execute.
// 4. If the program actually aborted, the coverage counters would not be saved (which "works as
// intended"). Coverage results would show no executed coverage regions.
// 6. If `should_abort` is `true` and the program aborts, the program exits with a `132` status
// (on Linux at least).
/*
Expect the following coverage results:
```text
16| 11| while countdown > 0 {
17| 10| if countdown < 5 {
18| 4| might_abort(false);
19| 6| }
```
This is actually correct.
The condition `countdown < 5` executed 10 times (10 loop iterations).
It evaluated to `true` 4 times, and executed the `might_abort()` call.
It skipped the body of the `might_abort()` call 6 times. If an `if` does not include an explicit
`else`, the coverage implementation injects a counter, at the character immediately after the `if`s
closing brace, to count the "implicit" `else`. This is the only way to capture the coverage of the
non-true condition.
As another example of why this is important, say the condition was `countdown < 50`, which is always
`true`. In that case, we wouldn't have a test for what happens if `might_abort()` is not called.
The closing brace would have a count of `0`, highlighting the missed coverage.
*/

View File

@ -1,32 +0,0 @@
#![allow(unused_assignments)]
// failure-status: 101
fn might_fail_assert(one_plus_one: u32) {
println!("does 1 + 1 = {}?", one_plus_one);
assert_eq!(1 + 1, one_plus_one, "the argument was wrong");
}
fn main() -> Result<(), u8> {
let mut countdown = 10;
while countdown > 0 {
if countdown == 1 {
might_fail_assert(3);
} else if countdown < 5 {
might_fail_assert(2);
}
countdown -= 1;
}
Ok(())
}
// Notes:
// 1. Compare this program and its coverage results to those of the very similar test
// `panic_unwind.rs`, and similar tests `abort.rs` and `try_error_result.rs`.
// 2. This test confirms the coverage generated when a program passes or fails an `assert!()` or
// related `assert_*!()` macro.
// 3. Notably, the `assert` macros *do not* generate `TerminatorKind::Assert`. The macros produce
// conditional expressions, `TerminatorKind::SwitchInt` branches, and a possible call to
// `begin_panic_fmt()` (that begins a panic unwind, if the assertion test fails).
// 4. `TerminatoKind::Assert` is, however, also present in the MIR generated for this test
// (and in many other coverage tests). The `Assert` terminator is typically generated by the
// Rust compiler to check for runtime failures, such as numeric overflows.

View File

@ -1,128 +0,0 @@
#![allow(unused_assignments, dead_code)]
// compile-flags: --edition=2018 -C opt-level=1
async fn c(x: u8) -> u8 {
if x == 8 {
1
} else {
0
}
}
async fn d() -> u8 { 1 }
async fn e() -> u8 { 1 } // unused function; executor does not block on `g()`
async fn f() -> u8 { 1 }
async fn foo() -> [bool; 10] { [false; 10] } // unused function; executor does not block on `h()`
pub async fn g(x: u8) {
match x {
y if e().await == y => (),
y if f().await == y => (),
_ => (),
}
}
async fn h(x: usize) { // The function signature is counted when called, but the body is not
// executed (not awaited) so the open brace has a `0` count (at least when
// displayed with `llvm-cov show` in color-mode).
match x {
y if foo().await[y] => (),
_ => (),
}
}
async fn i(x: u8) { // line coverage is 1, but there are 2 regions:
// (a) the function signature, counted when the function is called; and
// (b) the open brace for the function body, counted once when the body is
// executed asynchronously.
match x {
y if c(x).await == y + 1 => { d().await; }
y if f().await == y + 1 => (),
_ => (),
}
}
fn j(x: u8) {
// non-async versions of `c()`, `d()`, and `f()` to make it similar to async `i()`.
fn c(x: u8) -> u8 {
if x == 8 {
1 // This line appears covered, but the 1-character expression span covering the `1`
// is not executed. (`llvm-cov show` displays a `^0` below the `1` ). This is because
// `fn j()` executes the open brace for the function body, followed by the function's
// first executable statement, `match x`. Inner function declarations are not
// "visible" to the MIR for `j()`, so the code region counts all lines between the
// open brace and the first statement as executed, which is, in a sense, true.
// `llvm-cov show` overcomes this kind of situation by showing the actual counts
// of the enclosed coverages, (that is, the `1` expression was not executed, and
// accurately displays a `0`).
} else {
0
}
}
fn d() -> u8 { 1 } // inner function is defined in-line, but the function is not executed
fn f() -> u8 { 1 }
match x {
y if c(x) == y + 1 => { d(); }
y if f() == y + 1 => (),
_ => (),
}
}
fn k(x: u8) { // unused function
match x {
1 => (),
2 => (),
_ => (),
}
}
fn l(x: u8) {
match x {
1 => (),
2 => (),
_ => (),
}
}
async fn m(x: u8) -> u8 { x - 1 }
fn main() {
let _ = g(10);
let _ = h(9);
let mut future = Box::pin(i(8));
j(7);
l(6);
let _ = m(5);
executor::block_on(future.as_mut());
}
mod executor {
use core::{
future::Future,
pin::Pin,
task::{Context, Poll, RawWaker, RawWakerVTable, Waker},
};
pub fn block_on<F: Future>(mut future: F) -> F::Output {
let mut future = unsafe { Pin::new_unchecked(&mut future) };
use std::hint::unreachable_unchecked;
static VTABLE: RawWakerVTable = RawWakerVTable::new(
|_| unsafe { unreachable_unchecked() }, // clone
|_| unsafe { unreachable_unchecked() }, // wake
|_| unsafe { unreachable_unchecked() }, // wake_by_ref
|_| (),
);
let waker = unsafe { Waker::from_raw(RawWaker::new(core::ptr::null(), &VTABLE)) };
let mut context = Context::from_waker(&waker);
loop {
if let Poll::Ready(val) = future.as_mut().poll(&mut context) {
break val;
}
}
}
}

View File

@ -1,57 +0,0 @@
// compile-flags: --edition=2018
fn non_async_func() {
println!("non_async_func was covered");
let b = true;
if b {
println!("non_async_func println in block");
}
}
async fn async_func() {
println!("async_func was covered");
let b = true;
if b {
println!("async_func println in block");
}
}
async fn async_func_just_println() {
println!("async_func_just_println was covered");
}
fn main() {
println!("codecovsample::main");
non_async_func();
executor::block_on(async_func());
executor::block_on(async_func_just_println());
}
mod executor {
use core::{
future::Future,
pin::Pin,
task::{Context, Poll, RawWaker, RawWakerVTable, Waker},
};
pub fn block_on<F: Future>(mut future: F) -> F::Output {
let mut future = unsafe { Pin::new_unchecked(&mut future) };
use std::hint::unreachable_unchecked;
static VTABLE: RawWakerVTable = RawWakerVTable::new(
|_| unsafe { unreachable_unchecked() }, // clone
|_| unsafe { unreachable_unchecked() }, // wake
|_| unsafe { unreachable_unchecked() }, // wake_by_ref
|_| (),
);
let waker = unsafe { Waker::from_raw(RawWaker::new(core::ptr::null(), &VTABLE)) };
let mut context = Context::from_waker(&waker);
loop {
if let Poll::Ready(val) = future.as_mut().poll(&mut context) {
break val;
}
}
}
}

View File

@ -1,22 +0,0 @@
// compile-flags: -Cinstrument-coverage -Ccodegen-units=4 -Copt-level=0
#![allow(dead_code)]
mod foo {
#[inline(always)]
pub fn called() {}
fn uncalled() {}
}
pub mod bar {
pub fn call_me() {
super::foo::called();
}
}
pub mod baz {
pub fn call_me() {
super::foo::called();
}
}

View File

@ -1,4 +0,0 @@
#[allow(dead_code)]
pub fn never_called_function() {
println!("I am never called");
}

View File

@ -1,103 +0,0 @@
#![allow(unused_assignments, unused_variables)]
// Verify that coverage works with optimizations:
// compile-flags: -C opt-level=3
use std::fmt::Debug;
pub fn used_function() {
// Initialize test constants in a way that cannot be determined at compile time, to ensure
// rustc and LLVM cannot optimize out statements (or coverage counters) downstream from
// dependent conditions.
let is_true = std::env::args().len() == 1;
let mut countdown = 0;
if is_true {
countdown = 10;
}
use_this_lib_crate();
}
pub fn used_only_from_bin_crate_generic_function<T: Debug>(arg: T) {
println!("used_only_from_bin_crate_generic_function with {:?}", arg);
}
// Expect for above function: `Unexecuted instantiation` (see below)
pub fn used_only_from_this_lib_crate_generic_function<T: Debug>(arg: T) {
println!("used_only_from_this_lib_crate_generic_function with {:?}", arg);
}
pub fn used_from_bin_crate_and_lib_crate_generic_function<T: Debug>(arg: T) {
println!("used_from_bin_crate_and_lib_crate_generic_function with {:?}", arg);
}
pub fn used_with_same_type_from_bin_crate_and_lib_crate_generic_function<T: Debug>(arg: T) {
println!("used_with_same_type_from_bin_crate_and_lib_crate_generic_function with {:?}", arg);
}
pub fn unused_generic_function<T: Debug>(arg: T) {
println!("unused_generic_function with {:?}", arg);
}
pub fn unused_function() {
let is_true = std::env::args().len() == 1;
let mut countdown = 2;
if !is_true {
countdown = 20;
}
}
#[allow(dead_code)]
fn unused_private_function() {
let is_true = std::env::args().len() == 1;
let mut countdown = 2;
if !is_true {
countdown = 20;
}
}
fn use_this_lib_crate() {
used_from_bin_crate_and_lib_crate_generic_function("used from library used_crate.rs");
used_with_same_type_from_bin_crate_and_lib_crate_generic_function(
"used from library used_crate.rs",
);
let some_vec = vec![5, 6, 7, 8];
used_only_from_this_lib_crate_generic_function(some_vec);
used_only_from_this_lib_crate_generic_function("used ONLY from library used_crate.rs");
}
// FIXME(#79651): "Unexecuted instantiation" errors appear in coverage results,
// for example:
//
// | Unexecuted instantiation: used_crate::used_only_from_bin_crate_generic_function::<_>
//
// These notices appear when `llvm-cov` shows instantiations. This may be a
// default option, but it can be suppressed with:
//
// ```shell
// $ `llvm-cov show --show-instantiations=0 ...`
// ```
//
// The notice is triggered because the function is unused by the library itself,
// and when the library is compiled, a synthetic function is generated, so
// unused function coverage can be reported. Coverage can be skipped for unused
// generic functions with:
//
// ```shell
// $ `rustc -Zunstable-options -C instrument-coverage=except-unused-generics ...`
// ```
//
// Even though this function is used by `uses_crate.rs` (and
// counted), with substitutions for `T`, those instantiations are only generated
// when the generic function is actually used (from the binary, not from this
// library crate). So the test result shows coverage for all instantiated
// versions and their generic type substitutions, plus the `Unexecuted
// instantiation` message for the non-substituted version. This is valid, but
// unfortunately a little confusing.
//
// The library crate has its own coverage map, and the only way to show unused
// coverage of a generic function is to include the generic function in the
// coverage map, marked as an "unused function". If the library were used by
// another binary that never used this generic function, then it would be valid
// to show the unused generic, with unknown substitution (`_`).
//
// The alternative is to exclude all generics from being included in the "unused
// functions" list, which would then omit coverage results for
// `unused_generic_function<T>()`, below.

View File

@ -1,85 +0,0 @@
#![allow(unused_assignments, unused_variables)]
// Verify that coverage works with optimizations:
// compile-flags: -C opt-level=3
use std::fmt::Debug;
pub fn used_function() {
// Initialize test constants in a way that cannot be determined at compile time, to ensure
// rustc and LLVM cannot optimize out statements (or coverage counters) downstream from
// dependent conditions.
let is_true = std::env::args().len() == 1;
let mut countdown = 0;
if is_true {
countdown = 10;
}
use_this_lib_crate();
}
#[inline(always)]
pub fn used_inline_function() {
// Initialize test constants in a way that cannot be determined at compile time, to ensure
// rustc and LLVM cannot optimize out statements (or coverage counters) downstream from
// dependent conditions.
let is_true = std::env::args().len() == 1;
let mut countdown = 0;
if is_true {
countdown = 10;
}
use_this_lib_crate();
}
#[inline(always)]
pub fn used_only_from_bin_crate_generic_function<T: Debug>(arg: T) {
println!("used_only_from_bin_crate_generic_function with {:?}", arg);
}
// Expect for above function: `Unexecuted instantiation` (see notes in `used_crate.rs`)
#[inline(always)]
pub fn used_only_from_this_lib_crate_generic_function<T: Debug>(arg: T) {
println!("used_only_from_this_lib_crate_generic_function with {:?}", arg);
}
#[inline(always)]
pub fn used_from_bin_crate_and_lib_crate_generic_function<T: Debug>(arg: T) {
println!("used_from_bin_crate_and_lib_crate_generic_function with {:?}", arg);
}
#[inline(always)]
pub fn used_with_same_type_from_bin_crate_and_lib_crate_generic_function<T: Debug>(arg: T) {
println!("used_with_same_type_from_bin_crate_and_lib_crate_generic_function with {:?}", arg);
}
#[inline(always)]
pub fn unused_generic_function<T: Debug>(arg: T) {
println!("unused_generic_function with {:?}", arg);
}
#[inline(always)]
pub fn unused_function() {
let is_true = std::env::args().len() == 1;
let mut countdown = 2;
if !is_true {
countdown = 20;
}
}
#[inline(always)]
#[allow(dead_code)]
fn unused_private_function() {
let is_true = std::env::args().len() == 1;
let mut countdown = 2;
if !is_true {
countdown = 20;
}
}
fn use_this_lib_crate() {
used_from_bin_crate_and_lib_crate_generic_function("used from library used_crate.rs");
used_with_same_type_from_bin_crate_and_lib_crate_generic_function(
"used from library used_crate.rs",
);
let some_vec = vec![5, 6, 7, 8];
used_only_from_this_lib_crate_generic_function(some_vec);
used_only_from_this_lib_crate_generic_function("used ONLY from library used_crate.rs");
}

View File

@ -1,66 +0,0 @@
#![feature(coverage_attribute)]
// compile-flags: --edition=2021 -Copt-level=0 -Zmir-opt-level=3
// Regression test for <https://github.com/rust-lang/rust/issues/117012>.
//
// If some coverage counters were removed by MIR optimizations, we need to take
// care not to refer to those counter IDs in coverage mappings, and instead
// replace them with a constant zero value. If we don't, `llvm-cov` might see
// a too-large counter ID and silently discard the entire function from its
// coverage reports.
#[derive(Debug, PartialEq, Eq)]
struct Foo(u32);
fn eq_good() {
println!("a");
assert_eq!(Foo(1), Foo(1));
}
fn eq_good_message() {
println!("b");
assert_eq!(Foo(1), Foo(1), "message b");
}
fn ne_good() {
println!("c");
assert_ne!(Foo(1), Foo(3));
}
fn ne_good_message() {
println!("d");
assert_ne!(Foo(1), Foo(3), "message d");
}
fn eq_bad() {
println!("e");
assert_eq!(Foo(1), Foo(3));
}
fn eq_bad_message() {
println!("f");
assert_eq!(Foo(1), Foo(3), "message f");
}
fn ne_bad() {
println!("g");
assert_ne!(Foo(1), Foo(1));
}
fn ne_bad_message() {
println!("h");
assert_ne!(Foo(1), Foo(1), "message h");
}
#[coverage(off)]
fn main() {
eq_good();
eq_good_message();
ne_good();
ne_good_message();
assert!(std::panic::catch_unwind(eq_bad).is_err());
assert!(std::panic::catch_unwind(eq_bad_message).is_err());
assert!(std::panic::catch_unwind(ne_bad).is_err());
assert!(std::panic::catch_unwind(ne_bad_message).is_err());
}

View File

@ -1,220 +0,0 @@
#![allow(unused_assignments, unused_variables)]
// compile-flags: -C opt-level=2
// This test used to be sensitive to certain coverage-specific hacks in
// `rustc_middle/mir/mono.rs`, but those hacks were later cleaned up by
// <https://github.com/rust-lang/rust/pull/83666>.
fn main() {
// Initialize test constants in a way that cannot be determined at compile time, to ensure
// rustc and LLVM cannot optimize out statements (or coverage counters) downstream from
// dependent conditions.
let is_true = std::env::args().len() == 1;
let is_false = !is_true;
let mut some_string = Some(String::from("the string content"));
println!(
"The string or alt: {}"
,
some_string
.
unwrap_or_else
(
||
{
let mut countdown = 0;
if is_false {
countdown = 10;
}
"alt string 1".to_owned()
}
)
);
some_string = Some(String::from("the string content"));
let
a
=
||
{
let mut countdown = 0;
if is_false {
countdown = 10;
}
"alt string 2".to_owned()
};
println!(
"The string or alt: {}"
,
some_string
.
unwrap_or_else
(
a
)
);
some_string = None;
println!(
"The string or alt: {}"
,
some_string
.
unwrap_or_else
(
||
{
let mut countdown = 0;
if is_false {
countdown = 10;
}
"alt string 3".to_owned()
}
)
);
some_string = None;
let
a
=
||
{
let mut countdown = 0;
if is_false {
countdown = 10;
}
"alt string 4".to_owned()
};
println!(
"The string or alt: {}"
,
some_string
.
unwrap_or_else
(
a
)
);
let
quote_closure
=
|val|
{
let mut countdown = 0;
if is_false {
countdown = 10;
}
format!("'{}'", val)
};
println!(
"Repeated, quoted string: {:?}"
,
std::iter::repeat("repeat me")
.take(5)
.map
(
quote_closure
)
.collect::<Vec<_>>()
);
let
_unused_closure
=
|
mut countdown
|
{
if is_false {
countdown = 10;
}
"closure should be unused".to_owned()
};
let mut countdown = 10;
let _short_unused_closure = | _unused_arg: u8 | countdown += 1;
let short_used_covered_closure_macro = | used_arg: u8 | println!("called");
let short_used_not_covered_closure_macro = | used_arg: u8 | println!("not called");
let _short_unused_closure_macro = | _unused_arg: u8 | println!("not called");
let _short_unused_closure_block = | _unused_arg: u8 | { println!("not called") };
let _shortish_unused_closure = | _unused_arg: u8 | {
println!("not called")
};
let _as_short_unused_closure = |
_unused_arg: u8
| { println!("not called") };
let _almost_as_short_unused_closure = |
_unused_arg: u8
| { println!("not called") }
;
let _short_unused_closure_line_break_no_block = | _unused_arg: u8 |
println!("not called")
;
let _short_unused_closure_line_break_no_block2 =
| _unused_arg: u8 |
println!(
"not called"
)
;
let short_used_not_covered_closure_line_break_no_block_embedded_branch =
| _unused_arg: u8 |
println!(
"not called: {}",
if is_true { "check" } else { "me" }
)
;
let short_used_not_covered_closure_line_break_block_embedded_branch =
| _unused_arg: u8 |
{
println!(
"not called: {}",
if is_true { "check" } else { "me" }
)
}
;
let short_used_covered_closure_line_break_no_block_embedded_branch =
| _unused_arg: u8 |
println!(
"not called: {}",
if is_true { "check" } else { "me" }
)
;
let short_used_covered_closure_line_break_block_embedded_branch =
| _unused_arg: u8 |
{
println!(
"not called: {}",
if is_true { "check" } else { "me" }
)
}
;
if is_false {
short_used_not_covered_closure_macro(0);
short_used_not_covered_closure_line_break_no_block_embedded_branch(0);
short_used_not_covered_closure_line_break_block_embedded_branch(0);
}
short_used_covered_closure_macro(0);
short_used_covered_closure_line_break_no_block_embedded_branch(0);
short_used_covered_closure_line_break_block_embedded_branch(0);
}

View File

@ -1,44 +0,0 @@
// Regression test for #115930.
// All of these closures are identical, and should produce identical output in
// the coverage report. However, an unstable sort was causing them to be treated
// inconsistently when preparing coverage spans.
fn main() {
let truthy = std::env::args().len() == 1;
let a
=
|
|
if truthy { true } else { false };
a();
if truthy { a(); }
let b
=
|
|
if truthy { true } else { false };
b();
if truthy { b(); }
let c
=
|
|
if truthy { true } else { false };
c();
if truthy { c(); }
let d
=
|
|
if truthy { true } else { false };
d();
if truthy { d(); }
}

View File

@ -1,40 +0,0 @@
// compile-flags: --edition=2018
#![feature(coverage_attribute)]
macro_rules! bail {
($msg:literal $(,)?) => {
if $msg.len() > 0 {
println!("no msg");
} else {
println!($msg);
}
return Err(String::from($msg));
};
}
macro_rules! on_error {
($value:expr, $error_message:expr) => {
$value.or_else(|e| { // FIXME(85000): no coverage in closure macros
let message = format!($error_message, e);
if message.len() > 0 {
println!("{}", message);
Ok(String::from("ok"))
} else {
bail!("error");
}
})
};
}
fn load_configuration_files() -> Result<String, String> {
Ok(String::from("config"))
}
pub fn main() -> Result<(), String> {
println!("Starting service");
let config = on_error!(load_configuration_files(), "Error loading configs: {}")?;
let startup_delay_duration = String::from("arg");
let _ = (config, startup_delay_duration);
Ok(())
}

View File

@ -1,77 +0,0 @@
// compile-flags: --edition=2018
#![feature(coverage_attribute)]
macro_rules! bail {
($msg:literal $(,)?) => {
if $msg.len() > 0 {
println!("no msg");
} else {
println!($msg);
}
return Err(String::from($msg));
};
}
macro_rules! on_error {
($value:expr, $error_message:expr) => {
$value.or_else(|e| { // FIXME(85000): no coverage in closure macros
let message = format!($error_message, e);
if message.len() > 0 {
println!("{}", message);
Ok(String::from("ok"))
} else {
bail!("error");
}
})
};
}
fn load_configuration_files() -> Result<String, String> {
Ok(String::from("config"))
}
pub async fn test() -> Result<(), String> {
println!("Starting service");
let config = on_error!(load_configuration_files(), "Error loading configs: {}")?;
let startup_delay_duration = String::from("arg");
let _ = (config, startup_delay_duration);
Ok(())
}
#[coverage(off)]
fn main() {
executor::block_on(test()).unwrap();
}
mod executor {
use core::{
future::Future,
pin::Pin,
task::{Context, Poll, RawWaker, RawWakerVTable, Waker},
};
#[coverage(off)]
pub fn block_on<F: Future>(mut future: F) -> F::Output {
let mut future = unsafe { Pin::new_unchecked(&mut future) };
use std::hint::unreachable_unchecked;
static VTABLE: RawWakerVTable = RawWakerVTable::new(
#[coverage(off)]
|_| unsafe { unreachable_unchecked() }, // clone
#[coverage(off)]
|_| unsafe { unreachable_unchecked() }, // wake
#[coverage(off)]
|_| unsafe { unreachable_unchecked() }, // wake_by_ref
#[coverage(off)]
|_| (),
);
let waker = unsafe { Waker::from_raw(RawWaker::new(core::ptr::null(), &VTABLE)) };
let mut context = Context::from_waker(&waker);
loop {
if let Poll::Ready(val) = future.as_mut().poll(&mut context) {
break val;
}
}
}
}

View File

@ -1,86 +0,0 @@
#![allow(unused_assignments, unused_variables)]
fn main() {
let mut countdown = 0;
if true {
countdown = 10;
}
const B: u32 = 100;
let x = if countdown > 7 {
countdown -= 4;
B
} else if countdown > 2 {
if countdown < 1 || countdown > 5 || countdown != 9 {
countdown = 0;
}
countdown -= 5;
countdown
} else {
return;
};
let mut countdown = 0;
if true {
countdown = 10;
}
if countdown > 7 {
countdown -= 4;
} else if countdown > 2 {
if countdown < 1 || countdown > 5 || countdown != 9 {
countdown = 0;
}
countdown -= 5;
} else {
return;
}
if true {
let mut countdown = 0;
if true {
countdown = 10;
}
if countdown > 7 {
countdown -= 4;
}
else if countdown > 2 {
if countdown < 1 || countdown > 5 || countdown != 9 {
countdown = 0;
}
countdown -= 5;
} else {
return;
}
}
let mut countdown = 0;
if true {
countdown = 1;
}
let z = if countdown > 7 {
countdown -= 4;
} else if countdown > 2 {
if countdown < 1 || countdown > 5 || countdown != 9 {
countdown = 0;
}
countdown -= 5;
} else {
let should_be_reachable = countdown;
println!("reached");
return;
};
let w = if countdown > 7 {
countdown -= 4;
} else if countdown > 2 {
if countdown < 1 || countdown > 5 || countdown != 9 {
countdown = 0;
}
countdown -= 5;
} else {
return;
};
}

View File

@ -1,69 +0,0 @@
#![allow(unused_assignments, unused_variables)]
fn main() {
let is_true = std::env::args().len() == 1;
let mut x = 0;
for _ in 0..10 {
match is_true {
true => {
continue;
}
_ => {
x = 1;
}
}
x = 3;
}
for _ in 0..10 {
match is_true {
false => {
x = 1;
}
_ => {
continue;
}
}
x = 3;
}
for _ in 0..10 {
match is_true {
true => {
x = 1;
}
_ => {
continue;
}
}
x = 3;
}
for _ in 0..10 {
if is_true {
continue;
}
x = 3;
}
for _ in 0..10 {
match is_true {
false => {
x = 1;
}
_ => {
let _ = x;
}
}
x = 3;
}
for _ in 0..10 {
match is_true {
false => {
x = 1;
}
_ => {
break;
}
}
x = 3;
}
let _ = x;
}

View File

@ -1,30 +0,0 @@
#![feature(coroutines, coroutine_trait)]
use std::ops::{Coroutine, CoroutineState};
use std::pin::Pin;
// The following implementation of a function called from a `yield` statement
// (apparently requiring the Result and the `String` type or constructor)
// creates conditions where the `coroutine::StateTransform` MIR transform will
// drop all `Counter` `Coverage` statements from a MIR. `simplify.rs` has logic
// to handle this condition, and still report dead block coverage.
fn get_u32(val: bool) -> Result<u32, String> {
if val { Ok(1) } else { Err(String::from("some error")) }
}
fn main() {
let is_true = std::env::args().len() == 1;
let mut coroutine = || {
yield get_u32(is_true);
return "foo";
};
match Pin::new(&mut coroutine).resume(()) {
CoroutineState::Yielded(Ok(1)) => {}
_ => panic!("unexpected return from resume"),
}
match Pin::new(&mut coroutine).resume(()) {
CoroutineState::Complete("foo") => {}
_ => panic!("unexpected return from resume"),
}
}

View File

@ -1,37 +0,0 @@
#![allow(dead_code, unused_assignments, unused_variables)]
pub fn unused_pub_fn_not_in_library() {
// Initialize test constants in a way that cannot be determined at compile time, to ensure
// rustc and LLVM cannot optimize out statements (or coverage counters) downstream from
// dependent conditions.
let is_true = std::env::args().len() == 1;
let mut countdown = 0;
if is_true {
countdown = 10;
}
}
fn unused_fn() {
// Initialize test constants in a way that cannot be determined at compile time, to ensure
// rustc and LLVM cannot optimize out statements (or coverage counters) downstream from
// dependent conditions.
let is_true = std::env::args().len() == 1;
let mut countdown = 0;
if is_true {
countdown = 10;
}
}
fn main() {
// Initialize test constants in a way that cannot be determined at compile time, to ensure
// rustc and LLVM cannot optimize out statements (or coverage counters) downstream from
// dependent conditions.
let is_true = std::env::args().len() == 1;
let mut countdown = 0;
if is_true {
countdown = 10;
}
}

View File

@ -1,33 +0,0 @@
#![allow(unused_assignments)]
// failure-status: 1
struct Firework {
strength: i32,
}
impl Drop for Firework {
fn drop(&mut self) {
println!("BOOM times {}!!!", self.strength);
}
}
fn main() -> Result<(), u8> {
let _firecracker = Firework { strength: 1 };
let _tnt = Firework { strength: 100 };
if true {
println!("Exiting with error...");
return Err(1);
}
let _ = Firework { strength: 1000 };
Ok(())
}
// Expected program output:
// Exiting with error...
// BOOM times 100!!!
// BOOM times 1!!!
// Error: 1

View File

@ -1,41 +0,0 @@
#![feature(coverage_attribute)]
// compile-flags: --edition=2021
// Regression test for inconsistent handling of function signature spans that
// are followed by code using the `?` operator.
//
// For each of these similar functions, the line containing the function
// signature should be handled in the same way.
fn a() -> Option<i32>
{
Some(7i32);
Some(0)
}
fn b() -> Option<i32>
{
Some(7i32)?;
Some(0)
}
fn c() -> Option<i32>
{
let _ = Some(7i32)?;
Some(0)
}
fn d() -> Option<i32>
{
let _: () = ();
Some(7i32)?;
Some(0)
}
#[coverage(off)]
fn main() {
a();
b();
c();
d();
}

View File

@ -1,44 +0,0 @@
#![allow(unused_assignments)]
// failure-status: 1
struct Firework<T> where T: Copy + std::fmt::Display {
strength: T,
}
impl<T> Firework<T> where T: Copy + std::fmt::Display {
#[inline(always)]
fn set_strength(&mut self, new_strength: T) {
self.strength = new_strength;
}
}
impl<T> Drop for Firework<T> where T: Copy + std::fmt::Display {
#[inline(always)]
fn drop(&mut self) {
println!("BOOM times {}!!!", self.strength);
}
}
fn main() -> Result<(), u8> {
let mut firecracker = Firework { strength: 1 };
firecracker.set_strength(2);
let mut tnt = Firework { strength: 100.1 };
tnt.set_strength(200.1);
tnt.set_strength(300.3);
if true {
println!("Exiting with error...");
return Err(1);
}
let _ = Firework { strength: 1000 };
Ok(())
}
// Expected program output:
// Exiting with error...
// BOOM times 100!!!
// BOOM times 1!!!
// Error: 1

View File

@ -1,28 +0,0 @@
#![allow(unused_assignments, unused_variables)]
fn main() {
// Initialize test constants in a way that cannot be determined at compile time, to ensure
// rustc and LLVM cannot optimize out statements (or coverage counters) downstream from
// dependent conditions.
let
is_true
=
std::env::args().len()
==
1
;
let
mut
countdown
=
0
;
if
is_true
{
countdown
=
10
;
}
}

View File

@ -1,40 +0,0 @@
#![allow(unused_assignments, unused_variables)]
fn main() {
// Initialize test constants in a way that cannot be determined at compile time, to ensure
// rustc and LLVM cannot optimize out statements (or coverage counters) downstream from
// dependent conditions.
let is_true = std::env::args().len() == 1;
let mut countdown = 0;
if
is_true
{
countdown
=
10
;
}
else // Note coverage region difference without semicolon
{
countdown
=
100
}
if
is_true
{
countdown
=
10
;
}
else
{
countdown
=
100
;
}
}

View File

@ -1,27 +0,0 @@
// Regression test for issue #98833.
// compile-flags: -Zinline-mir -Cdebug-assertions=off
fn main() {
println!("{}", live::<false>());
let f = |x: bool| {
debug_assert!(
x
);
};
f(false);
}
#[inline]
fn live<const B: bool>() -> u32 {
if B {
dead()
} else {
0
}
}
#[inline]
fn dead() -> u32 {
42
}

View File

@ -1,51 +0,0 @@
// compile-flags: -Zinline-mir
use std::fmt::Display;
fn main() {
permutations(&['a', 'b', 'c']);
}
#[inline(always)]
fn permutations<T: Copy + Display>(xs: &[T]) {
let mut ys = xs.to_owned();
permutate(&mut ys, 0);
}
fn permutate<T: Copy + Display>(xs: &mut [T], k: usize) {
let n = length(xs);
if k == n {
display(xs);
} else if k < n {
for i in k..n {
swap(xs, i, k);
permutate(xs, k + 1);
swap(xs, i, k);
}
} else {
error();
}
}
fn length<T>(xs: &[T]) -> usize {
xs.len()
}
#[inline]
fn swap<T: Copy>(xs: &mut [T], i: usize, j: usize) {
let t = xs[i];
xs[i] = xs[j];
xs[j] = t;
}
fn display<T: Display>(xs: &[T]) {
for x in xs {
print!("{}", x);
}
println!();
}
#[inline(always)]
fn error() {
panic!("error");
}

View File

@ -1,57 +0,0 @@
#![allow(unused_assignments, unused_variables, dead_code)]
fn main() {
// Initialize test constants in a way that cannot be determined at compile time, to ensure
// rustc and LLVM cannot optimize out statements (or coverage counters) downstream from
// dependent conditions.
let is_true = std::env::args().len() == 1;
let mut countdown = 0;
if is_true {
countdown = 10;
}
mod in_mod {
const IN_MOD_CONST: u32 = 1000;
}
fn in_func(a: u32) {
let b = 1;
let c = a + b;
println!("c = {}", c)
}
struct InStruct {
in_struct_field: u32,
}
const IN_CONST: u32 = 1234;
trait InTrait {
fn trait_func(&mut self, incr: u32);
fn default_trait_func(&mut self) {
in_func(IN_CONST);
self.trait_func(IN_CONST);
}
}
impl InTrait for InStruct {
fn trait_func(&mut self, incr: u32) {
self.in_struct_field += incr;
in_func(self.in_struct_field);
}
}
type InType = String;
if is_true {
in_func(countdown);
}
let mut val = InStruct {
in_struct_field: 101,
};
val.default_trait_func();
}

View File

@ -1,14 +0,0 @@
// Shows that rust-lang/rust/83601 is resolved
#[derive(Debug, PartialEq, Eq)]
struct Foo(u32);
fn main() {
let bar = Foo(1);
assert_eq!(bar, Foo(1));
let baz = Foo(0);
assert_ne!(baz, Foo(1));
println!("{:?}", Foo(1));
println!("{:?}", bar);
println!("{:?}", baz);
}

View File

@ -1,182 +0,0 @@
// This demonstrated Issue #84561: function-like macros produce unintuitive coverage results.
// failure-status: 101
#[derive(PartialEq, Eq)]
struct Foo(u32);
fn test3() {
let is_true = std::env::args().len() == 1;
let bar = Foo(1);
assert_eq!(bar, Foo(1));
let baz = Foo(0);
assert_ne!(baz, Foo(1));
println!("{:?}", Foo(1));
println!("{:?}", bar);
println!("{:?}", baz);
assert_eq!(Foo(1), Foo(1));
assert_ne!(Foo(0), Foo(1));
assert_eq!(Foo(2), Foo(2));
let bar = Foo(0);
assert_ne!(bar, Foo(3));
assert_ne!(Foo(0), Foo(4));
assert_eq!(Foo(3), Foo(3), "with a message");
println!("{:?}", bar);
println!("{:?}", Foo(1));
assert_ne!(Foo(0), Foo(5), "{}", if is_true { "true message" } else { "false message" });
assert_ne!(
Foo(0)
,
Foo(5)
,
"{}"
,
if
is_true
{
"true message"
} else {
"false message"
}
);
let is_true = std::env::args().len() == 1;
assert_eq!(
Foo(1),
Foo(1)
);
assert_ne!(
Foo(0),
Foo(1)
);
assert_eq!(
Foo(2),
Foo(2)
);
let bar = Foo(1);
assert_ne!(
bar,
Foo(3)
);
if is_true {
assert_ne!(
Foo(0),
Foo(4)
);
} else {
assert_eq!(
Foo(3),
Foo(3)
);
}
if is_true {
assert_ne!(
Foo(0),
Foo(4),
"with a message"
);
} else {
assert_eq!(
Foo(3),
Foo(3),
"with a message"
);
}
assert_ne!(
if is_true {
Foo(0)
} else {
Foo(1)
},
Foo(5)
);
assert_ne!(
Foo(5),
if is_true {
Foo(0)
} else {
Foo(1)
}
);
assert_ne!(
if is_true {
assert_eq!(
Foo(3),
Foo(3)
);
Foo(0)
} else {
assert_ne!(
if is_true {
Foo(0)
} else {
Foo(1)
},
Foo(5)
);
Foo(1)
},
Foo(5),
"with a message"
);
assert_eq!(
Foo(1),
Foo(3),
"this assert should fail"
);
assert_eq!(
Foo(3),
Foo(3),
"this assert should not be reached"
);
}
impl std::fmt::Debug for Foo {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "try and succeed")?;
Ok(())
}
}
static mut DEBUG_LEVEL_ENABLED: bool = false;
macro_rules! debug {
($($arg:tt)+) => (
if unsafe { DEBUG_LEVEL_ENABLED } {
println!($($arg)+);
}
);
}
fn test1() {
debug!("debug is enabled");
debug!("debug is enabled");
let _ = 0;
debug!("debug is enabled");
unsafe {
DEBUG_LEVEL_ENABLED = true;
}
debug!("debug is enabled");
}
macro_rules! call_debug {
($($arg:tt)+) => (
fn call_print(s: &str) {
print!("{}", s);
}
call_print("called from call_debug: ");
debug!($($arg)+);
);
}
fn test2() {
call_debug!("debug is enabled");
}
fn main() {
test1();
test2();
test3();
}

View File

@ -1,11 +0,0 @@
// Regression test for #85461: MSVC sometimes fail to link with dead code and #[inline(always)]
// aux-build:inline_always_with_dead_code.rs
extern crate inline_always_with_dead_code;
use inline_always_with_dead_code::{bar, baz};
fn main() {
bar::call_me();
baz::call_me();
}

View File

@ -1,30 +0,0 @@
#![allow(dead_code, unreachable_code)]
// Regression test for #93054: Functions using uninhabited types often only have a single,
// unreachable basic block which doesn't get instrumented. This should not cause llvm-cov to fail.
// Since these kinds functions can't be invoked anyway, it's ok to not have coverage data for them.
// compile-flags: --edition=2021
enum Never {}
impl Never {
fn foo(self) {
match self {}
make().map(|never| match never {});
}
fn bar(&self) {
match *self {}
}
}
async fn foo2(never: Never) {
match never {}
}
fn make() -> Option<Never> {
None
}
fn main() {}

View File

@ -1,61 +0,0 @@
#![allow(unused_assignments, unused_variables)]
fn main() {
// Initialize test constants in a way that cannot be determined at compile time, to ensure
// rustc and LLVM cannot optimize out statements (or coverage counters) downstream from
// dependent conditions.
let is_true = std::env::args().len() == 1;
let (mut a, mut b, mut c) = (0, 0, 0);
if is_true {
a = 1;
b = 10;
c = 100;
}
let
somebool
=
a < b
||
b < c
;
let
somebool
=
b < a
||
b < c
;
let somebool = a < b && b < c;
let somebool = b < a && b < c;
if
!
is_true
{
a = 2
;
}
if
is_true
{
b = 30
;
}
else
{
c = 400
;
}
if !is_true {
a = 2;
}
if is_true {
b = 30;
} else {
c = 400;
}
}

View File

@ -1,150 +0,0 @@
// compile-flags: --edition=2021
// ignore-tidy-linelength
// This file deliberately contains line and column numbers larger than 127,
// to verify that `coverage-dump`'s ULEB128 parser can handle them.
fn main() {
wide_function();
long_function();
far_function();
}
#[rustfmt::skip]
fn wide_function() { /* */ (); }
fn long_function() {
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
}
fn far_function() {}

View File

@ -1,13 +0,0 @@
#![allow(unused_assignments, unused_variables)]
fn main() {
let result
=
loop
{
break
10
;
}
;
}

View File

@ -1,60 +0,0 @@
#![allow(unused_assignments, unused_variables, while_true)]
// This test confirms that (1) unexecuted infinite loops are handled correctly by the
// InstrumentCoverage MIR pass; and (2) Counter Expressions that subtract from zero can be dropped.
struct DebugTest;
impl std::fmt::Debug for DebugTest {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
if true {
if false {
while true {}
}
write!(f, "cool")?;
} else {
}
for i in 0..10 {
if true {
if false {
while true {}
}
write!(f, "cool")?;
} else {
}
}
Ok(())
}
}
struct DisplayTest;
impl std::fmt::Display for DisplayTest {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
if false {
} else {
if false {
while true {}
}
write!(f, "cool")?;
}
for i in 0..10 {
if false {
} else {
if false {
while true {}
}
write!(f, "cool")?;
}
}
Ok(())
}
}
fn main() {
let debug_test = DebugTest;
println!("{:?}", debug_test);
let display_test = DisplayTest;
println!("{}", display_test);
}

View File

@ -1,43 +0,0 @@
fn main() {
// Initialize test constants in a way that cannot be determined at compile time, to ensure
// rustc and LLVM cannot optimize out statements (or coverage counters) downstream from
// dependent conditions.
let is_true = std::env::args().len() == 1;
let mut a: u8 = 0;
let mut b: u8 = 0;
if is_true {
a = 2;
b = 0;
}
match (a, b) {
// Or patterns generate MIR `SwitchInt` with multiple targets to the same `BasicBlock`.
// This test confirms a fix for Issue #79569.
(0 | 1, 2 | 3) => {}
_ => {}
}
if is_true {
a = 0;
b = 0;
}
match (a, b) {
(0 | 1, 2 | 3) => {}
_ => {}
}
if is_true {
a = 2;
b = 2;
}
match (a, b) {
(0 | 1, 2 | 3) => {}
_ => {}
}
if is_true {
a = 0;
b = 2;
}
match (a, b) {
(0 | 1, 2 | 3) => {}
_ => {}
}
}

View File

@ -1,25 +0,0 @@
fn main() {
let is_true = std::env::args().len() == 1;
let mut countdown = 10;
'outer: while countdown > 0 {
let mut a = 100;
let mut b = 100;
for _ in 0..50 {
if a < 30 {
break;
}
a -= 5;
b -= 5;
if b < 90 {
a -= 10;
if is_true {
break 'outer;
} else {
a -= 2;
}
}
}
countdown -= 1;
}
}

View File

@ -1,88 +0,0 @@
// Enables `coverage(off)` on the entire crate
#![feature(coverage_attribute)]
#[coverage(off)]
fn do_not_add_coverage_1() {
println!("called but not covered");
}
fn do_not_add_coverage_2() {
#![coverage(off)]
println!("called but not covered");
}
#[coverage(off)]
#[allow(dead_code)]
fn do_not_add_coverage_not_called() {
println!("not called and not covered");
}
fn add_coverage_1() {
println!("called and covered");
}
fn add_coverage_2() {
println!("called and covered");
}
#[allow(dead_code)]
fn add_coverage_not_called() {
println!("not called but covered");
}
// FIXME: These test-cases illustrate confusing results of nested functions.
// See https://github.com/rust-lang/rust/issues/93319
mod nested_fns {
#[coverage(off)]
pub fn outer_not_covered(is_true: bool) {
fn inner(is_true: bool) {
if is_true {
println!("called and covered");
} else {
println!("absolutely not covered");
}
}
println!("called but not covered");
inner(is_true);
}
pub fn outer(is_true: bool) {
println!("called and covered");
inner_not_covered(is_true);
#[coverage(off)]
fn inner_not_covered(is_true: bool) {
if is_true {
println!("called but not covered");
} else {
println!("absolutely not covered");
}
}
}
pub fn outer_both_covered(is_true: bool) {
println!("called and covered");
inner(is_true);
fn inner(is_true: bool) {
if is_true {
println!("called and covered");
} else {
println!("absolutely not covered");
}
}
}
}
fn main() {
let is_true = std::env::args().len() == 1;
do_not_add_coverage_1();
do_not_add_coverage_2();
add_coverage_1();
add_coverage_2();
nested_fns::outer_not_covered(is_true);
nested_fns::outer(is_true);
nested_fns::outer_both_covered(is_true);
}

View File

@ -1,64 +0,0 @@
#![allow(unused_assignments)]
// compile-flags: -Coverflow-checks=yes
// failure-status: 101
fn might_overflow(to_add: u32) -> u32 {
if to_add > 5 {
println!("this will probably overflow");
}
let add_to = u32::MAX - 5;
println!("does {} + {} overflow?", add_to, to_add);
let result = to_add + add_to;
println!("continuing after overflow check");
result
}
fn main() -> Result<(), u8> {
let mut countdown = 10;
while countdown > 0 {
if countdown == 1 {
let result = might_overflow(10);
println!("Result: {}", result);
} else if countdown < 5 {
let result = might_overflow(1);
println!("Result: {}", result);
}
countdown -= 1;
}
Ok(())
}
// Notes:
// 1. Compare this program and its coverage results to those of the very similar test `assert.rs`,
// and similar tests `panic_unwind.rs`, abort.rs` and `try_error_result.rs`.
// 2. This test confirms the coverage generated when a program passes or fails a
// compiler-generated `TerminatorKind::Assert` (based on an overflow check, in this case).
// 3. Similar to how the coverage instrumentation handles `TerminatorKind::Call`,
// compiler-generated assertion failures are assumed to be a symptom of a program bug, not
// expected behavior. To simplify the coverage graphs and keep instrumented programs as
// small and fast as possible, `Assert` terminators are assumed to always succeed, and
// therefore are considered "non-branching" terminators. So, an `Assert` terminator does not
// get its own coverage counter.
// 4. After an unhandled panic or failed Assert, coverage results may not always be intuitive.
// In this test, the final count for the statements after the `if` block in `might_overflow()`
// is 4, even though the lines after `to_add + add_to` were executed only 3 times. Depending
// on the MIR graph and the structure of the code, this count could have been 3 (which might
// have been valid for the overflowed add `+`, but should have been 4 for the lines before
// the overflow. The reason for this potential uncertainty is, a `CounterKind` is incremented
// via StatementKind::Counter at the end of the block, but (as in the case in this test),
// a CounterKind::Expression is always evaluated. In this case, the expression was based on
// a `Counter` incremented as part of the evaluation of the `if` expression, which was
// executed, and counted, 4 times, before reaching the overflow add.
// If the program did not overflow, the coverage for `might_overflow()` would look like this:
//
// 4| |fn might_overflow(to_add: u32) -> u32 {
// 5| 4| if to_add > 5 {
// 6| 0| println!("this will probably overflow");
// 7| 4| }
// 8| 4| let add_to = u32::MAX - 5;
// 9| 4| println!("does {} + {} overflow?", add_to, to_add);
// 10| 4| let result = to_add + add_to;
// 11| 4| println!("continuing after overflow check");
// 12| 4| result
// 13| 4|}

View File

@ -1,31 +0,0 @@
#![allow(unused_assignments)]
// failure-status: 101
fn might_panic(should_panic: bool) {
if should_panic {
println!("panicking...");
panic!("panics");
} else {
println!("Don't Panic");
}
}
fn main() -> Result<(), u8> {
let mut countdown = 10;
while countdown > 0 {
if countdown == 1 {
might_panic(true);
} else if countdown < 5 {
might_panic(false);
}
countdown -= 1;
}
Ok(())
}
// Notes:
// 1. Compare this program and its coverage results to those of the similar tests `abort.rs` and
// `try_error_result.rs`.
// 2. Since the `panic_unwind.rs` test is allowed to unwind, it is also allowed to execute the
// normal program exit cleanup, including writing out the current values of the coverage
// counters.

View File

@ -1,46 +0,0 @@
// This test confirms an earlier problem was resolved, supporting the MIR graph generated by the
// structure of this test.
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub struct Version {
major: usize,
minor: usize,
patch: usize,
}
impl Version {
pub fn new(major: usize, minor: usize, patch: usize) -> Self {
Self {
major,
minor,
patch,
}
}
}
fn main() {
let version_3_2_1 = Version::new(3, 2, 1);
let version_3_3_0 = Version::new(3, 3, 0);
println!("{:?} < {:?} = {}", version_3_2_1, version_3_3_0, version_3_2_1 < version_3_3_0);
}
/*
This test verifies a bug was fixed that otherwise generated this error:
thread 'rustc' panicked at 'No counters provided the source_hash for function:
Instance {
def: Item(WithOptConstParam {
did: DefId(0:101 ~ autocfg[c44a]::version::{impl#2}::partial_cmp),
const_param_did: None
}),
args: []
}'
The `PartialOrd` derived by `Version` happened to generate a MIR that generated coverage
without a code region associated with any `Counter`. Code regions were associated with at least
one expression, which is allowed, but the `function_source_hash` was only passed to the codegen
(coverage mapgen) phase from a `Counter`s code region. A new method was added to pass the
`function_source_hash` without a code region, if necessary.
*/

View File

@ -1,35 +0,0 @@
#![allow(unused_assignments)]
fn main() {
// Initialize test constants in a way that cannot be determined at compile time, to ensure
// rustc and LLVM cannot optimize out statements (or coverage counters) downstream from
// dependent conditions.
let is_true = std::env::args().len() == 1;
let mut countdown = 0;
if
is_true
{
countdown
=
10
;
}
loop
{
if
countdown
==
0
{
break
;
}
countdown
-=
1
;
}
}

View File

@ -1,43 +0,0 @@
#![allow(unused_assignments, unused_variables)]
fn main() {
// Initialize test constants in a way that cannot be determined at compile time, to ensure
// rustc and LLVM cannot optimize out statements (or coverage counters) downstream from
// dependent conditions.
let is_true = std::env::args().len() == 1;
let mut countdown = 1;
if is_true {
countdown = 0;
}
for
_
in
0..2
{
let z
;
match
countdown
{
x
if
x
<
1
=>
{
z = countdown
;
let y = countdown
;
countdown = 10
;
}
_
=>
{}
}
}
}

View File

@ -1,23 +0,0 @@
// compile-flags: --edition=2021
// Demonstrate that `sort_subviews.py` can sort instantiation groups into a
// predictable order, while preserving their heterogeneous contents.
fn main() {
let cond = std::env::args().len() > 1;
generic_fn::<()>(cond);
generic_fn::<&'static str>(!cond);
if std::hint::black_box(false) {
generic_fn::<char>(cond);
}
generic_fn::<i32>(cond);
other_fn();
}
fn generic_fn<T>(cond: bool) {
if cond {
println!("{}", std::any::type_name::<T>());
}
}
fn other_fn() {}

View File

@ -1,10 +0,0 @@
// Verify that the entry point injected by the test harness doesn't cause
// weird artifacts in the coverage report (e.g. issue #10749).
// compile-flags: --test
#[allow(dead_code)]
fn unused() {}
#[test]
fn my_test() {}

View File

@ -1,5 +0,0 @@
fn main() {
if false {
loop {}
}
}

View File

@ -1,3 +0,0 @@
// compile-flags: --edition=2021
fn main() {}

View File

@ -1,118 +0,0 @@
#![allow(unused_assignments)]
// failure-status: 1
fn call(return_error: bool) -> Result<(), ()> {
if return_error {
Err(())
} else {
Ok(())
}
}
fn test1() -> Result<(), ()> {
let mut
countdown = 10
;
for
_
in
0..10
{
countdown
-= 1
;
if
countdown < 5
{
call(/*return_error=*/ true)?;
call(/*return_error=*/ false)?;
}
else
{
call(/*return_error=*/ false)?;
}
}
Ok(())
}
struct Thing1;
impl Thing1 {
fn get_thing_2(&self, return_error: bool) -> Result<Thing2, ()> {
if return_error {
Err(())
} else {
Ok(Thing2 {})
}
}
}
struct Thing2;
impl Thing2 {
fn call(&self, return_error: bool) -> Result<u32, ()> {
if return_error {
Err(())
} else {
Ok(57)
}
}
}
fn test2() -> Result<(), ()> {
let thing1 = Thing1{};
let mut
countdown = 10
;
for
_
in
0..10
{
countdown
-= 1
;
if
countdown < 5
{
thing1.get_thing_2(/*err=*/ false)?.call(/*err=*/ true).expect_err("call should fail");
thing1
.
get_thing_2(/*return_error=*/ false)
?
.
call(/*return_error=*/ true)
.
expect_err(
"call should fail"
);
let val = thing1.get_thing_2(/*return_error=*/ true)?.call(/*return_error=*/ true)?;
assert_eq!(val, 57);
let val = thing1.get_thing_2(/*return_error=*/ true)?.call(/*return_error=*/ false)?;
assert_eq!(val, 57);
}
else
{
let val = thing1.get_thing_2(/*return_error=*/ false)?.call(/*return_error=*/ false)?;
assert_eq!(val, 57);
let val = thing1
.get_thing_2(/*return_error=*/ false)?
.call(/*return_error=*/ false)?;
assert_eq!(val, 57);
let val = thing1
.get_thing_2(/*return_error=*/ false)
?
.call(/*return_error=*/ false)
?
;
assert_eq!(val, 57);
}
}
Ok(())
}
fn main() -> Result<(), ()> {
test1().expect_err("test1 should fail");
test2()
?
;
Ok(())
}

View File

@ -1,37 +0,0 @@
#![feature(core_intrinsics)]
#![feature(coverage_attribute)]
// compile-flags: --edition=2021
// <https://github.com/rust-lang/rust/issues/116171>
// If we instrument a function for coverage, but all of its counter-increment
// statements are removed by MIR optimizations, LLVM will think it isn't
// instrumented and it will disappear from coverage maps and coverage reports.
// Most MIR opts won't cause this because they tend not to remove statements
// from bb0, but `UnreachablePropagation` can do so if it sees that bb0 ends
// with `TerminatorKind::Unreachable`.
use std::hint::{black_box, unreachable_unchecked};
static UNREACHABLE_CLOSURE: fn() = || unsafe { unreachable_unchecked() };
fn unreachable_function() {
unsafe { unreachable_unchecked() }
}
// Use an intrinsic to more reliably trigger unreachable-propagation.
fn unreachable_intrinsic() {
unsafe { std::intrinsics::unreachable() }
}
#[coverage(off)]
fn main() {
if black_box(false) {
UNREACHABLE_CLOSURE();
}
if black_box(false) {
unreachable_function();
}
if black_box(false) {
unreachable_intrinsic();
}
}

View File

@ -1,41 +0,0 @@
#![allow(dead_code, unused_assignments, unused_must_use, unused_variables)]
fn foo<T>(x: T) {
let mut i = 0;
while i < 10 {
i != 0 || i != 0;
i += 1;
}
}
fn unused_template_func<T>(x: T) {
let mut i = 0;
while i < 10 {
i != 0 || i != 0;
i += 1;
}
}
fn unused_func(mut a: u32) {
if a != 0 {
a += 1;
}
}
fn unused_func2(mut a: u32) {
if a != 0 {
a += 1;
}
}
fn unused_func3(mut a: u32) {
if a != 0 {
a += 1;
}
}
fn main() -> Result<(), u8> {
foo::<u32>(0);
foo::<f32>(0.0);
Ok(())
}

View File

@ -1,6 +0,0 @@
#[path = "auxiliary/unused_mod_helper.rs"]
mod unused_module;
fn main() {
println!("hello world!");
}

View File

@ -1,19 +0,0 @@
// This test was failing on Linux for a while due to #110393 somehow making
// the unused functions not instrumented, but it seems to be fine now.
// Validates coverage now works with optimizations
// compile-flags: -C opt-level=3
#![allow(unused_assignments, unused_variables)]
// aux-build:used_crate.rs
extern crate used_crate;
fn main() {
used_crate::used_function();
let some_vec = vec![1, 2, 3, 4];
used_crate::used_only_from_bin_crate_generic_function(&some_vec);
used_crate::used_only_from_bin_crate_generic_function("used from bin uses_crate.rs");
used_crate::used_from_bin_crate_and_lib_crate_generic_function(some_vec);
used_crate::used_with_same_type_from_bin_crate_and_lib_crate_generic_function("interesting?");
}

View File

@ -1,22 +0,0 @@
// This test was failing on Linux for a while due to #110393 somehow making
// the unused functions not instrumented, but it seems to be fine now.
// Validates coverage now works with optimizations
// compile-flags: -C opt-level=3
#![allow(unused_assignments, unused_variables)]
// aux-build:used_inline_crate.rs
extern crate used_inline_crate;
fn main() {
used_inline_crate::used_function();
used_inline_crate::used_inline_function();
let some_vec = vec![1, 2, 3, 4];
used_inline_crate::used_only_from_bin_crate_generic_function(&some_vec);
used_inline_crate::used_only_from_bin_crate_generic_function("used from bin uses_crate.rs");
used_inline_crate::used_from_bin_crate_and_lib_crate_generic_function(some_vec);
used_inline_crate::used_with_same_type_from_bin_crate_and_lib_crate_generic_function(
"interesting?",
);
}

View File

@ -1,5 +0,0 @@
fn main() {
let num = 9;
while num >= 10 {
}
}

View File

@ -1,42 +0,0 @@
#![allow(unused_assignments)]
// failure-status: 1
fn main() -> Result<(), u8> {
let mut countdown = 10;
while
countdown
>
0
{
if
countdown
<
5
{
return
if
countdown
>
8
{
Ok(())
}
else
{
Err(1)
}
;
}
countdown
-=
1
;
}
Ok(())
}
// ISSUE(77553): Originally, this test had `Err(1)` on line 22 (instead of `Ok(())`) and
// `std::process::exit(2)` on line 26 (instead of `Err(1)`); and this worked as expected on Linux
// and MacOS. But on Windows (MSVC, at least), the call to `std::process::exit()` exits the program
// without saving the InstrProf coverage counters. The use of `std::process:exit()` is not critical
// to the coverage test for early returns, but this is a limitation that should be fixed.

View File

@ -1,37 +0,0 @@
#![feature(coroutines, coroutine_trait)]
#![allow(unused_assignments)]
use std::ops::{Coroutine, CoroutineState};
use std::pin::Pin;
fn main() {
let mut coroutine = || {
yield 1;
return "foo";
};
match Pin::new(&mut coroutine).resume(()) {
CoroutineState::Yielded(1) => {}
_ => panic!("unexpected value from resume"),
}
match Pin::new(&mut coroutine).resume(()) {
CoroutineState::Complete("foo") => {}
_ => panic!("unexpected value from resume"),
}
let mut coroutine = || {
yield 1;
yield 2;
yield 3;
return "foo";
};
match Pin::new(&mut coroutine).resume(()) {
CoroutineState::Yielded(1) => {}
_ => panic!("unexpected value from resume"),
}
match Pin::new(&mut coroutine).resume(()) {
CoroutineState::Yielded(2) => {}
_ => panic!("unexpected value from resume"),
}
}

Some files were not shown because too many files have changed in this diff Show More