mirror of
https://github.com/rust-lang/rust.git
synced 2025-04-17 06:26:55 +00:00
float to/from bits and classify: update comments regarding non-conformant hardware
This commit is contained in:
parent
355a307a87
commit
368a4c6808
@ -290,7 +290,7 @@ impl f128 {
|
||||
#[inline]
|
||||
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
|
||||
pub(crate) const fn abs_private(self) -> f128 {
|
||||
// SAFETY: This transmutation is fine. Probably. For the reasons std is using it.
|
||||
// SAFETY: This transmutation is fine just like in `to_bits`/`from_bits`.
|
||||
unsafe {
|
||||
mem::transmute::<u128, f128>(mem::transmute::<f128, u128>(self) & !Self::SIGN_MASK)
|
||||
}
|
||||
@ -439,22 +439,12 @@ impl f128 {
|
||||
#[unstable(feature = "f128", issue = "116909")]
|
||||
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
|
||||
pub const fn classify(self) -> FpCategory {
|
||||
// Other float types cannot use a bitwise classify because they may suffer a variety
|
||||
// of errors if the backend chooses to cast to different float types (x87). `f128` cannot
|
||||
// fit into any other float types so this is not a concern, and we rely on bit patterns.
|
||||
// Other float types suffer from various platform bugs that violate the usual IEEE semantics
|
||||
// and also make bitwise classification not always work reliably. However, `f128` cannot fit
|
||||
// into any other float types so this is not a concern, and we can rely on bit patterns.
|
||||
|
||||
// SAFETY: POD bitcast, same as in `to_bits`.
|
||||
let bits = unsafe { mem::transmute::<f128, u128>(self) };
|
||||
Self::classify_bits(bits)
|
||||
}
|
||||
|
||||
/// This operates on bits, and only bits, so it can ignore concerns about weird FPUs.
|
||||
/// FIXME(jubilee): In a just world, this would be the entire impl for classify,
|
||||
/// plus a transmute. We do not live in a just world, but we can make it more so.
|
||||
#[inline]
|
||||
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
|
||||
const fn classify_bits(b: u128) -> FpCategory {
|
||||
match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
|
||||
let bits = self.to_bits();
|
||||
match (bits & Self::MAN_MASK, bits & Self::EXP_MASK) {
|
||||
(0, Self::EXP_MASK) => FpCategory::Infinite,
|
||||
(_, Self::EXP_MASK) => FpCategory::Nan,
|
||||
(0, 0) => FpCategory::Zero,
|
||||
@ -922,48 +912,7 @@ impl f128 {
|
||||
#[must_use = "this returns the result of the operation, without modifying the original"]
|
||||
pub const fn to_bits(self) -> u128 {
|
||||
// SAFETY: `u128` is a plain old datatype so we can always transmute to it.
|
||||
// ...sorta.
|
||||
//
|
||||
// It turns out that at runtime, it is possible for a floating point number
|
||||
// to be subject to a floating point mode that alters nonzero subnormal numbers
|
||||
// to zero on reads and writes, aka "denormals are zero" and "flush to zero".
|
||||
//
|
||||
// And, of course evaluating to a NaN value is fairly nondeterministic.
|
||||
// More precisely: when NaN should be returned is knowable, but which NaN?
|
||||
// So far that's defined by a combination of LLVM and the CPU, not Rust.
|
||||
// This function, however, allows observing the bitstring of a NaN,
|
||||
// thus introspection on CTFE.
|
||||
//
|
||||
// In order to preserve, at least for the moment, const-to-runtime equivalence,
|
||||
// we reject any of these possible situations from happening.
|
||||
#[inline]
|
||||
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
|
||||
const fn ct_f128_to_u128(ct: f128) -> u128 {
|
||||
// FIXME(f16_f128): we should use `.classify()` like `f32` and `f64`, but that
|
||||
// is not available on all platforms (needs `netf2` and `unordtf2`). So classify
|
||||
// the bits instead.
|
||||
|
||||
// SAFETY: this is a POD transmutation
|
||||
let bits = unsafe { mem::transmute::<f128, u128>(ct) };
|
||||
match f128::classify_bits(bits) {
|
||||
FpCategory::Nan => {
|
||||
panic!("const-eval error: cannot use f128::to_bits on a NaN")
|
||||
}
|
||||
FpCategory::Subnormal => {
|
||||
panic!("const-eval error: cannot use f128::to_bits on a subnormal number")
|
||||
}
|
||||
FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => bits,
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)] // See https://github.com/rust-lang/compiler-builtins/issues/491
|
||||
fn rt_f128_to_u128(x: f128) -> u128 {
|
||||
// SAFETY: `u128` is a plain old datatype so we can always... uh...
|
||||
// ...look, just pretend you forgot what you just read.
|
||||
// Stability concerns.
|
||||
unsafe { mem::transmute(x) }
|
||||
}
|
||||
intrinsics::const_eval_select((self,), ct_f128_to_u128, rt_f128_to_u128)
|
||||
unsafe { mem::transmute(self) }
|
||||
}
|
||||
|
||||
/// Raw transmutation from `u128`.
|
||||
@ -1011,49 +960,8 @@ impl f128 {
|
||||
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
|
||||
pub const fn from_bits(v: u128) -> Self {
|
||||
// It turns out the safety issues with sNaN were overblown! Hooray!
|
||||
// SAFETY: `u128` is a plain old datatype so we can always transmute from it
|
||||
// ...sorta.
|
||||
//
|
||||
// It turns out that at runtime, it is possible for a floating point number
|
||||
// to be subject to floating point modes that alter nonzero subnormal numbers
|
||||
// to zero on reads and writes, aka "denormals are zero" and "flush to zero".
|
||||
// This is not a problem usually, but at least one tier2 platform for Rust
|
||||
// actually exhibits this behavior by default: thumbv7neon
|
||||
// aka "the Neon FPU in AArch32 state"
|
||||
//
|
||||
// And, of course evaluating to a NaN value is fairly nondeterministic.
|
||||
// More precisely: when NaN should be returned is knowable, but which NaN?
|
||||
// So far that's defined by a combination of LLVM and the CPU, not Rust.
|
||||
// This function, however, allows observing the bitstring of a NaN,
|
||||
// thus introspection on CTFE.
|
||||
//
|
||||
// In order to preserve, at least for the moment, const-to-runtime equivalence,
|
||||
// reject any of these possible situations from happening.
|
||||
#[inline]
|
||||
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
|
||||
const fn ct_u128_to_f128(ct: u128) -> f128 {
|
||||
match f128::classify_bits(ct) {
|
||||
FpCategory::Subnormal => {
|
||||
panic!("const-eval error: cannot use f128::from_bits on a subnormal number")
|
||||
}
|
||||
FpCategory::Nan => {
|
||||
panic!("const-eval error: cannot use f128::from_bits on NaN")
|
||||
}
|
||||
FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => {
|
||||
// SAFETY: It's not a frumious number
|
||||
unsafe { mem::transmute::<u128, f128>(ct) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)] // See https://github.com/rust-lang/compiler-builtins/issues/491
|
||||
fn rt_u128_to_f128(x: u128) -> f128 {
|
||||
// SAFETY: `u128` is a plain old datatype so we can always... uh...
|
||||
// ...look, just pretend you forgot what you just read.
|
||||
// Stability concerns.
|
||||
unsafe { mem::transmute(x) }
|
||||
}
|
||||
intrinsics::const_eval_select((v,), ct_u128_to_f128, rt_u128_to_f128)
|
||||
// SAFETY: `u128` is a plain old datatype so we can always transmute from it.
|
||||
unsafe { mem::transmute(v) }
|
||||
}
|
||||
|
||||
/// Returns the memory representation of this floating point number as a byte array in
|
||||
|
@ -284,7 +284,7 @@ impl f16 {
|
||||
#[inline]
|
||||
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
|
||||
pub(crate) const fn abs_private(self) -> f16 {
|
||||
// SAFETY: This transmutation is fine. Probably. For the reasons std is using it.
|
||||
// SAFETY: This transmutation is fine just like in `to_bits`/`from_bits`.
|
||||
unsafe { mem::transmute::<u16, f16>(mem::transmute::<f16, u16>(self) & !Self::SIGN_MASK) }
|
||||
}
|
||||
|
||||
@ -426,15 +426,15 @@ impl f16 {
|
||||
pub const fn classify(self) -> FpCategory {
|
||||
// A previous implementation for f32/f64 tried to only use bitmask-based checks,
|
||||
// using `to_bits` to transmute the float to its bit repr and match on that.
|
||||
// Unfortunately, floating point numbers can be much worse than that.
|
||||
// This also needs to not result in recursive evaluations of `to_bits`.
|
||||
// If we only cared about being "technically" correct, that's an entirely legit
|
||||
// implementation.
|
||||
//
|
||||
|
||||
// Platforms without native support generally convert to `f32` to perform operations,
|
||||
// and most of these platforms correctly round back to `f16` after each operation.
|
||||
// However, some platforms have bugs where they keep the excess `f32` precision (e.g.
|
||||
// WASM, see llvm/llvm-project#96437). This implementation makes a best-effort attempt
|
||||
// to account for that excess precision.
|
||||
// Unfortunately, there are platforms out there that do not correctly implement the IEEE
|
||||
// float semantics Rust relies on: some hardware flushes denormals to zero, and some
|
||||
// platforms convert to `f32` to perform operations without properly rounding back (e.g.
|
||||
// WASM, see llvm/llvm-project#96437). These are platforms bugs, and Rust will misbehave on
|
||||
// such platforms, but we can at least try to make things seem as sane as possible by being
|
||||
// careful here.
|
||||
if self.is_infinite() {
|
||||
// Thus, a value may compare unequal to infinity, despite having a "full" exponent mask.
|
||||
FpCategory::Infinite
|
||||
@ -446,49 +446,20 @@ impl f16 {
|
||||
// as correctness requires avoiding equality tests that may be Subnormal == -0.0
|
||||
// because it may be wrong under "denormals are zero" and "flush to zero" modes.
|
||||
// Most of std's targets don't use those, but they are used for thumbv7neon.
|
||||
// So, this does use bitpattern matching for the rest.
|
||||
|
||||
// SAFETY: f16 to u16 is fine. Usually.
|
||||
// If classify has gotten this far, the value is definitely in one of these categories.
|
||||
unsafe { f16::partial_classify(self) }
|
||||
}
|
||||
}
|
||||
|
||||
/// This doesn't actually return a right answer for NaN on purpose,
|
||||
/// seeing as how it cannot correctly discern between a floating point NaN,
|
||||
/// and some normal floating point numbers truncated from an x87 FPU.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// This requires making sure you call this function for values it answers correctly on,
|
||||
/// otherwise it returns a wrong answer. This is not important for memory safety per se,
|
||||
/// but getting floats correct is important for not accidentally leaking const eval
|
||||
/// runtime-deviating logic which may or may not be acceptable.
|
||||
#[inline]
|
||||
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
|
||||
const unsafe fn partial_classify(self) -> FpCategory {
|
||||
// SAFETY: The caller is not asking questions for which this will tell lies.
|
||||
let b = unsafe { mem::transmute::<f16, u16>(self) };
|
||||
match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
|
||||
(0, Self::EXP_MASK) => FpCategory::Infinite,
|
||||
(0, 0) => FpCategory::Zero,
|
||||
(_, 0) => FpCategory::Subnormal,
|
||||
_ => FpCategory::Normal,
|
||||
}
|
||||
}
|
||||
|
||||
/// This operates on bits, and only bits, so it can ignore concerns about weird FPUs.
|
||||
/// FIXME(jubilee): In a just world, this would be the entire impl for classify,
|
||||
/// plus a transmute. We do not live in a just world, but we can make it more so.
|
||||
#[inline]
|
||||
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
|
||||
const fn classify_bits(b: u16) -> FpCategory {
|
||||
match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
|
||||
(0, Self::EXP_MASK) => FpCategory::Infinite,
|
||||
(_, Self::EXP_MASK) => FpCategory::Nan,
|
||||
(0, 0) => FpCategory::Zero,
|
||||
(_, 0) => FpCategory::Subnormal,
|
||||
_ => FpCategory::Normal,
|
||||
// So, this does use bitpattern matching for the rest. On x87, due to the incorrect
|
||||
// float codegen on this hardware, this doesn't actually return a right answer for NaN
|
||||
// because it cannot correctly discern between a floating point NaN, and some normal
|
||||
// floating point numbers truncated from an x87 FPU -- but we took care of NaN above, so
|
||||
// we are fine.
|
||||
// FIXME(jubilee): This probably could at least answer things correctly for Infinity,
|
||||
// like the f64 version does, but I need to run more checks on how things go on x86.
|
||||
// I fear losing mantissa data that would have answered that differently.
|
||||
let b = self.to_bits();
|
||||
match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
|
||||
(0, 0) => FpCategory::Zero,
|
||||
(_, 0) => FpCategory::Subnormal,
|
||||
_ => FpCategory::Normal,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -952,48 +923,7 @@ impl f16 {
|
||||
#[must_use = "this returns the result of the operation, without modifying the original"]
|
||||
pub const fn to_bits(self) -> u16 {
|
||||
// SAFETY: `u16` is a plain old datatype so we can always transmute to it.
|
||||
// ...sorta.
|
||||
//
|
||||
// It turns out that at runtime, it is possible for a floating point number
|
||||
// to be subject to a floating point mode that alters nonzero subnormal numbers
|
||||
// to zero on reads and writes, aka "denormals are zero" and "flush to zero".
|
||||
//
|
||||
// And, of course evaluating to a NaN value is fairly nondeterministic.
|
||||
// More precisely: when NaN should be returned is knowable, but which NaN?
|
||||
// So far that's defined by a combination of LLVM and the CPU, not Rust.
|
||||
// This function, however, allows observing the bitstring of a NaN,
|
||||
// thus introspection on CTFE.
|
||||
//
|
||||
// In order to preserve, at least for the moment, const-to-runtime equivalence,
|
||||
// we reject any of these possible situations from happening.
|
||||
#[inline]
|
||||
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
|
||||
const fn ct_f16_to_u16(ct: f16) -> u16 {
|
||||
// FIXME(f16_f128): we should use `.classify()` like `f32` and `f64`, but we don't yet
|
||||
// want to rely on that on all platforms because it is nondeterministic (e.g. x86 has
|
||||
// convention discrepancies calling intrinsics). So just classify the bits instead.
|
||||
|
||||
// SAFETY: this is a POD transmutation
|
||||
let bits = unsafe { mem::transmute::<f16, u16>(ct) };
|
||||
match f16::classify_bits(bits) {
|
||||
FpCategory::Nan => {
|
||||
panic!("const-eval error: cannot use f16::to_bits on a NaN")
|
||||
}
|
||||
FpCategory::Subnormal => {
|
||||
panic!("const-eval error: cannot use f16::to_bits on a subnormal number")
|
||||
}
|
||||
FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => bits,
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)] // See https://github.com/rust-lang/compiler-builtins/issues/491
|
||||
fn rt_f16_to_u16(x: f16) -> u16 {
|
||||
// SAFETY: `u16` is a plain old datatype so we can always... uh...
|
||||
// ...look, just pretend you forgot what you just read.
|
||||
// Stability concerns.
|
||||
unsafe { mem::transmute(x) }
|
||||
}
|
||||
intrinsics::const_eval_select((self,), ct_f16_to_u16, rt_f16_to_u16)
|
||||
unsafe { mem::transmute(self) }
|
||||
}
|
||||
|
||||
/// Raw transmutation from `u16`.
|
||||
@ -1040,49 +970,8 @@ impl f16 {
|
||||
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
|
||||
pub const fn from_bits(v: u16) -> Self {
|
||||
// It turns out the safety issues with sNaN were overblown! Hooray!
|
||||
// SAFETY: `u16` is a plain old datatype so we can always transmute from it
|
||||
// ...sorta.
|
||||
//
|
||||
// It turns out that at runtime, it is possible for a floating point number
|
||||
// to be subject to floating point modes that alter nonzero subnormal numbers
|
||||
// to zero on reads and writes, aka "denormals are zero" and "flush to zero".
|
||||
// This is not a problem usually, but at least one tier2 platform for Rust
|
||||
// actually exhibits this behavior by default: thumbv7neon
|
||||
// aka "the Neon FPU in AArch32 state"
|
||||
//
|
||||
// And, of course evaluating to a NaN value is fairly nondeterministic.
|
||||
// More precisely: when NaN should be returned is knowable, but which NaN?
|
||||
// So far that's defined by a combination of LLVM and the CPU, not Rust.
|
||||
// This function, however, allows observing the bitstring of a NaN,
|
||||
// thus introspection on CTFE.
|
||||
//
|
||||
// In order to preserve, at least for the moment, const-to-runtime equivalence,
|
||||
// reject any of these possible situations from happening.
|
||||
#[inline]
|
||||
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
|
||||
const fn ct_u16_to_f16(ct: u16) -> f16 {
|
||||
match f16::classify_bits(ct) {
|
||||
FpCategory::Subnormal => {
|
||||
panic!("const-eval error: cannot use f16::from_bits on a subnormal number")
|
||||
}
|
||||
FpCategory::Nan => {
|
||||
panic!("const-eval error: cannot use f16::from_bits on NaN")
|
||||
}
|
||||
FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => {
|
||||
// SAFETY: It's not a frumious number
|
||||
unsafe { mem::transmute::<u16, f16>(ct) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)] // See https://github.com/rust-lang/compiler-builtins/issues/491
|
||||
fn rt_u16_to_f16(x: u16) -> f16 {
|
||||
// SAFETY: `u16` is a plain old datatype so we can always... uh...
|
||||
// ...look, just pretend you forgot what you just read.
|
||||
// Stability concerns.
|
||||
unsafe { mem::transmute(x) }
|
||||
}
|
||||
intrinsics::const_eval_select((v,), ct_u16_to_f16, rt_u16_to_f16)
|
||||
// SAFETY: `u16` is a plain old datatype so we can always transmute from it.
|
||||
unsafe { mem::transmute(v) }
|
||||
}
|
||||
|
||||
/// Returns the memory representation of this floating point number as a byte array in
|
||||
|
@ -529,7 +529,7 @@ impl f32 {
|
||||
#[inline]
|
||||
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
|
||||
pub(crate) const fn abs_private(self) -> f32 {
|
||||
// SAFETY: This transmutation is fine. Probably. For the reasons std is using it.
|
||||
// SAFETY: This transmutation is fine just like in `to_bits`/`from_bits`.
|
||||
unsafe { mem::transmute::<u32, f32>(mem::transmute::<f32, u32>(self) & !Self::SIGN_MASK) }
|
||||
}
|
||||
|
||||
@ -654,18 +654,20 @@ impl f32 {
|
||||
pub const fn classify(self) -> FpCategory {
|
||||
// A previous implementation tried to only use bitmask-based checks,
|
||||
// using f32::to_bits to transmute the float to its bit repr and match on that.
|
||||
// Unfortunately, floating point numbers can be much worse than that.
|
||||
// This also needs to not result in recursive evaluations of f64::to_bits.
|
||||
// If we only cared about being "technically" correct, that's an entirely legit
|
||||
// implementation.
|
||||
//
|
||||
// Unfortunately, there is hardware out there that does not correctly implement the IEEE
|
||||
// float semantics Rust relies on: x87 uses a too-large mantissa and exponent, and some
|
||||
// hardware flushes subnormals to zero. These are platforms bugs, and Rust will misbehave on
|
||||
// such hardware, but we can at least try to make things seem as sane as possible by being
|
||||
// careful here.
|
||||
//
|
||||
// On some processors, in some cases, LLVM will "helpfully" lower floating point ops,
|
||||
// in spite of a request for them using f32 and f64, to things like x87 operations.
|
||||
// These have an f64's mantissa, but can have a larger than normal exponent.
|
||||
// FIXME(jubilee): Using x87 operations is never necessary in order to function
|
||||
// on x86 processors for Rust-to-Rust calls, so this issue should not happen.
|
||||
// Code generation should be adjusted to use non-C calling conventions, avoiding this.
|
||||
//
|
||||
if self.is_infinite() {
|
||||
// Thus, a value may compare unequal to infinity, despite having a "full" exponent mask.
|
||||
// A value may compare unequal to infinity, despite having a "full" exponent mask.
|
||||
FpCategory::Infinite
|
||||
} else if self.is_nan() {
|
||||
// And it may not be NaN, as it can simply be an "overextended" finite value.
|
||||
@ -675,48 +677,20 @@ impl f32 {
|
||||
// as correctness requires avoiding equality tests that may be Subnormal == -0.0
|
||||
// because it may be wrong under "denormals are zero" and "flush to zero" modes.
|
||||
// Most of std's targets don't use those, but they are used for thumbv7neon.
|
||||
// So, this does use bitpattern matching for the rest.
|
||||
|
||||
// SAFETY: f32 to u32 is fine. Usually.
|
||||
// If classify has gotten this far, the value is definitely in one of these categories.
|
||||
unsafe { f32::partial_classify(self) }
|
||||
}
|
||||
}
|
||||
|
||||
// This doesn't actually return a right answer for NaN on purpose,
|
||||
// seeing as how it cannot correctly discern between a floating point NaN,
|
||||
// and some normal floating point numbers truncated from an x87 FPU.
|
||||
// FIXME(jubilee): This probably could at least answer things correctly for Infinity,
|
||||
// like the f64 version does, but I need to run more checks on how things go on x86.
|
||||
// I fear losing mantissa data that would have answered that differently.
|
||||
//
|
||||
// # Safety
|
||||
// This requires making sure you call this function for values it answers correctly on,
|
||||
// otherwise it returns a wrong answer. This is not important for memory safety per se,
|
||||
// but getting floats correct is important for not accidentally leaking const eval
|
||||
// runtime-deviating logic which may or may not be acceptable.
|
||||
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
|
||||
const unsafe fn partial_classify(self) -> FpCategory {
|
||||
// SAFETY: The caller is not asking questions for which this will tell lies.
|
||||
let b = unsafe { mem::transmute::<f32, u32>(self) };
|
||||
match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
|
||||
(0, 0) => FpCategory::Zero,
|
||||
(_, 0) => FpCategory::Subnormal,
|
||||
_ => FpCategory::Normal,
|
||||
}
|
||||
}
|
||||
|
||||
// This operates on bits, and only bits, so it can ignore concerns about weird FPUs.
|
||||
// FIXME(jubilee): In a just world, this would be the entire impl for classify,
|
||||
// plus a transmute. We do not live in a just world, but we can make it more so.
|
||||
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
|
||||
const fn classify_bits(b: u32) -> FpCategory {
|
||||
match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
|
||||
(0, Self::EXP_MASK) => FpCategory::Infinite,
|
||||
(_, Self::EXP_MASK) => FpCategory::Nan,
|
||||
(0, 0) => FpCategory::Zero,
|
||||
(_, 0) => FpCategory::Subnormal,
|
||||
_ => FpCategory::Normal,
|
||||
// So, this does use bitpattern matching for the rest. On x87, due to the incorrect
|
||||
// float codegen on this hardware, this doesn't actually return a right answer for NaN
|
||||
// because it cannot correctly discern between a floating point NaN, and some normal
|
||||
// floating point numbers truncated from an x87 FPU -- but we took care of NaN above, so
|
||||
// we are fine.
|
||||
// FIXME(jubilee): This probably could at least answer things correctly for Infinity,
|
||||
// like the f64 version does, but I need to run more checks on how things go on x86.
|
||||
// I fear losing mantissa data that would have answered that differently.
|
||||
let b = self.to_bits();
|
||||
match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
|
||||
(0, 0) => FpCategory::Zero,
|
||||
(_, 0) => FpCategory::Subnormal,
|
||||
_ => FpCategory::Normal,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -1143,51 +1117,7 @@ impl f32 {
|
||||
#[inline]
|
||||
pub const fn to_bits(self) -> u32 {
|
||||
// SAFETY: `u32` is a plain old datatype so we can always transmute to it.
|
||||
// ...sorta.
|
||||
//
|
||||
// It turns out that at runtime, it is possible for a floating point number
|
||||
// to be subject to a floating point mode that alters nonzero subnormal numbers
|
||||
// to zero on reads and writes, aka "denormals are zero" and "flush to zero".
|
||||
// This is not a problem per se, but at least one tier2 platform for Rust
|
||||
// actually exhibits this behavior by default.
|
||||
//
|
||||
// In addition, on x86 targets with SSE or SSE2 disabled and the x87 FPU enabled,
|
||||
// i.e. not soft-float, the way Rust does parameter passing can actually alter
|
||||
// a number that is "not infinity" to have the same exponent as infinity,
|
||||
// in a slightly unpredictable manner.
|
||||
//
|
||||
// And, of course evaluating to a NaN value is fairly nondeterministic.
|
||||
// More precisely: when NaN should be returned is knowable, but which NaN?
|
||||
// So far that's defined by a combination of LLVM and the CPU, not Rust.
|
||||
// This function, however, allows observing the bitstring of a NaN,
|
||||
// thus introspection on CTFE.
|
||||
//
|
||||
// In order to preserve, at least for the moment, const-to-runtime equivalence,
|
||||
// we reject any of these possible situations from happening.
|
||||
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
|
||||
const fn ct_f32_to_u32(ct: f32) -> u32 {
|
||||
match ct.classify() {
|
||||
FpCategory::Nan => {
|
||||
panic!("const-eval error: cannot use f32::to_bits on a NaN")
|
||||
}
|
||||
FpCategory::Subnormal => {
|
||||
panic!("const-eval error: cannot use f32::to_bits on a subnormal number")
|
||||
}
|
||||
FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => {
|
||||
// SAFETY: We have a normal floating point number. Now we transmute, i.e. do a bitcopy.
|
||||
unsafe { mem::transmute::<f32, u32>(ct) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)] // See https://github.com/rust-lang/compiler-builtins/issues/491
|
||||
fn rt_f32_to_u32(x: f32) -> u32 {
|
||||
// SAFETY: `u32` is a plain old datatype so we can always... uh...
|
||||
// ...look, just pretend you forgot what you just read.
|
||||
// Stability concerns.
|
||||
unsafe { mem::transmute(x) }
|
||||
}
|
||||
intrinsics::const_eval_select((self,), ct_f32_to_u32, rt_f32_to_u32)
|
||||
unsafe { mem::transmute(self) }
|
||||
}
|
||||
|
||||
/// Raw transmutation from `u32`.
|
||||
@ -1232,53 +1162,8 @@ impl f32 {
|
||||
#[inline]
|
||||
pub const fn from_bits(v: u32) -> Self {
|
||||
// It turns out the safety issues with sNaN were overblown! Hooray!
|
||||
// SAFETY: `u32` is a plain old datatype so we can always transmute from it
|
||||
// ...sorta.
|
||||
//
|
||||
// It turns out that at runtime, it is possible for a floating point number
|
||||
// to be subject to floating point modes that alter nonzero subnormal numbers
|
||||
// to zero on reads and writes, aka "denormals are zero" and "flush to zero".
|
||||
// This is not a problem usually, but at least one tier2 platform for Rust
|
||||
// actually exhibits this behavior by default: thumbv7neon
|
||||
// aka "the Neon FPU in AArch32 state"
|
||||
//
|
||||
// In addition, on x86 targets with SSE or SSE2 disabled and the x87 FPU enabled,
|
||||
// i.e. not soft-float, the way Rust does parameter passing can actually alter
|
||||
// a number that is "not infinity" to have the same exponent as infinity,
|
||||
// in a slightly unpredictable manner.
|
||||
//
|
||||
// And, of course evaluating to a NaN value is fairly nondeterministic.
|
||||
// More precisely: when NaN should be returned is knowable, but which NaN?
|
||||
// So far that's defined by a combination of LLVM and the CPU, not Rust.
|
||||
// This function, however, allows observing the bitstring of a NaN,
|
||||
// thus introspection on CTFE.
|
||||
//
|
||||
// In order to preserve, at least for the moment, const-to-runtime equivalence,
|
||||
// reject any of these possible situations from happening.
|
||||
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
|
||||
const fn ct_u32_to_f32(ct: u32) -> f32 {
|
||||
match f32::classify_bits(ct) {
|
||||
FpCategory::Subnormal => {
|
||||
panic!("const-eval error: cannot use f32::from_bits on a subnormal number")
|
||||
}
|
||||
FpCategory::Nan => {
|
||||
panic!("const-eval error: cannot use f32::from_bits on NaN")
|
||||
}
|
||||
FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => {
|
||||
// SAFETY: It's not a frumious number
|
||||
unsafe { mem::transmute::<u32, f32>(ct) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)] // See https://github.com/rust-lang/compiler-builtins/issues/491
|
||||
fn rt_u32_to_f32(x: u32) -> f32 {
|
||||
// SAFETY: `u32` is a plain old datatype so we can always... uh...
|
||||
// ...look, just pretend you forgot what you just read.
|
||||
// Stability concerns.
|
||||
unsafe { mem::transmute(x) }
|
||||
}
|
||||
intrinsics::const_eval_select((v,), ct_u32_to_f32, rt_u32_to_f32)
|
||||
// SAFETY: `u32` is a plain old datatype so we can always transmute from it.
|
||||
unsafe { mem::transmute(v) }
|
||||
}
|
||||
|
||||
/// Returns the memory representation of this floating point number as a byte array in
|
||||
|
@ -528,7 +528,7 @@ impl f64 {
|
||||
#[inline]
|
||||
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
|
||||
pub(crate) const fn abs_private(self) -> f64 {
|
||||
// SAFETY: This transmutation is fine. Probably. For the reasons std is using it.
|
||||
// SAFETY: This transmutation is fine just like in `to_bits`/`from_bits`.
|
||||
unsafe { mem::transmute::<u64, f64>(mem::transmute::<f64, u64>(self) & !Self::SIGN_MASK) }
|
||||
}
|
||||
|
||||
@ -653,12 +653,14 @@ impl f64 {
|
||||
pub const fn classify(self) -> FpCategory {
|
||||
// A previous implementation tried to only use bitmask-based checks,
|
||||
// using f64::to_bits to transmute the float to its bit repr and match on that.
|
||||
// Unfortunately, floating point numbers can be much worse than that.
|
||||
// This also needs to not result in recursive evaluations of f64::to_bits.
|
||||
// If we only cared about being "technically" correct, that's an entirely legit
|
||||
// implementation.
|
||||
//
|
||||
// Unfortunately, there is hardware out there that does not correctly implement the IEEE
|
||||
// float semantics Rust relies on: x87 uses a too-large exponent, and some hardware flushes
|
||||
// subnormals to zero. These are platforms bugs, and Rust will misbehave on such hardware,
|
||||
// but we can at least try to make things seem as sane as possible by being careful here.
|
||||
//
|
||||
// On some processors, in some cases, LLVM will "helpfully" lower floating point ops,
|
||||
// in spite of a request for them using f32 and f64, to things like x87 operations.
|
||||
// These have an f64's mantissa, but can have a larger than normal exponent.
|
||||
// FIXME(jubilee): Using x87 operations is never necessary in order to function
|
||||
// on x86 processors for Rust-to-Rust calls, so this issue should not happen.
|
||||
// Code generation should be adjusted to use non-C calling conventions, avoiding this.
|
||||
@ -672,41 +674,18 @@ impl f64 {
|
||||
// as correctness requires avoiding equality tests that may be Subnormal == -0.0
|
||||
// because it may be wrong under "denormals are zero" and "flush to zero" modes.
|
||||
// Most of std's targets don't use those, but they are used for thumbv7neon.
|
||||
// So, this does use bitpattern matching for the rest.
|
||||
|
||||
// SAFETY: f64 to u64 is fine. Usually.
|
||||
// If control flow has gotten this far, the value is definitely in one of the categories
|
||||
// that f64::partial_classify can correctly analyze.
|
||||
unsafe { f64::partial_classify(self) }
|
||||
}
|
||||
}
|
||||
|
||||
// This doesn't actually return a right answer for NaN on purpose,
|
||||
// seeing as how it cannot correctly discern between a floating point NaN,
|
||||
// and some normal floating point numbers truncated from an x87 FPU.
|
||||
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
|
||||
const unsafe fn partial_classify(self) -> FpCategory {
|
||||
// SAFETY: The caller is not asking questions for which this will tell lies.
|
||||
let b = unsafe { mem::transmute::<f64, u64>(self) };
|
||||
match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
|
||||
(0, Self::EXP_MASK) => FpCategory::Infinite,
|
||||
(0, 0) => FpCategory::Zero,
|
||||
(_, 0) => FpCategory::Subnormal,
|
||||
_ => FpCategory::Normal,
|
||||
}
|
||||
}
|
||||
|
||||
// This operates on bits, and only bits, so it can ignore concerns about weird FPUs.
|
||||
// FIXME(jubilee): In a just world, this would be the entire impl for classify,
|
||||
// plus a transmute. We do not live in a just world, but we can make it more so.
|
||||
#[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
|
||||
const fn classify_bits(b: u64) -> FpCategory {
|
||||
match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
|
||||
(0, Self::EXP_MASK) => FpCategory::Infinite,
|
||||
(_, Self::EXP_MASK) => FpCategory::Nan,
|
||||
(0, 0) => FpCategory::Zero,
|
||||
(_, 0) => FpCategory::Subnormal,
|
||||
_ => FpCategory::Normal,
|
||||
// So, this does use bitpattern matching for the rest. On x87, due to the incorrect
|
||||
// float codegen on this hardware, this doesn't actually return a right answer for NaN
|
||||
// because it cannot correctly discern between a floating point NaN, and some normal
|
||||
// floating point numbers truncated from an x87 FPU -- but we took care of NaN above, so
|
||||
// we are fine.
|
||||
let b = self.to_bits();
|
||||
match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
|
||||
(0, Self::EXP_MASK) => FpCategory::Infinite,
|
||||
(0, 0) => FpCategory::Zero,
|
||||
(_, 0) => FpCategory::Subnormal,
|
||||
_ => FpCategory::Normal,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -1134,33 +1113,7 @@ impl f64 {
|
||||
#[inline]
|
||||
pub const fn to_bits(self) -> u64 {
|
||||
// SAFETY: `u64` is a plain old datatype so we can always transmute to it.
|
||||
// ...sorta.
|
||||
//
|
||||
// See the SAFETY comment in f64::from_bits for more.
|
||||
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
|
||||
const fn ct_f64_to_u64(ct: f64) -> u64 {
|
||||
match ct.classify() {
|
||||
FpCategory::Nan => {
|
||||
panic!("const-eval error: cannot use f64::to_bits on a NaN")
|
||||
}
|
||||
FpCategory::Subnormal => {
|
||||
panic!("const-eval error: cannot use f64::to_bits on a subnormal number")
|
||||
}
|
||||
FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => {
|
||||
// SAFETY: We have a normal floating point number. Now we transmute, i.e. do a bitcopy.
|
||||
unsafe { mem::transmute::<f64, u64>(ct) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)] // See https://github.com/rust-lang/compiler-builtins/issues/491
|
||||
fn rt_f64_to_u64(rt: f64) -> u64 {
|
||||
// SAFETY: `u64` is a plain old datatype so we can always... uh...
|
||||
// ...look, just pretend you forgot what you just read.
|
||||
// Stability concerns.
|
||||
unsafe { mem::transmute::<f64, u64>(rt) }
|
||||
}
|
||||
intrinsics::const_eval_select((self,), ct_f64_to_u64, rt_f64_to_u64)
|
||||
unsafe { mem::transmute(self) }
|
||||
}
|
||||
|
||||
/// Raw transmutation from `u64`.
|
||||
@ -1205,58 +1158,8 @@ impl f64 {
|
||||
#[inline]
|
||||
pub const fn from_bits(v: u64) -> Self {
|
||||
// It turns out the safety issues with sNaN were overblown! Hooray!
|
||||
// SAFETY: `u64` is a plain old datatype so we can always transmute from it
|
||||
// ...sorta.
|
||||
//
|
||||
// It turns out that at runtime, it is possible for a floating point number
|
||||
// to be subject to floating point modes that alter nonzero subnormal numbers
|
||||
// to zero on reads and writes, aka "denormals are zero" and "flush to zero".
|
||||
// This is not a problem usually, but at least one tier2 platform for Rust
|
||||
// actually exhibits an FTZ behavior by default: thumbv7neon
|
||||
// aka "the Neon FPU in AArch32 state"
|
||||
//
|
||||
// Even with this, not all instructions exhibit the FTZ behaviors on thumbv7neon,
|
||||
// so this should load the same bits if LLVM emits the "correct" instructions,
|
||||
// but LLVM sometimes makes interesting choices about float optimization,
|
||||
// and other FPUs may do similar. Thus, it is wise to indulge luxuriously in caution.
|
||||
//
|
||||
// In addition, on x86 targets with SSE or SSE2 disabled and the x87 FPU enabled,
|
||||
// i.e. not soft-float, the way Rust does parameter passing can actually alter
|
||||
// a number that is "not infinity" to have the same exponent as infinity,
|
||||
// in a slightly unpredictable manner.
|
||||
//
|
||||
// And, of course evaluating to a NaN value is fairly nondeterministic.
|
||||
// More precisely: when NaN should be returned is knowable, but which NaN?
|
||||
// So far that's defined by a combination of LLVM and the CPU, not Rust.
|
||||
// This function, however, allows observing the bitstring of a NaN,
|
||||
// thus introspection on CTFE.
|
||||
//
|
||||
// In order to preserve, at least for the moment, const-to-runtime equivalence,
|
||||
// reject any of these possible situations from happening.
|
||||
#[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
|
||||
const fn ct_u64_to_f64(ct: u64) -> f64 {
|
||||
match f64::classify_bits(ct) {
|
||||
FpCategory::Subnormal => {
|
||||
panic!("const-eval error: cannot use f64::from_bits on a subnormal number")
|
||||
}
|
||||
FpCategory::Nan => {
|
||||
panic!("const-eval error: cannot use f64::from_bits on NaN")
|
||||
}
|
||||
FpCategory::Infinite | FpCategory::Normal | FpCategory::Zero => {
|
||||
// SAFETY: It's not a frumious number
|
||||
unsafe { mem::transmute::<u64, f64>(ct) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)] // See https://github.com/rust-lang/compiler-builtins/issues/491
|
||||
fn rt_u64_to_f64(rt: u64) -> f64 {
|
||||
// SAFETY: `u64` is a plain old datatype so we can always... uh...
|
||||
// ...look, just pretend you forgot what you just read.
|
||||
// Stability concerns.
|
||||
unsafe { mem::transmute::<u64, f64>(rt) }
|
||||
}
|
||||
intrinsics::const_eval_select((v,), ct_u64_to_f64, rt_u64_to_f64)
|
||||
// SAFETY: `u64` is a plain old datatype so we can always transmute from it.
|
||||
unsafe { mem::transmute(v) }
|
||||
}
|
||||
|
||||
/// Returns the memory representation of this floating point number as a byte array in
|
||||
|
@ -38,6 +38,17 @@ fn f32() {
|
||||
const_assert!(f32::from_bits(0x44a72000), 1337.0);
|
||||
const_assert!(f32::from_ne_bytes(0x44a72000u32.to_ne_bytes()), 1337.0);
|
||||
const_assert!(f32::from_bits(0xc1640000), -14.25);
|
||||
|
||||
// Check that NaNs roundtrip their bits regardless of signalingness
|
||||
// 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
|
||||
// ...actually, let's just check that these break. :D
|
||||
const MASKED_NAN1: u32 = f32::NAN.to_bits() ^ 0x002A_AAAA;
|
||||
const MASKED_NAN2: u32 = f32::NAN.to_bits() ^ 0x0055_5555;
|
||||
|
||||
const_assert!(f32::from_bits(MASKED_NAN1).is_nan());
|
||||
const_assert!(f32::from_bits(MASKED_NAN1).is_nan());
|
||||
const_assert!(f32::from_bits(MASKED_NAN1).to_bits(), MASKED_NAN1);
|
||||
const_assert!(f32::from_bits(MASKED_NAN2).to_bits(), MASKED_NAN2);
|
||||
}
|
||||
|
||||
fn f64() {
|
||||
@ -55,6 +66,17 @@ fn f64() {
|
||||
const_assert!(f64::from_bits(0x4094e40000000000), 1337.0);
|
||||
const_assert!(f64::from_ne_bytes(0x4094e40000000000u64.to_ne_bytes()), 1337.0);
|
||||
const_assert!(f64::from_bits(0xc02c800000000000), -14.25);
|
||||
|
||||
// Check that NaNs roundtrip their bits regardless of signalingness
|
||||
// 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
|
||||
// ...actually, let's just check that these break. :D
|
||||
const MASKED_NAN1: u64 = f64::NAN.to_bits() ^ 0x000A_AAAA_AAAA_AAAA;
|
||||
const MASKED_NAN2: u64 = f64::NAN.to_bits() ^ 0x0005_5555_5555_5555;
|
||||
|
||||
const_assert!(f64::from_bits(MASKED_NAN1).is_nan());
|
||||
const_assert!(f64::from_bits(MASKED_NAN1).is_nan());
|
||||
const_assert!(f64::from_bits(MASKED_NAN1).to_bits(), MASKED_NAN1);
|
||||
const_assert!(f64::from_bits(MASKED_NAN2).to_bits(), MASKED_NAN2);
|
||||
}
|
||||
|
||||
fn main() {
|
||||
|
@ -1,68 +0,0 @@
|
||||
//@ compile-flags: -Zmir-opt-level=0
|
||||
//@ error-pattern: cannot use f32::to_bits on a NaN
|
||||
#![feature(const_float_bits_conv)]
|
||||
#![feature(const_float_classify)]
|
||||
|
||||
// Don't promote
|
||||
const fn nop<T>(x: T) -> T { x }
|
||||
|
||||
macro_rules! const_assert {
|
||||
($a:expr) => {
|
||||
{
|
||||
const _: () = assert!($a);
|
||||
assert!(nop($a));
|
||||
}
|
||||
};
|
||||
($a:expr, $b:expr) => {
|
||||
{
|
||||
const _: () = assert!($a == $b);
|
||||
assert_eq!(nop($a), nop($b));
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
fn f32() {
|
||||
// Check that NaNs roundtrip their bits regardless of signalingness
|
||||
// 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
|
||||
// ...actually, let's just check that these break. :D
|
||||
const MASKED_NAN1: u32 = f32::NAN.to_bits() ^ 0x002A_AAAA;
|
||||
//~^ inside
|
||||
const MASKED_NAN2: u32 = f32::NAN.to_bits() ^ 0x0055_5555;
|
||||
//~^ inside
|
||||
|
||||
// The rest of the code is dead because the constants already fail to evaluate.
|
||||
|
||||
const_assert!(f32::from_bits(MASKED_NAN1).is_nan());
|
||||
const_assert!(f32::from_bits(MASKED_NAN1).is_nan());
|
||||
|
||||
// LLVM does not guarantee that loads and stores of NaNs preserve their exact bit pattern.
|
||||
// In practice, this seems to only cause a problem on x86, since the most widely used calling
|
||||
// convention mandates that floating point values are returned on the x87 FPU stack. See #73328.
|
||||
// However, during CTFE we still preserve bit patterns (though that is not a guarantee).
|
||||
const_assert!(f32::from_bits(MASKED_NAN1).to_bits(), MASKED_NAN1);
|
||||
const_assert!(f32::from_bits(MASKED_NAN2).to_bits(), MASKED_NAN2);
|
||||
}
|
||||
|
||||
fn f64() {
|
||||
// Check that NaNs roundtrip their bits regardless of signalingness
|
||||
// 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
|
||||
// ...actually, let's just check that these break. :D
|
||||
const MASKED_NAN1: u64 = f64::NAN.to_bits() ^ 0x000A_AAAA_AAAA_AAAA;
|
||||
//~^ inside
|
||||
const MASKED_NAN2: u64 = f64::NAN.to_bits() ^ 0x0005_5555_5555_5555;
|
||||
//~^ inside
|
||||
|
||||
// The rest of the code is dead because the constants already fail to evaluate.
|
||||
|
||||
const_assert!(f64::from_bits(MASKED_NAN1).is_nan());
|
||||
const_assert!(f64::from_bits(MASKED_NAN1).is_nan());
|
||||
|
||||
// See comment above.
|
||||
const_assert!(f64::from_bits(MASKED_NAN1).to_bits(), MASKED_NAN1);
|
||||
const_assert!(f64::from_bits(MASKED_NAN2).to_bits(), MASKED_NAN2);
|
||||
}
|
||||
|
||||
fn main() {
|
||||
f32();
|
||||
f64();
|
||||
}
|
@ -1,115 +0,0 @@
|
||||
error[E0080]: evaluation of constant value failed
|
||||
--> $SRC_DIR/core/src/num/f32.rs:LL:COL
|
||||
|
|
||||
= note: the evaluated program panicked at 'const-eval error: cannot use f32::to_bits on a NaN', $SRC_DIR/core/src/num/f32.rs:LL:COL
|
||||
|
|
||||
note: inside `core::f32::<impl f32>::to_bits::ct_f32_to_u32`
|
||||
--> $SRC_DIR/core/src/num/f32.rs:LL:COL
|
||||
note: inside `core::f32::<impl f32>::to_bits`
|
||||
--> $SRC_DIR/core/src/num/f32.rs:LL:COL
|
||||
note: inside `f32::MASKED_NAN1`
|
||||
--> $DIR/const-float-bits-reject-conv.rs:28:30
|
||||
|
|
||||
LL | const MASKED_NAN1: u32 = f32::NAN.to_bits() ^ 0x002A_AAAA;
|
||||
| ^^^^^^^^^^^^^^^^^^
|
||||
= note: this error originates in the macro `$crate::panic::panic_2021` which comes from the expansion of the macro `panic` (in Nightly builds, run with -Z macro-backtrace for more info)
|
||||
|
||||
error[E0080]: evaluation of constant value failed
|
||||
--> $SRC_DIR/core/src/num/f32.rs:LL:COL
|
||||
|
|
||||
= note: the evaluated program panicked at 'const-eval error: cannot use f32::to_bits on a NaN', $SRC_DIR/core/src/num/f32.rs:LL:COL
|
||||
|
|
||||
note: inside `core::f32::<impl f32>::to_bits::ct_f32_to_u32`
|
||||
--> $SRC_DIR/core/src/num/f32.rs:LL:COL
|
||||
note: inside `core::f32::<impl f32>::to_bits`
|
||||
--> $SRC_DIR/core/src/num/f32.rs:LL:COL
|
||||
note: inside `f32::MASKED_NAN2`
|
||||
--> $DIR/const-float-bits-reject-conv.rs:30:30
|
||||
|
|
||||
LL | const MASKED_NAN2: u32 = f32::NAN.to_bits() ^ 0x0055_5555;
|
||||
| ^^^^^^^^^^^^^^^^^^
|
||||
= note: this error originates in the macro `$crate::panic::panic_2021` which comes from the expansion of the macro `panic` (in Nightly builds, run with -Z macro-backtrace for more info)
|
||||
|
||||
note: erroneous constant encountered
|
||||
--> $DIR/const-float-bits-reject-conv.rs:35:34
|
||||
|
|
||||
LL | const_assert!(f32::from_bits(MASKED_NAN1).is_nan());
|
||||
| ^^^^^^^^^^^
|
||||
|
||||
note: erroneous constant encountered
|
||||
--> $DIR/const-float-bits-reject-conv.rs:36:34
|
||||
|
|
||||
LL | const_assert!(f32::from_bits(MASKED_NAN1).is_nan());
|
||||
| ^^^^^^^^^^^
|
||||
|
||||
note: erroneous constant encountered
|
||||
--> $DIR/const-float-bits-reject-conv.rs:42:34
|
||||
|
|
||||
LL | const_assert!(f32::from_bits(MASKED_NAN1).to_bits(), MASKED_NAN1);
|
||||
| ^^^^^^^^^^^
|
||||
|
||||
note: erroneous constant encountered
|
||||
--> $DIR/const-float-bits-reject-conv.rs:43:34
|
||||
|
|
||||
LL | const_assert!(f32::from_bits(MASKED_NAN2).to_bits(), MASKED_NAN2);
|
||||
| ^^^^^^^^^^^
|
||||
|
||||
error[E0080]: evaluation of constant value failed
|
||||
--> $SRC_DIR/core/src/num/f64.rs:LL:COL
|
||||
|
|
||||
= note: the evaluated program panicked at 'const-eval error: cannot use f64::to_bits on a NaN', $SRC_DIR/core/src/num/f64.rs:LL:COL
|
||||
|
|
||||
note: inside `core::f64::<impl f64>::to_bits::ct_f64_to_u64`
|
||||
--> $SRC_DIR/core/src/num/f64.rs:LL:COL
|
||||
note: inside `core::f64::<impl f64>::to_bits`
|
||||
--> $SRC_DIR/core/src/num/f64.rs:LL:COL
|
||||
note: inside `f64::MASKED_NAN1`
|
||||
--> $DIR/const-float-bits-reject-conv.rs:50:30
|
||||
|
|
||||
LL | const MASKED_NAN1: u64 = f64::NAN.to_bits() ^ 0x000A_AAAA_AAAA_AAAA;
|
||||
| ^^^^^^^^^^^^^^^^^^
|
||||
= note: this error originates in the macro `$crate::panic::panic_2021` which comes from the expansion of the macro `panic` (in Nightly builds, run with -Z macro-backtrace for more info)
|
||||
|
||||
error[E0080]: evaluation of constant value failed
|
||||
--> $SRC_DIR/core/src/num/f64.rs:LL:COL
|
||||
|
|
||||
= note: the evaluated program panicked at 'const-eval error: cannot use f64::to_bits on a NaN', $SRC_DIR/core/src/num/f64.rs:LL:COL
|
||||
|
|
||||
note: inside `core::f64::<impl f64>::to_bits::ct_f64_to_u64`
|
||||
--> $SRC_DIR/core/src/num/f64.rs:LL:COL
|
||||
note: inside `core::f64::<impl f64>::to_bits`
|
||||
--> $SRC_DIR/core/src/num/f64.rs:LL:COL
|
||||
note: inside `f64::MASKED_NAN2`
|
||||
--> $DIR/const-float-bits-reject-conv.rs:52:30
|
||||
|
|
||||
LL | const MASKED_NAN2: u64 = f64::NAN.to_bits() ^ 0x0005_5555_5555_5555;
|
||||
| ^^^^^^^^^^^^^^^^^^
|
||||
= note: this error originates in the macro `$crate::panic::panic_2021` which comes from the expansion of the macro `panic` (in Nightly builds, run with -Z macro-backtrace for more info)
|
||||
|
||||
note: erroneous constant encountered
|
||||
--> $DIR/const-float-bits-reject-conv.rs:57:34
|
||||
|
|
||||
LL | const_assert!(f64::from_bits(MASKED_NAN1).is_nan());
|
||||
| ^^^^^^^^^^^
|
||||
|
||||
note: erroneous constant encountered
|
||||
--> $DIR/const-float-bits-reject-conv.rs:58:34
|
||||
|
|
||||
LL | const_assert!(f64::from_bits(MASKED_NAN1).is_nan());
|
||||
| ^^^^^^^^^^^
|
||||
|
||||
note: erroneous constant encountered
|
||||
--> $DIR/const-float-bits-reject-conv.rs:61:34
|
||||
|
|
||||
LL | const_assert!(f64::from_bits(MASKED_NAN1).to_bits(), MASKED_NAN1);
|
||||
| ^^^^^^^^^^^
|
||||
|
||||
note: erroneous constant encountered
|
||||
--> $DIR/const-float-bits-reject-conv.rs:62:34
|
||||
|
|
||||
LL | const_assert!(f64::from_bits(MASKED_NAN2).to_bits(), MASKED_NAN2);
|
||||
| ^^^^^^^^^^^
|
||||
|
||||
error: aborting due to 4 previous errors
|
||||
|
||||
For more information about this error, try `rustc --explain E0080`.
|
Loading…
Reference in New Issue
Block a user