Copy some comments from rustc

This commit is contained in:
Lukas Wirth 2021-07-08 14:31:16 +02:00
parent f73d0ee439
commit 349f2535fb

View File

@ -141,7 +141,46 @@ impl Default for InternedStandardTypes {
InternedStandardTypes { unknown: TyKind::Error.intern(&Interner) }
}
}
/// Represents coercing a value to a different type of value.
///
/// We transform values by following a number of `Adjust` steps in order.
/// See the documentation on variants of `Adjust` for more details.
///
/// Here are some common scenarios:
///
/// 1. The simplest cases are where a pointer is not adjusted fat vs thin.
/// Here the pointer will be dereferenced N times (where a dereference can
/// happen to raw or borrowed pointers or any smart pointer which implements
/// Deref, including Box<_>). The types of dereferences is given by
/// `autoderefs`. It can then be auto-referenced zero or one times, indicated
/// by `autoref`, to either a raw or borrowed pointer. In these cases unsize is
/// `false`.
///
/// 2. A thin-to-fat coercion involves unsizing the underlying data. We start
/// with a thin pointer, deref a number of times, unsize the underlying data,
/// then autoref. The 'unsize' phase may change a fixed length array to a
/// dynamically sized one, a concrete object to a trait object, or statically
/// sized struct to a dynamically sized one. E.g., &[i32; 4] -> &[i32] is
/// represented by:
///
/// ```
/// Deref(None) -> [i32; 4],
/// Borrow(AutoBorrow::Ref) -> &[i32; 4],
/// Unsize -> &[i32],
/// ```
///
/// Note that for a struct, the 'deep' unsizing of the struct is not recorded.
/// E.g., `struct Foo<T> { x: T }` we can coerce &Foo<[i32; 4]> to &Foo<[i32]>
/// The autoderef and -ref are the same as in the above example, but the type
/// stored in `unsize` is `Foo<[i32]>`, we don't store any further detail about
/// the underlying conversions from `[i32; 4]` to `[i32]`.
///
/// 3. Coercing a `Box<T>` to `Box<dyn Trait>` is an interesting special case. In
/// that case, we have the pointer we need coming in, so there are no
/// autoderefs, and no autoref. Instead we just do the `Unsize` transformation.
/// At some point, of course, `Box` should move out of the compiler, in which
/// case this is analogous to transforming a struct. E.g., Box<[i32; 4]> ->
/// Box<[i32]> is an `Adjust::Unsize` with the target `Box<[i32]>`.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Adjustment {
pub kind: Adjust,
@ -152,34 +191,25 @@ pub struct Adjustment {
pub enum Adjust {
/// Go from ! to any type.
NeverToAny,
/// Dereference once, producing a place.
Deref(Option<OverloadedDeref>),
/// Take the address and produce either a `&` or `*` pointer.
Borrow(AutoBorrow),
Pointer(PointerCast),
}
// impl fmt::Display for Adjust {
// fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// match self {
// Adjust::NeverToAny => write!(f, "NeverToAny"),
// Adjust::Deref(_) => write!(f, "Deref"), // FIXME
// Adjust::Borrow(AutoBorrow::Ref(mt)) => write!(f, "BorrowRef{:?}", mt),
// Adjust::Borrow(AutoBorrow::RawPtr(mt)) => write!(f, "BorrowRawPtr{:?}", mt),
// Adjust::Pointer(cast) => write!(f, "PtrCast{:?}", cast),
// }
// }
// }
/// An overloaded autoderef step, representing a `Deref(Mut)::deref(_mut)`
/// call, with the signature `&'a T -> &'a U` or `&'a mut T -> &'a mut U`.
/// The target type is `U` in both cases, with the region and mutability
/// being those shared by both the receiver and the returned reference.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct OverloadedDeref(Mutability);
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum AutoBorrow {
/// Converts from T to &T.
Ref(Mutability),
/// Converts from T to *T.
RawPtr(Mutability),
}