Move code from rustc_trait_selection/opaque_types to better places

This commit is contained in:
Jack Huey 2022-06-30 21:27:13 -04:00
parent 2471431017
commit 31e1a777e7
4 changed files with 542 additions and 549 deletions

View File

@ -1,11 +1,20 @@
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::vec_map::VecMap;
use rustc_hir::def_id::DefId;
use rustc_hir::OpaqueTyOrigin;
use rustc_infer::infer::error_reporting::unexpected_hidden_region_diagnostic;
use rustc_infer::infer::InferCtxt;
use rustc_infer::infer::TyCtxtInferExt as _;
use rustc_infer::traits::{Obligation, ObligationCause, TraitEngine};
use rustc_middle::ty::fold::{TypeFolder, TypeSuperFoldable};
use rustc_middle::ty::subst::{GenericArg, GenericArgKind, InternalSubsts};
use rustc_middle::ty::visit::TypeVisitable;
use rustc_middle::ty::{
self, OpaqueHiddenType, OpaqueTypeKey, TyCtxt, TypeFoldable, TypeVisitable,
self, OpaqueHiddenType, OpaqueTypeKey, ToPredicate, Ty, TyCtxt, TypeFoldable,
};
use rustc_trait_selection::opaque_types::InferCtxtExt;
use rustc_span::Span;
use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
use rustc_trait_selection::traits::TraitEngineExt as _;
use super::RegionInferenceContext;
@ -173,3 +182,474 @@ impl<'tcx> RegionInferenceContext<'tcx> {
})
}
}
pub trait InferCtxtExt<'tcx> {
fn infer_opaque_definition_from_instantiation(
&self,
opaque_type_key: OpaqueTypeKey<'tcx>,
instantiated_ty: OpaqueHiddenType<'tcx>,
origin: OpaqueTyOrigin,
) -> Ty<'tcx>;
}
impl<'a, 'tcx> InferCtxtExt<'tcx> for InferCtxt<'a, 'tcx> {
/// Given the fully resolved, instantiated type for an opaque
/// type, i.e., the value of an inference variable like C1 or C2
/// (*), computes the "definition type" for an opaque type
/// definition -- that is, the inferred value of `Foo1<'x>` or
/// `Foo2<'x>` that we would conceptually use in its definition:
/// ```ignore (illustrative)
/// type Foo1<'x> = impl Bar<'x> = AAA; // <-- this type AAA
/// type Foo2<'x> = impl Bar<'x> = BBB; // <-- or this type BBB
/// fn foo<'a, 'b>(..) -> (Foo1<'a>, Foo2<'b>) { .. }
/// ```
/// Note that these values are defined in terms of a distinct set of
/// generic parameters (`'x` instead of `'a`) from C1 or C2. The main
/// purpose of this function is to do that translation.
///
/// (*) C1 and C2 were introduced in the comments on
/// `register_member_constraints`. Read that comment for more context.
///
/// # Parameters
///
/// - `def_id`, the `impl Trait` type
/// - `substs`, the substs used to instantiate this opaque type
/// - `instantiated_ty`, the inferred type C1 -- fully resolved, lifted version of
/// `opaque_defn.concrete_ty`
#[instrument(level = "debug", skip(self))]
fn infer_opaque_definition_from_instantiation(
&self,
opaque_type_key: OpaqueTypeKey<'tcx>,
instantiated_ty: OpaqueHiddenType<'tcx>,
origin: OpaqueTyOrigin,
) -> Ty<'tcx> {
if self.is_tainted_by_errors() {
return self.tcx.ty_error();
}
let OpaqueTypeKey { def_id, substs } = opaque_type_key;
// Use substs to build up a reverse map from regions to their
// identity mappings. This is necessary because of `impl
// Trait` lifetimes are computed by replacing existing
// lifetimes with 'static and remapping only those used in the
// `impl Trait` return type, resulting in the parameters
// shifting.
let id_substs = InternalSubsts::identity_for_item(self.tcx, def_id);
debug!(?id_substs);
let map: FxHashMap<GenericArg<'tcx>, GenericArg<'tcx>> =
substs.iter().enumerate().map(|(index, subst)| (subst, id_substs[index])).collect();
debug!("map = {:#?}", map);
// Convert the type from the function into a type valid outside
// the function, by replacing invalid regions with 'static,
// after producing an error for each of them.
let definition_ty = instantiated_ty.ty.fold_with(&mut ReverseMapper::new(
self.tcx,
def_id,
map,
instantiated_ty.ty,
instantiated_ty.span,
));
debug!(?definition_ty);
if !check_opaque_type_parameter_valid(
self.tcx,
opaque_type_key,
origin,
instantiated_ty.span,
) {
return self.tcx.ty_error();
}
// Only check this for TAIT. RPIT already supports `src/test/ui/impl-trait/nested-return-type2.rs`
// on stable and we'd break that.
if let OpaqueTyOrigin::TyAlias = origin {
// This logic duplicates most of `check_opaque_meets_bounds`.
// FIXME(oli-obk): Also do region checks here and then consider removing `check_opaque_meets_bounds` entirely.
let param_env = self.tcx.param_env(def_id);
let body_id = self.tcx.local_def_id_to_hir_id(def_id.as_local().unwrap());
self.tcx.infer_ctxt().enter(move |infcx| {
// Require the hidden type to be well-formed with only the generics of the opaque type.
// Defining use functions may have more bounds than the opaque type, which is ok, as long as the
// hidden type is well formed even without those bounds.
let predicate =
ty::Binder::dummy(ty::PredicateKind::WellFormed(definition_ty.into()))
.to_predicate(infcx.tcx);
let mut fulfillment_cx = <dyn TraitEngine<'tcx>>::new(infcx.tcx);
// Require that the hidden type actually fulfills all the bounds of the opaque type, even without
// the bounds that the function supplies.
match infcx.register_hidden_type(
OpaqueTypeKey { def_id, substs: id_substs },
ObligationCause::misc(instantiated_ty.span, body_id),
param_env,
definition_ty,
origin,
) {
Ok(infer_ok) => {
for obligation in infer_ok.obligations {
fulfillment_cx.register_predicate_obligation(&infcx, obligation);
}
}
Err(err) => {
infcx
.report_mismatched_types(
&ObligationCause::misc(instantiated_ty.span, body_id),
self.tcx.mk_opaque(def_id, id_substs),
definition_ty,
err,
)
.emit();
}
}
fulfillment_cx.register_predicate_obligation(
&infcx,
Obligation::misc(instantiated_ty.span, body_id, param_env, predicate),
);
// Check that all obligations are satisfied by the implementation's
// version.
let errors = fulfillment_cx.select_all_or_error(&infcx);
let _ = infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types();
if errors.is_empty() {
definition_ty
} else {
infcx.report_fulfillment_errors(&errors, None, false);
self.tcx.ty_error()
}
})
} else {
definition_ty
}
}
}
fn check_opaque_type_parameter_valid(
tcx: TyCtxt<'_>,
opaque_type_key: OpaqueTypeKey<'_>,
origin: OpaqueTyOrigin,
span: Span,
) -> bool {
match origin {
// No need to check return position impl trait (RPIT)
// because for type and const parameters they are correct
// by construction: we convert
//
// fn foo<P0..Pn>() -> impl Trait
//
// into
//
// type Foo<P0...Pn>
// fn foo<P0..Pn>() -> Foo<P0...Pn>.
//
// For lifetime parameters we convert
//
// fn foo<'l0..'ln>() -> impl Trait<'l0..'lm>
//
// into
//
// type foo::<'p0..'pn>::Foo<'q0..'qm>
// fn foo<l0..'ln>() -> foo::<'static..'static>::Foo<'l0..'lm>.
//
// which would error here on all of the `'static` args.
OpaqueTyOrigin::FnReturn(..) | OpaqueTyOrigin::AsyncFn(..) => return true,
// Check these
OpaqueTyOrigin::TyAlias => {}
}
let opaque_generics = tcx.generics_of(opaque_type_key.def_id);
let mut seen_params: FxHashMap<_, Vec<_>> = FxHashMap::default();
for (i, arg) in opaque_type_key.substs.iter().enumerate() {
let arg_is_param = match arg.unpack() {
GenericArgKind::Type(ty) => matches!(ty.kind(), ty::Param(_)),
GenericArgKind::Lifetime(lt) if lt.is_static() => {
tcx.sess
.struct_span_err(span, "non-defining opaque type use in defining scope")
.span_label(
tcx.def_span(opaque_generics.param_at(i, tcx).def_id),
"cannot use static lifetime; use a bound lifetime \
instead or remove the lifetime parameter from the \
opaque type",
)
.emit();
return false;
}
GenericArgKind::Lifetime(lt) => {
matches!(*lt, ty::ReEarlyBound(_) | ty::ReFree(_))
}
GenericArgKind::Const(ct) => matches!(ct.kind(), ty::ConstKind::Param(_)),
};
if arg_is_param {
seen_params.entry(arg).or_default().push(i);
} else {
// Prevent `fn foo() -> Foo<u32>` from being defining.
let opaque_param = opaque_generics.param_at(i, tcx);
tcx.sess
.struct_span_err(span, "non-defining opaque type use in defining scope")
.span_note(
tcx.def_span(opaque_param.def_id),
&format!(
"used non-generic {} `{}` for generic parameter",
opaque_param.kind.descr(),
arg,
),
)
.emit();
return false;
}
}
for (_, indices) in seen_params {
if indices.len() > 1 {
let descr = opaque_generics.param_at(indices[0], tcx).kind.descr();
let spans: Vec<_> = indices
.into_iter()
.map(|i| tcx.def_span(opaque_generics.param_at(i, tcx).def_id))
.collect();
tcx.sess
.struct_span_err(span, "non-defining opaque type use in defining scope")
.span_note(spans, &format!("{} used multiple times", descr))
.emit();
return false;
}
}
true
}
struct ReverseMapper<'tcx> {
tcx: TyCtxt<'tcx>,
opaque_type_def_id: DefId,
map: FxHashMap<GenericArg<'tcx>, GenericArg<'tcx>>,
map_missing_regions_to_empty: bool,
/// initially `Some`, set to `None` once error has been reported
hidden_ty: Option<Ty<'tcx>>,
/// Span of function being checked.
span: Span,
}
impl<'tcx> ReverseMapper<'tcx> {
fn new(
tcx: TyCtxt<'tcx>,
opaque_type_def_id: DefId,
map: FxHashMap<GenericArg<'tcx>, GenericArg<'tcx>>,
hidden_ty: Ty<'tcx>,
span: Span,
) -> Self {
Self {
tcx,
opaque_type_def_id,
map,
map_missing_regions_to_empty: false,
hidden_ty: Some(hidden_ty),
span,
}
}
fn fold_kind_mapping_missing_regions_to_empty(
&mut self,
kind: GenericArg<'tcx>,
) -> GenericArg<'tcx> {
assert!(!self.map_missing_regions_to_empty);
self.map_missing_regions_to_empty = true;
let kind = kind.fold_with(self);
self.map_missing_regions_to_empty = false;
kind
}
fn fold_kind_normally(&mut self, kind: GenericArg<'tcx>) -> GenericArg<'tcx> {
assert!(!self.map_missing_regions_to_empty);
kind.fold_with(self)
}
}
impl<'tcx> TypeFolder<'tcx> for ReverseMapper<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
#[instrument(skip(self), level = "debug")]
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
match *r {
// Ignore bound regions and `'static` regions that appear in the
// type, we only need to remap regions that reference lifetimes
// from the function declaration.
// This would ignore `'r` in a type like `for<'r> fn(&'r u32)`.
ty::ReLateBound(..) | ty::ReStatic => return r,
// If regions have been erased (by writeback), don't try to unerase
// them.
ty::ReErased => return r,
// The regions that we expect from borrow checking.
ty::ReEarlyBound(_) | ty::ReFree(_) | ty::ReEmpty(ty::UniverseIndex::ROOT) => {}
ty::ReEmpty(_) | ty::RePlaceholder(_) | ty::ReVar(_) => {
// All of the regions in the type should either have been
// erased by writeback, or mapped back to named regions by
// borrow checking.
bug!("unexpected region kind in opaque type: {:?}", r);
}
}
let generics = self.tcx().generics_of(self.opaque_type_def_id);
match self.map.get(&r.into()).map(|k| k.unpack()) {
Some(GenericArgKind::Lifetime(r1)) => r1,
Some(u) => panic!("region mapped to unexpected kind: {:?}", u),
None if self.map_missing_regions_to_empty => self.tcx.lifetimes.re_root_empty,
None if generics.parent.is_some() => {
if let Some(hidden_ty) = self.hidden_ty.take() {
unexpected_hidden_region_diagnostic(
self.tcx,
self.tcx.def_span(self.opaque_type_def_id),
hidden_ty,
r,
)
.emit();
}
self.tcx.lifetimes.re_root_empty
}
None => {
self.tcx
.sess
.struct_span_err(self.span, "non-defining opaque type use in defining scope")
.span_label(
self.span,
format!(
"lifetime `{}` is part of concrete type but not used in \
parameter list of the `impl Trait` type alias",
r
),
)
.emit();
self.tcx().lifetimes.re_static
}
}
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
match *ty.kind() {
ty::Closure(def_id, substs) => {
// I am a horrible monster and I pray for death. When
// we encounter a closure here, it is always a closure
// from within the function that we are currently
// type-checking -- one that is now being encapsulated
// in an opaque type. Ideally, we would
// go through the types/lifetimes that it references
// and treat them just like we would any other type,
// which means we would error out if we find any
// reference to a type/region that is not in the
// "reverse map".
//
// **However,** in the case of closures, there is a
// somewhat subtle (read: hacky) consideration. The
// problem is that our closure types currently include
// all the lifetime parameters declared on the
// enclosing function, even if they are unused by the
// closure itself. We can't readily filter them out,
// so here we replace those values with `'empty`. This
// can't really make a difference to the rest of the
// compiler; those regions are ignored for the
// outlives relation, and hence don't affect trait
// selection or auto traits, and they are erased
// during codegen.
let generics = self.tcx.generics_of(def_id);
let substs = self.tcx.mk_substs(substs.iter().enumerate().map(|(index, kind)| {
if index < generics.parent_count {
// Accommodate missing regions in the parent kinds...
self.fold_kind_mapping_missing_regions_to_empty(kind)
} else {
// ...but not elsewhere.
self.fold_kind_normally(kind)
}
}));
self.tcx.mk_closure(def_id, substs)
}
ty::Generator(def_id, substs, movability) => {
let generics = self.tcx.generics_of(def_id);
let substs = self.tcx.mk_substs(substs.iter().enumerate().map(|(index, kind)| {
if index < generics.parent_count {
// Accommodate missing regions in the parent kinds...
self.fold_kind_mapping_missing_regions_to_empty(kind)
} else {
// ...but not elsewhere.
self.fold_kind_normally(kind)
}
}));
self.tcx.mk_generator(def_id, substs, movability)
}
ty::Param(param) => {
// Look it up in the substitution list.
match self.map.get(&ty.into()).map(|k| k.unpack()) {
// Found it in the substitution list; replace with the parameter from the
// opaque type.
Some(GenericArgKind::Type(t1)) => t1,
Some(u) => panic!("type mapped to unexpected kind: {:?}", u),
None => {
debug!(?param, ?self.map);
self.tcx
.sess
.struct_span_err(
self.span,
&format!(
"type parameter `{}` is part of concrete type but not \
used in parameter list for the `impl Trait` type alias",
ty
),
)
.emit();
self.tcx().ty_error()
}
}
}
_ => ty.super_fold_with(self),
}
}
fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
trace!("checking const {:?}", ct);
// Find a const parameter
match ct.kind() {
ty::ConstKind::Param(..) => {
// Look it up in the substitution list.
match self.map.get(&ct.into()).map(|k| k.unpack()) {
// Found it in the substitution list, replace with the parameter from the
// opaque type.
Some(GenericArgKind::Const(c1)) => c1,
Some(u) => panic!("const mapped to unexpected kind: {:?}", u),
None => {
self.tcx
.sess
.struct_span_err(
self.span,
&format!(
"const parameter `{}` is part of concrete type but not \
used in parameter list for the `impl Trait` type alias",
ct
),
)
.emit();
self.tcx().const_error(ct.ty())
}
}
}
_ => ct,
}
}
}

View File

@ -37,5 +37,4 @@ extern crate smallvec;
pub mod autoderef;
pub mod infer;
pub mod opaque_types;
pub mod traits;

View File

@ -1,545 +0,0 @@
use crate::traits;
use crate::traits::error_reporting::InferCtxtExt as _;
use crate::traits::TraitEngineExt as _;
use rustc_data_structures::fx::FxHashMap;
use rustc_hir::def_id::DefId;
use rustc_hir::OpaqueTyOrigin;
use rustc_infer::infer::error_reporting::unexpected_hidden_region_diagnostic;
use rustc_infer::infer::{InferCtxt, TyCtxtInferExt as _};
use rustc_infer::traits::{Obligation, ObligationCause, TraitEngine};
use rustc_middle::ty::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
use rustc_middle::ty::subst::{GenericArg, GenericArgKind, InternalSubsts};
use rustc_middle::ty::visit::TypeVisitable;
use rustc_middle::ty::{self, OpaqueHiddenType, OpaqueTypeKey, ToPredicate, Ty, TyCtxt};
use rustc_span::Span;
pub trait InferCtxtExt<'tcx> {
fn infer_opaque_definition_from_instantiation(
&self,
opaque_type_key: OpaqueTypeKey<'tcx>,
instantiated_ty: OpaqueHiddenType<'tcx>,
origin: OpaqueTyOrigin,
) -> Ty<'tcx>;
}
impl<'a, 'tcx> InferCtxtExt<'tcx> for InferCtxt<'a, 'tcx> {
/// Given the fully resolved, instantiated type for an opaque
/// type, i.e., the value of an inference variable like C1 or C2
/// (*), computes the "definition type" for an opaque type
/// definition -- that is, the inferred value of `Foo1<'x>` or
/// `Foo2<'x>` that we would conceptually use in its definition:
/// ```ignore (illustrative)
/// type Foo1<'x> = impl Bar<'x> = AAA; // <-- this type AAA
/// type Foo2<'x> = impl Bar<'x> = BBB; // <-- or this type BBB
/// fn foo<'a, 'b>(..) -> (Foo1<'a>, Foo2<'b>) { .. }
/// ```
/// Note that these values are defined in terms of a distinct set of
/// generic parameters (`'x` instead of `'a`) from C1 or C2. The main
/// purpose of this function is to do that translation.
///
/// (*) C1 and C2 were introduced in the comments on
/// `register_member_constraints`. Read that comment for more context.
///
/// # Parameters
///
/// - `def_id`, the `impl Trait` type
/// - `substs`, the substs used to instantiate this opaque type
/// - `instantiated_ty`, the inferred type C1 -- fully resolved, lifted version of
/// `opaque_defn.concrete_ty`
#[instrument(level = "debug", skip(self))]
fn infer_opaque_definition_from_instantiation(
&self,
opaque_type_key: OpaqueTypeKey<'tcx>,
instantiated_ty: OpaqueHiddenType<'tcx>,
origin: OpaqueTyOrigin,
) -> Ty<'tcx> {
if self.is_tainted_by_errors() {
return self.tcx.ty_error();
}
let OpaqueTypeKey { def_id, substs } = opaque_type_key;
// Use substs to build up a reverse map from regions to their
// identity mappings. This is necessary because of `impl
// Trait` lifetimes are computed by replacing existing
// lifetimes with 'static and remapping only those used in the
// `impl Trait` return type, resulting in the parameters
// shifting.
let id_substs = InternalSubsts::identity_for_item(self.tcx, def_id);
debug!(?id_substs);
let map: FxHashMap<GenericArg<'tcx>, GenericArg<'tcx>> =
substs.iter().enumerate().map(|(index, subst)| (subst, id_substs[index])).collect();
debug!("map = {:#?}", map);
// Convert the type from the function into a type valid outside
// the function, by replacing invalid regions with 'static,
// after producing an error for each of them.
let definition_ty = instantiated_ty.ty.fold_with(&mut ReverseMapper::new(
self.tcx,
def_id,
map,
instantiated_ty.ty,
instantiated_ty.span,
));
debug!(?definition_ty);
if !check_opaque_type_parameter_valid(
self.tcx,
opaque_type_key,
origin,
instantiated_ty.span,
) {
return self.tcx.ty_error();
}
// Only check this for TAIT. RPIT already supports `src/test/ui/impl-trait/nested-return-type2.rs`
// on stable and we'd break that.
if let OpaqueTyOrigin::TyAlias = origin {
// This logic duplicates most of `check_opaque_meets_bounds`.
// FIXME(oli-obk): Also do region checks here and then consider removing `check_opaque_meets_bounds` entirely.
let param_env = self.tcx.param_env(def_id);
let body_id = self.tcx.local_def_id_to_hir_id(def_id.as_local().unwrap());
self.tcx.infer_ctxt().enter(move |infcx| {
// Require the hidden type to be well-formed with only the generics of the opaque type.
// Defining use functions may have more bounds than the opaque type, which is ok, as long as the
// hidden type is well formed even without those bounds.
let predicate =
ty::Binder::dummy(ty::PredicateKind::WellFormed(definition_ty.into()))
.to_predicate(infcx.tcx);
let mut fulfillment_cx = <dyn TraitEngine<'tcx>>::new(infcx.tcx);
// Require that the hidden type actually fulfills all the bounds of the opaque type, even without
// the bounds that the function supplies.
match infcx.register_hidden_type(
OpaqueTypeKey { def_id, substs: id_substs },
ObligationCause::misc(instantiated_ty.span, body_id),
param_env,
definition_ty,
origin,
) {
Ok(infer_ok) => {
for obligation in infer_ok.obligations {
fulfillment_cx.register_predicate_obligation(&infcx, obligation);
}
}
Err(err) => {
infcx
.report_mismatched_types(
&ObligationCause::misc(instantiated_ty.span, body_id),
self.tcx.mk_opaque(def_id, id_substs),
definition_ty,
err,
)
.emit();
}
}
fulfillment_cx.register_predicate_obligation(
&infcx,
Obligation::misc(instantiated_ty.span, body_id, param_env, predicate),
);
// Check that all obligations are satisfied by the implementation's
// version.
let errors = fulfillment_cx.select_all_or_error(&infcx);
let _ = infcx.inner.borrow_mut().opaque_type_storage.take_opaque_types();
if errors.is_empty() {
definition_ty
} else {
infcx.report_fulfillment_errors(&errors, None, false);
self.tcx.ty_error()
}
})
} else {
definition_ty
}
}
}
fn check_opaque_type_parameter_valid(
tcx: TyCtxt<'_>,
opaque_type_key: OpaqueTypeKey<'_>,
origin: OpaqueTyOrigin,
span: Span,
) -> bool {
match origin {
// No need to check return position impl trait (RPIT)
// because for type and const parameters they are correct
// by construction: we convert
//
// fn foo<P0..Pn>() -> impl Trait
//
// into
//
// type Foo<P0...Pn>
// fn foo<P0..Pn>() -> Foo<P0...Pn>.
//
// For lifetime parameters we convert
//
// fn foo<'l0..'ln>() -> impl Trait<'l0..'lm>
//
// into
//
// type foo::<'p0..'pn>::Foo<'q0..'qm>
// fn foo<l0..'ln>() -> foo::<'static..'static>::Foo<'l0..'lm>.
//
// which would error here on all of the `'static` args.
OpaqueTyOrigin::FnReturn(..) | OpaqueTyOrigin::AsyncFn(..) => return true,
// Check these
OpaqueTyOrigin::TyAlias => {}
}
let opaque_generics = tcx.generics_of(opaque_type_key.def_id);
let mut seen_params: FxHashMap<_, Vec<_>> = FxHashMap::default();
for (i, arg) in opaque_type_key.substs.iter().enumerate() {
let arg_is_param = match arg.unpack() {
GenericArgKind::Type(ty) => matches!(ty.kind(), ty::Param(_)),
GenericArgKind::Lifetime(lt) if lt.is_static() => {
tcx.sess
.struct_span_err(span, "non-defining opaque type use in defining scope")
.span_label(
tcx.def_span(opaque_generics.param_at(i, tcx).def_id),
"cannot use static lifetime; use a bound lifetime \
instead or remove the lifetime parameter from the \
opaque type",
)
.emit();
return false;
}
GenericArgKind::Lifetime(lt) => {
matches!(*lt, ty::ReEarlyBound(_) | ty::ReFree(_))
}
GenericArgKind::Const(ct) => matches!(ct.kind(), ty::ConstKind::Param(_)),
};
if arg_is_param {
seen_params.entry(arg).or_default().push(i);
} else {
// Prevent `fn foo() -> Foo<u32>` from being defining.
let opaque_param = opaque_generics.param_at(i, tcx);
tcx.sess
.struct_span_err(span, "non-defining opaque type use in defining scope")
.span_note(
tcx.def_span(opaque_param.def_id),
&format!(
"used non-generic {} `{}` for generic parameter",
opaque_param.kind.descr(),
arg,
),
)
.emit();
return false;
}
}
for (_, indices) in seen_params {
if indices.len() > 1 {
let descr = opaque_generics.param_at(indices[0], tcx).kind.descr();
let spans: Vec<_> = indices
.into_iter()
.map(|i| tcx.def_span(opaque_generics.param_at(i, tcx).def_id))
.collect();
tcx.sess
.struct_span_err(span, "non-defining opaque type use in defining scope")
.span_note(spans, &format!("{} used multiple times", descr))
.emit();
return false;
}
}
true
}
struct ReverseMapper<'tcx> {
tcx: TyCtxt<'tcx>,
opaque_type_def_id: DefId,
map: FxHashMap<GenericArg<'tcx>, GenericArg<'tcx>>,
map_missing_regions_to_empty: bool,
/// initially `Some`, set to `None` once error has been reported
hidden_ty: Option<Ty<'tcx>>,
/// Span of function being checked.
span: Span,
}
impl<'tcx> ReverseMapper<'tcx> {
fn new(
tcx: TyCtxt<'tcx>,
opaque_type_def_id: DefId,
map: FxHashMap<GenericArg<'tcx>, GenericArg<'tcx>>,
hidden_ty: Ty<'tcx>,
span: Span,
) -> Self {
Self {
tcx,
opaque_type_def_id,
map,
map_missing_regions_to_empty: false,
hidden_ty: Some(hidden_ty),
span,
}
}
fn fold_kind_mapping_missing_regions_to_empty(
&mut self,
kind: GenericArg<'tcx>,
) -> GenericArg<'tcx> {
assert!(!self.map_missing_regions_to_empty);
self.map_missing_regions_to_empty = true;
let kind = kind.fold_with(self);
self.map_missing_regions_to_empty = false;
kind
}
fn fold_kind_normally(&mut self, kind: GenericArg<'tcx>) -> GenericArg<'tcx> {
assert!(!self.map_missing_regions_to_empty);
kind.fold_with(self)
}
}
impl<'tcx> TypeFolder<'tcx> for ReverseMapper<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
#[instrument(skip(self), level = "debug")]
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
match *r {
// Ignore bound regions and `'static` regions that appear in the
// type, we only need to remap regions that reference lifetimes
// from the function declaration.
// This would ignore `'r` in a type like `for<'r> fn(&'r u32)`.
ty::ReLateBound(..) | ty::ReStatic => return r,
// If regions have been erased (by writeback), don't try to unerase
// them.
ty::ReErased => return r,
// The regions that we expect from borrow checking.
ty::ReEarlyBound(_) | ty::ReFree(_) | ty::ReEmpty(ty::UniverseIndex::ROOT) => {}
ty::ReEmpty(_) | ty::RePlaceholder(_) | ty::ReVar(_) => {
// All of the regions in the type should either have been
// erased by writeback, or mapped back to named regions by
// borrow checking.
bug!("unexpected region kind in opaque type: {:?}", r);
}
}
let generics = self.tcx().generics_of(self.opaque_type_def_id);
match self.map.get(&r.into()).map(|k| k.unpack()) {
Some(GenericArgKind::Lifetime(r1)) => r1,
Some(u) => panic!("region mapped to unexpected kind: {:?}", u),
None if self.map_missing_regions_to_empty => self.tcx.lifetimes.re_root_empty,
None if generics.parent.is_some() => {
if let Some(hidden_ty) = self.hidden_ty.take() {
unexpected_hidden_region_diagnostic(
self.tcx,
self.tcx.def_span(self.opaque_type_def_id),
hidden_ty,
r,
)
.emit();
}
self.tcx.lifetimes.re_root_empty
}
None => {
self.tcx
.sess
.struct_span_err(self.span, "non-defining opaque type use in defining scope")
.span_label(
self.span,
format!(
"lifetime `{}` is part of concrete type but not used in \
parameter list of the `impl Trait` type alias",
r
),
)
.emit();
self.tcx().lifetimes.re_static
}
}
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
match *ty.kind() {
ty::Closure(def_id, substs) => {
// I am a horrible monster and I pray for death. When
// we encounter a closure here, it is always a closure
// from within the function that we are currently
// type-checking -- one that is now being encapsulated
// in an opaque type. Ideally, we would
// go through the types/lifetimes that it references
// and treat them just like we would any other type,
// which means we would error out if we find any
// reference to a type/region that is not in the
// "reverse map".
//
// **However,** in the case of closures, there is a
// somewhat subtle (read: hacky) consideration. The
// problem is that our closure types currently include
// all the lifetime parameters declared on the
// enclosing function, even if they are unused by the
// closure itself. We can't readily filter them out,
// so here we replace those values with `'empty`. This
// can't really make a difference to the rest of the
// compiler; those regions are ignored for the
// outlives relation, and hence don't affect trait
// selection or auto traits, and they are erased
// during codegen.
let generics = self.tcx.generics_of(def_id);
let substs = self.tcx.mk_substs(substs.iter().enumerate().map(|(index, kind)| {
if index < generics.parent_count {
// Accommodate missing regions in the parent kinds...
self.fold_kind_mapping_missing_regions_to_empty(kind)
} else {
// ...but not elsewhere.
self.fold_kind_normally(kind)
}
}));
self.tcx.mk_closure(def_id, substs)
}
ty::Generator(def_id, substs, movability) => {
let generics = self.tcx.generics_of(def_id);
let substs = self.tcx.mk_substs(substs.iter().enumerate().map(|(index, kind)| {
if index < generics.parent_count {
// Accommodate missing regions in the parent kinds...
self.fold_kind_mapping_missing_regions_to_empty(kind)
} else {
// ...but not elsewhere.
self.fold_kind_normally(kind)
}
}));
self.tcx.mk_generator(def_id, substs, movability)
}
ty::Param(param) => {
// Look it up in the substitution list.
match self.map.get(&ty.into()).map(|k| k.unpack()) {
// Found it in the substitution list; replace with the parameter from the
// opaque type.
Some(GenericArgKind::Type(t1)) => t1,
Some(u) => panic!("type mapped to unexpected kind: {:?}", u),
None => {
debug!(?param, ?self.map);
self.tcx
.sess
.struct_span_err(
self.span,
&format!(
"type parameter `{}` is part of concrete type but not \
used in parameter list for the `impl Trait` type alias",
ty
),
)
.emit();
self.tcx().ty_error()
}
}
}
_ => ty.super_fold_with(self),
}
}
fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
trace!("checking const {:?}", ct);
// Find a const parameter
match ct.kind() {
ty::ConstKind::Param(..) => {
// Look it up in the substitution list.
match self.map.get(&ct.into()).map(|k| k.unpack()) {
// Found it in the substitution list, replace with the parameter from the
// opaque type.
Some(GenericArgKind::Const(c1)) => c1,
Some(u) => panic!("const mapped to unexpected kind: {:?}", u),
None => {
self.tcx
.sess
.struct_span_err(
self.span,
&format!(
"const parameter `{}` is part of concrete type but not \
used in parameter list for the `impl Trait` type alias",
ct
),
)
.emit();
self.tcx().const_error(ct.ty())
}
}
}
_ => ct,
}
}
}
/// Given a set of predicates that apply to an object type, returns
/// the region bounds that the (erased) `Self` type must
/// outlive. Precisely *because* the `Self` type is erased, the
/// parameter `erased_self_ty` must be supplied to indicate what type
/// has been used to represent `Self` in the predicates
/// themselves. This should really be a unique type; `FreshTy(0)` is a
/// popular choice.
///
/// N.B., in some cases, particularly around higher-ranked bounds,
/// this function returns a kind of conservative approximation.
/// That is, all regions returned by this function are definitely
/// required, but there may be other region bounds that are not
/// returned, as well as requirements like `for<'a> T: 'a`.
///
/// Requires that trait definitions have been processed so that we can
/// elaborate predicates and walk supertraits.
#[instrument(skip(tcx, predicates), level = "debug")]
pub(crate) fn required_region_bounds<'tcx>(
tcx: TyCtxt<'tcx>,
erased_self_ty: Ty<'tcx>,
predicates: impl Iterator<Item = ty::Predicate<'tcx>>,
) -> Vec<ty::Region<'tcx>> {
assert!(!erased_self_ty.has_escaping_bound_vars());
traits::elaborate_predicates(tcx, predicates)
.filter_map(|obligation| {
debug!(?obligation);
match obligation.predicate.kind().skip_binder() {
ty::PredicateKind::Projection(..)
| ty::PredicateKind::Trait(..)
| ty::PredicateKind::Subtype(..)
| ty::PredicateKind::Coerce(..)
| ty::PredicateKind::WellFormed(..)
| ty::PredicateKind::ObjectSafe(..)
| ty::PredicateKind::ClosureKind(..)
| ty::PredicateKind::RegionOutlives(..)
| ty::PredicateKind::ConstEvaluatable(..)
| ty::PredicateKind::ConstEquate(..)
| ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ref t, ref r)) => {
// Search for a bound of the form `erased_self_ty
// : 'a`, but be wary of something like `for<'a>
// erased_self_ty : 'a` (we interpret a
// higher-ranked bound like that as 'static,
// though at present the code in `fulfill.rs`
// considers such bounds to be unsatisfiable, so
// it's kind of a moot point since you could never
// construct such an object, but this seems
// correct even if that code changes).
if t == &erased_self_ty && !r.has_escaping_bound_vars() {
Some(*r)
} else {
None
}
}
}
})
.collect()
}

View File

@ -1,5 +1,4 @@
use crate::infer::InferCtxt;
use crate::opaque_types::required_region_bounds;
use crate::traits;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
@ -810,3 +809,63 @@ pub fn object_region_bounds<'tcx>(
required_region_bounds(tcx, open_ty, predicates)
}
/// Given a set of predicates that apply to an object type, returns
/// the region bounds that the (erased) `Self` type must
/// outlive. Precisely *because* the `Self` type is erased, the
/// parameter `erased_self_ty` must be supplied to indicate what type
/// has been used to represent `Self` in the predicates
/// themselves. This should really be a unique type; `FreshTy(0)` is a
/// popular choice.
///
/// N.B., in some cases, particularly around higher-ranked bounds,
/// this function returns a kind of conservative approximation.
/// That is, all regions returned by this function are definitely
/// required, but there may be other region bounds that are not
/// returned, as well as requirements like `for<'a> T: 'a`.
///
/// Requires that trait definitions have been processed so that we can
/// elaborate predicates and walk supertraits.
#[instrument(skip(tcx, predicates), level = "debug")]
pub(crate) fn required_region_bounds<'tcx>(
tcx: TyCtxt<'tcx>,
erased_self_ty: Ty<'tcx>,
predicates: impl Iterator<Item = ty::Predicate<'tcx>>,
) -> Vec<ty::Region<'tcx>> {
assert!(!erased_self_ty.has_escaping_bound_vars());
traits::elaborate_predicates(tcx, predicates)
.filter_map(|obligation| {
debug!(?obligation);
match obligation.predicate.kind().skip_binder() {
ty::PredicateKind::Projection(..)
| ty::PredicateKind::Trait(..)
| ty::PredicateKind::Subtype(..)
| ty::PredicateKind::Coerce(..)
| ty::PredicateKind::WellFormed(..)
| ty::PredicateKind::ObjectSafe(..)
| ty::PredicateKind::ClosureKind(..)
| ty::PredicateKind::RegionOutlives(..)
| ty::PredicateKind::ConstEvaluatable(..)
| ty::PredicateKind::ConstEquate(..)
| ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(ref t, ref r)) => {
// Search for a bound of the form `erased_self_ty
// : 'a`, but be wary of something like `for<'a>
// erased_self_ty : 'a` (we interpret a
// higher-ranked bound like that as 'static,
// though at present the code in `fulfill.rs`
// considers such bounds to be unsatisfiable, so
// it's kind of a moot point since you could never
// construct such an object, but this seems
// correct even if that code changes).
if t == &erased_self_ty && !r.has_escaping_bound_vars() {
Some(*r)
} else {
None
}
}
}
})
.collect()
}