Eliminate TokenTreeOrTokenTreeSlice.

As its name suggests, `TokenTreeOrTokenTreeSlice` is either a single
`TokenTree` or a slice of them. It has methods `len` and `get_tt` that
let it be treated much like an ordinary slice. The reason it isn't an
ordinary slice is that for `TokenTree::Delimited` the open and close
delimiters are represented implicitly, and when they are needed they are
constructed on the fly with `Delimited::{open,close}_tt`, rather than
being present in memory.

This commit changes `Delimited` so the open and close delimiters are
represented explicitly. As a result, `TokenTreeOrTokenTreeSlice` is no
longer needed and `MatcherPos` and `MatcherTtFrame` can just use an
ordinary slice. `TokenTree::{len,get_tt}` are also removed, because they
were only needed to support `TokenTreeOrTokenTreeSlice`.

The change makes the code shorter and a little bit faster on benchmarks
that use macro expansion heavily, partly because `MatcherPos` is a lot
smaller (less data to `memcpy`) and partly because ordinary slice
operations are faster than `TokenTreeOrTokenTreeSlice::{len,get_tt}`.
This commit is contained in:
Nicholas Nethercote 2022-03-19 16:20:07 +11:00
parent 754dc8e66f
commit 31df680789
6 changed files with 146 additions and 173 deletions

View File

@ -17,23 +17,48 @@ use rustc_data_structures::sync::Lrc;
use rustc_span::symbol::Ident;
use rustc_span::Span;
/// Contains the sub-token-trees of a "delimited" token tree, such as the contents of `(`. Note
/// that the delimiter itself might be `NoDelim`.
/// Contains the sub-token-trees of a "delimited" token tree such as `(a b c)`. The delimiter itself
/// might be `NoDelim`.
#[derive(Clone, PartialEq, Encodable, Decodable, Debug)]
struct Delimited {
delim: token::DelimToken,
tts: Vec<TokenTree>,
/// Note: This contains the opening and closing delimiters tokens (e.g. `(` and `)`). Note that
/// these could be `NoDelim`. These token kinds must match `delim`, and the methods below
/// debug_assert this.
all_tts: Vec<TokenTree>,
}
impl Delimited {
/// Returns a `self::TokenTree` with a `Span` corresponding to the opening delimiter.
fn open_tt(&self, span: DelimSpan) -> TokenTree {
TokenTree::token(token::OpenDelim(self.delim), span.open)
/// Returns a `self::TokenTree` with a `Span` corresponding to the opening delimiter. Panics if
/// the delimiter is `NoDelim`.
fn open_tt(&self) -> &TokenTree {
let tt = self.all_tts.first().unwrap();
debug_assert!(matches!(
tt,
&TokenTree::Token(token::Token { kind: token::OpenDelim(d), .. }) if d == self.delim
));
tt
}
/// Returns a `self::TokenTree` with a `Span` corresponding to the closing delimiter.
fn close_tt(&self, span: DelimSpan) -> TokenTree {
TokenTree::token(token::CloseDelim(self.delim), span.close)
/// Returns a `self::TokenTree` with a `Span` corresponding to the closing delimiter. Panics if
/// the delimeter is `NoDelim`.
fn close_tt(&self) -> &TokenTree {
let tt = self.all_tts.last().unwrap();
debug_assert!(matches!(
tt,
&TokenTree::Token(token::Token { kind: token::CloseDelim(d), .. }) if d == self.delim
));
tt
}
/// Returns the tts excluding the outer delimiters.
///
/// FIXME: #67062 has details about why this is sub-optimal.
fn inner_tts(&self) -> &[TokenTree] {
// These functions are called for the assertions within them.
let _open_tt = self.open_tt();
let _close_tt = self.close_tt();
&self.all_tts[1..self.all_tts.len() - 1]
}
}
@ -73,35 +98,24 @@ enum KleeneOp {
ZeroOrOne,
}
/// Similar to `tokenstream::TokenTree`, except that `$i`, `$i:ident`, `$(...)`,
/// and `${...}` are "first-class" token trees. Useful for parsing macros.
/// Similar to `tokenstream::TokenTree`, except that `Sequence`, `MetaVar`, `MetaVarDecl`, and
/// `MetaVarExpr` are "first-class" token trees. Useful for parsing macros.
#[derive(Debug, Clone, PartialEq, Encodable, Decodable)]
enum TokenTree {
Token(Token),
/// A delimited sequence, e.g. `($e:expr)` (RHS) or `{ $e }` (LHS).
Delimited(DelimSpan, Lrc<Delimited>),
/// A kleene-style repetition sequence
/// A kleene-style repetition sequence, e.g. `$($e:expr)*` (RHS) or `$($e),*` (LHS).
Sequence(DelimSpan, Lrc<SequenceRepetition>),
/// e.g., `$var`
/// e.g., `$var`.
MetaVar(Span, Ident),
/// e.g., `$var:expr`. This is only used in the left hand side of MBE macros.
/// e.g., `$var:expr`. Only appears on the LHS.
MetaVarDecl(Span, Ident /* name to bind */, Option<NonterminalKind>),
/// A meta-variable expression inside `${...}`
/// A meta-variable expression inside `${...}`.
MetaVarExpr(DelimSpan, MetaVarExpr),
}
impl TokenTree {
/// Return the number of tokens in the tree.
fn len(&self) -> usize {
match *self {
TokenTree::Delimited(_, ref delimed) => match delimed.delim {
token::NoDelim => delimed.tts.len(),
_ => delimed.tts.len() + 2,
},
TokenTree::Sequence(_, ref seq) => seq.tts.len(),
_ => 0,
}
}
/// Returns `true` if the given token tree is delimited.
fn is_delimited(&self) -> bool {
matches!(*self, TokenTree::Delimited(..))
@ -115,26 +129,6 @@ impl TokenTree {
}
}
/// Gets the `index`-th sub-token-tree. This only makes sense for delimited trees and sequences.
fn get_tt(&self, index: usize) -> TokenTree {
match (self, index) {
(&TokenTree::Delimited(_, ref delimed), _) if delimed.delim == token::NoDelim => {
delimed.tts[index].clone()
}
(&TokenTree::Delimited(span, ref delimed), _) => {
if index == 0 {
return delimed.open_tt(span);
}
if index == delimed.tts.len() + 1 {
return delimed.close_tt(span);
}
delimed.tts[index - 1].clone()
}
(&TokenTree::Sequence(_, ref seq), _) => seq.tts[index].clone(),
_ => panic!("Cannot expand a token tree"),
}
}
/// Retrieves the `TokenTree`'s span.
fn span(&self) -> Span {
match *self {

View File

@ -281,7 +281,7 @@ fn check_binders(
// `MetaVarExpr` can not appear in the LHS of a macro arm
TokenTree::MetaVarExpr(..) => {}
TokenTree::Delimited(_, ref del) => {
for tt in &del.tts {
for tt in del.inner_tts() {
check_binders(sess, node_id, tt, macros, binders, ops, valid);
}
}
@ -344,7 +344,7 @@ fn check_occurrences(
check_ops_is_prefix(sess, node_id, macros, binders, ops, dl.entire(), name);
}
TokenTree::Delimited(_, ref del) => {
check_nested_occurrences(sess, node_id, &del.tts, macros, binders, ops, valid);
check_nested_occurrences(sess, node_id, del.inner_tts(), macros, binders, ops, valid);
}
TokenTree::Sequence(_, ref seq) => {
let ops = ops.push(seq.kleene);
@ -431,14 +431,20 @@ fn check_nested_occurrences(
{
let macro_rules = state == NestedMacroState::MacroRulesNotName;
state = NestedMacroState::Empty;
let rest =
check_nested_macro(sess, node_id, macro_rules, &del.tts, &nested_macros, valid);
let rest = check_nested_macro(
sess,
node_id,
macro_rules,
del.inner_tts(),
&nested_macros,
valid,
);
// If we did not check the whole macro definition, then check the rest as if outside
// the macro definition.
check_nested_occurrences(
sess,
node_id,
&del.tts[rest..],
&del.inner_tts()[rest..],
macros,
binders,
ops,

View File

@ -72,9 +72,8 @@
crate use NamedMatch::*;
crate use ParseResult::*;
use TokenTreeOrTokenTreeSlice::*;
use crate::mbe::{self, DelimSpan, SequenceRepetition, TokenTree};
use crate::mbe::{self, SequenceRepetition, TokenTree};
use rustc_ast::token::{self, DocComment, Nonterminal, Token};
use rustc_parse::parser::Parser;
@ -90,35 +89,6 @@ use std::borrow::Cow;
use std::collections::hash_map::Entry::{Occupied, Vacant};
use std::mem;
// To avoid costly uniqueness checks, we require that `MatchSeq` always has a nonempty body.
/// Either a slice of token trees or a single one. This is used as the representation of the
/// token trees that make up a matcher.
#[derive(Clone)]
enum TokenTreeOrTokenTreeSlice<'tt> {
Tt(TokenTree),
TtSlice(&'tt [TokenTree]),
}
impl<'tt> TokenTreeOrTokenTreeSlice<'tt> {
/// Returns the number of constituent top-level token trees of `self` (top-level in that it
/// will not recursively descend into subtrees).
fn len(&self) -> usize {
match *self {
TtSlice(ref v) => v.len(),
Tt(ref tt) => tt.len(),
}
}
/// The `index`-th token tree of `self`.
fn get_tt(&self, index: usize) -> TokenTree {
match *self {
TtSlice(ref v) => v[index].clone(),
Tt(ref tt) => tt.get_tt(index),
}
}
}
/// An unzipping of `TokenTree`s... see the `stack` field of `MatcherPos`.
///
/// This is used by `parse_tt_inner` to keep track of delimited submatchers that we have
@ -126,7 +96,7 @@ impl<'tt> TokenTreeOrTokenTreeSlice<'tt> {
#[derive(Clone)]
struct MatcherTtFrame<'tt> {
/// The "parent" matcher that we are descending into.
elts: TokenTreeOrTokenTreeSlice<'tt>,
elts: &'tt [TokenTree],
/// The position of the "dot" in `elts` at the time we descended.
idx: usize,
}
@ -138,7 +108,7 @@ type NamedMatchVec = SmallVec<[NamedMatch; 4]>;
#[derive(Clone)]
struct MatcherPos<'tt> {
/// The token or slice of tokens that make up the matcher. `elts` is short for "elements".
top_elts: TokenTreeOrTokenTreeSlice<'tt>,
top_elts: &'tt [TokenTree],
/// The position of the "dot" in this matcher
idx: usize,
@ -183,7 +153,7 @@ struct MatcherPos<'tt> {
// This type is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
rustc_data_structures::static_assert_size!(MatcherPos<'_>, 232);
rustc_data_structures::static_assert_size!(MatcherPos<'_>, 136);
impl<'tt> MatcherPos<'tt> {
/// `len` `Vec`s (initially shared and empty) that will store matches of metavars.
@ -203,7 +173,7 @@ impl<'tt> MatcherPos<'tt> {
let match_idx_hi = count_names(ms);
MatcherPos {
// Start with the top level matcher given to us.
top_elts: TtSlice(ms),
top_elts: ms,
// The "dot" is before the first token of the matcher.
idx: 0,
@ -224,9 +194,9 @@ impl<'tt> MatcherPos<'tt> {
}
}
fn repetition(up: Box<MatcherPos<'tt>>, sp: DelimSpan, seq: Lrc<SequenceRepetition>) -> Self {
fn repetition(up: Box<MatcherPos<'tt>>, seq: &'tt SequenceRepetition) -> Self {
MatcherPos {
stack: smallvec![],
top_elts: &seq.tts,
idx: 0,
matches: Self::create_matches(up.matches.len()),
match_lo: up.match_cur,
@ -237,7 +207,7 @@ impl<'tt> MatcherPos<'tt> {
sep: seq.separator.clone(),
seq_op: seq.kleene.op,
}),
top_elts: Tt(TokenTree::Sequence(sp, seq)),
stack: smallvec![],
}
}
@ -288,8 +258,8 @@ crate type NamedParseResult = ParseResult<FxHashMap<MacroRulesNormalizedIdent, N
pub(super) fn count_names(ms: &[TokenTree]) -> usize {
ms.iter().fold(0, |count, elt| {
count
+ match *elt {
TokenTree::Delimited(_, ref delim) => count_names(&delim.tts),
+ match elt {
TokenTree::Delimited(_, delim) => count_names(delim.inner_tts()),
TokenTree::MetaVar(..) => 0,
TokenTree::MetaVarDecl(..) => 1,
// Panicking here would abort execution because `parse_tree` makes use of this
@ -298,7 +268,7 @@ pub(super) fn count_names(ms: &[TokenTree]) -> usize {
// `0` is still returned to inform that no meta-variable was found. `Meta-variables
// != Meta-variable expressions`
TokenTree::MetaVarExpr(..) => 0,
TokenTree::Sequence(_, ref seq) => seq.num_captures,
TokenTree::Sequence(_, seq) => seq.num_captures,
TokenTree::Token(..) => 0,
}
})
@ -382,7 +352,7 @@ fn nameize<I: Iterator<Item = NamedMatch>>(
}
}
TokenTree::Delimited(_, ref delim) => {
for next_m in &delim.tts {
for next_m in delim.inner_tts() {
n_rec(sess, next_m, res.by_ref(), ret_val)?;
}
}
@ -446,8 +416,8 @@ pub struct TtParser<'tt> {
}
impl<'tt> TtParser<'tt> {
pub(super) fn new(macro_name: Ident) -> Self {
Self { macro_name, cur_items: vec![], next_items: vec![], bb_items: vec![] }
pub(super) fn new(macro_name: Ident) -> TtParser<'tt> {
TtParser { macro_name, cur_items: vec![], next_items: vec![], bb_items: vec![] }
}
/// Process the matcher positions of `cur_items` until it is empty. In the process, this will
@ -492,8 +462,8 @@ impl<'tt> TtParser<'tt> {
if idx < len {
// We are in the middle of a matcher. Compare the matcher's current tt against
// `token`.
match item.top_elts.get_tt(idx) {
TokenTree::Sequence(sp, seq) => {
match &item.top_elts[idx] {
TokenTree::Sequence(_sp, seq) => {
let op = seq.kleene.op;
if op == mbe::KleeneOp::ZeroOrMore || op == mbe::KleeneOp::ZeroOrOne {
// Allow for the possibility of zero matches of this sequence.
@ -507,17 +477,17 @@ impl<'tt> TtParser<'tt> {
}
// Allow for the possibility of one or more matches of this sequence.
self.cur_items.push(box MatcherPos::repetition(item, sp, seq));
self.cur_items.push(box MatcherPos::repetition(item, &seq));
}
TokenTree::MetaVarDecl(span, _, None) => {
&TokenTree::MetaVarDecl(span, _, None) => {
// E.g. `$e` instead of `$e:expr`.
if sess.missing_fragment_specifiers.borrow_mut().remove(&span).is_some() {
return Some(Error(span, "missing fragment specifier".to_string()));
}
}
TokenTree::MetaVarDecl(_, _, Some(kind)) => {
&TokenTree::MetaVarDecl(_, _, Some(kind)) => {
// Built-in nonterminals never start with these tokens, so we can eliminate
// them from consideration.
//
@ -528,13 +498,14 @@ impl<'tt> TtParser<'tt> {
}
}
seq @ TokenTree::Delimited(..) => {
TokenTree::Delimited(_, delimited) => {
// To descend into a delimited submatcher, we push the current matcher onto
// a stack and push a new item containing the submatcher onto `cur_items`.
//
// At the beginning of the loop, if we reach the end of the delimited
// submatcher, we pop the stack to backtrack out of the descent.
let lower_elts = mem::replace(&mut item.top_elts, Tt(seq));
// submatcher, we pop the stack to backtrack out of the descent. Note that
// we use `all_tts` to include the open and close delimiter tokens.
let lower_elts = mem::replace(&mut item.top_elts, &delimited.all_tts);
let idx = item.idx;
item.stack.push(MatcherTtFrame { elts: lower_elts, idx });
item.idx = 0;
@ -560,7 +531,6 @@ impl<'tt> TtParser<'tt> {
} else if let Some(repetition) = &item.repetition {
// We are past the end of a repetition.
debug_assert!(idx <= len + 1);
debug_assert!(matches!(item.top_elts, Tt(TokenTree::Sequence(..))));
if idx == len {
// Add all matches from the sequence to `up`, and move the "dot" past the
@ -678,9 +648,7 @@ impl<'tt> TtParser<'tt> {
(0, 1) => {
// We need to call the black-box parser to get some nonterminal.
let mut item = self.bb_items.pop().unwrap();
if let TokenTree::MetaVarDecl(span, _, Some(kind)) =
item.top_elts.get_tt(item.idx)
{
if let TokenTree::MetaVarDecl(span, _, Some(kind)) = item.top_elts[item.idx] {
let match_cur = item.match_cur;
// We use the span of the metavariable declaration to determine any
// edition-specific matching behavior for non-terminals.
@ -720,7 +688,7 @@ impl<'tt> TtParser<'tt> {
let nts = self
.bb_items
.iter()
.map(|item| match item.top_elts.get_tt(item.idx) {
.map(|item| match item.top_elts[item.idx] {
TokenTree::MetaVarDecl(_, bind, Some(kind)) => {
format!("{} ('{}')", kind, bind)
}

View File

@ -203,15 +203,15 @@ fn trace_macros_note(cx_expansions: &mut FxHashMap<Span, Vec<String>>, sp: Span,
}
/// Given `lhses` and `rhses`, this is the new macro we create
fn generic_extension<'cx>(
fn generic_extension<'cx, 'tt>(
cx: &'cx mut ExtCtxt<'_>,
sp: Span,
def_span: Span,
name: Ident,
transparency: Transparency,
arg: TokenStream,
lhses: &[mbe::TokenTree],
rhses: &[mbe::TokenTree],
lhses: &'tt [mbe::TokenTree],
rhses: &'tt [mbe::TokenTree],
is_local: bool,
) -> Box<dyn MacResult + 'cx> {
let sess = &cx.sess.parse_sess;
@ -245,31 +245,30 @@ fn generic_extension<'cx>(
// this situation.)
let parser = parser_from_cx(sess, arg.clone());
// A matcher is always delimited, but the delimiters are ignored.
let delimited_inner_tts = |tt: &'tt mbe::TokenTree| -> &'tt [mbe::TokenTree] {
match tt {
mbe::TokenTree::Delimited(_, delimited) => delimited.inner_tts(),
_ => cx.span_bug(sp, "malformed macro lhs"),
}
};
// Try each arm's matchers.
let mut tt_parser = TtParser::new(name);
for (i, lhs) in lhses.iter().enumerate() {
// try each arm's matchers
let lhs_tt = match *lhs {
mbe::TokenTree::Delimited(_, ref delim) => &delim.tts,
_ => cx.span_bug(sp, "malformed macro lhs"),
};
// Take a snapshot of the state of pre-expansion gating at this point.
// This is used so that if a matcher is not `Success(..)`ful,
// then the spans which became gated when parsing the unsuccessful matcher
// are not recorded. On the first `Success(..)`ful matcher, the spans are merged.
let mut gated_spans_snapshot = mem::take(&mut *sess.gated_spans.spans.borrow_mut());
match tt_parser.parse_tt(&mut Cow::Borrowed(&parser), lhs_tt) {
match tt_parser.parse_tt(&mut Cow::Borrowed(&parser), delimited_inner_tts(lhs)) {
Success(named_matches) => {
// The matcher was `Success(..)`ful.
// Merge the gated spans from parsing the matcher with the pre-existing ones.
sess.gated_spans.merge(gated_spans_snapshot);
let rhs = match rhses[i] {
// ignore delimiters
mbe::TokenTree::Delimited(_, ref delimed) => delimed.tts.clone(),
_ => cx.span_bug(sp, "malformed macro rhs"),
};
let rhs = delimited_inner_tts(&rhses[i]).to_vec().clone();
let arm_span = rhses[i].span();
let rhs_spans = rhs.iter().map(|t| t.span()).collect::<Vec<_>>();
@ -347,14 +346,10 @@ fn generic_extension<'cx>(
// Check whether there's a missing comma in this macro call, like `println!("{}" a);`
if let Some((arg, comma_span)) = arg.add_comma() {
for lhs in lhses {
// try each arm's matchers
let lhs_tt = match *lhs {
mbe::TokenTree::Delimited(_, ref delim) => &delim.tts,
_ => continue,
};
if let Success(_) =
tt_parser.parse_tt(&mut Cow::Borrowed(&parser_from_cx(sess, arg.clone())), lhs_tt)
{
if let Success(_) = tt_parser.parse_tt(
&mut Cow::Borrowed(&parser_from_cx(sess, arg.clone())),
delimited_inner_tts(lhs),
) {
if comma_span.is_dummy() {
err.note("you might be missing a comma");
} else {
@ -477,16 +472,17 @@ pub fn compile_declarative_macro(
.map(|m| {
if let MatchedNonterminal(ref nt) = *m {
if let NtTT(ref tt) = **nt {
let tt = mbe::quoted::parse(
let mut tts = vec![];
mbe::quoted::parse(
tt.clone().into(),
true,
&sess.parse_sess,
def.id,
features,
edition,
)
.pop()
.unwrap();
&mut tts,
);
let tt = tts.pop().unwrap();
valid &= check_lhs_nt_follows(&sess.parse_sess, features, &def, &tt);
return tt;
}
@ -503,16 +499,17 @@ pub fn compile_declarative_macro(
.map(|m| {
if let MatchedNonterminal(ref nt) = *m {
if let NtTT(ref tt) = **nt {
return mbe::quoted::parse(
let mut tts = vec![];
mbe::quoted::parse(
tt.clone().into(),
false,
&sess.parse_sess,
def.id,
features,
edition,
)
.pop()
.unwrap();
&mut tts,
);
return tts.pop().unwrap();
}
}
sess.parse_sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs")
@ -564,8 +561,8 @@ fn check_lhs_nt_follows(
) -> bool {
// lhs is going to be like TokenTree::Delimited(...), where the
// entire lhs is those tts. Or, it can be a "bare sequence", not wrapped in parens.
if let mbe::TokenTree::Delimited(_, ref tts) = *lhs {
check_matcher(sess, features, def, &tts.tts)
if let mbe::TokenTree::Delimited(_, delimited) = lhs {
check_matcher(sess, features, def, delimited.inner_tts())
} else {
let msg = "invalid macro matcher; matchers must be contained in balanced delimiters";
sess.span_diagnostic.span_err(lhs.span(), msg);
@ -586,7 +583,7 @@ fn check_lhs_no_empty_seq(sess: &ParseSess, tts: &[mbe::TokenTree]) -> bool {
| TokenTree::MetaVarDecl(..)
| TokenTree::MetaVarExpr(..) => (),
TokenTree::Delimited(_, ref del) => {
if !check_lhs_no_empty_seq(sess, &del.tts) {
if !check_lhs_no_empty_seq(sess, del.inner_tts()) {
return false;
}
}
@ -681,9 +678,9 @@ impl FirstSets {
| TokenTree::MetaVarExpr(..) => {
first.replace_with(tt.clone());
}
TokenTree::Delimited(span, ref delimited) => {
build_recur(sets, &delimited.tts);
first.replace_with(delimited.open_tt(span));
TokenTree::Delimited(_span, ref delimited) => {
build_recur(sets, delimited.inner_tts());
first.replace_with(delimited.open_tt().clone());
}
TokenTree::Sequence(sp, ref seq_rep) => {
let subfirst = build_recur(sets, &seq_rep.tts);
@ -747,8 +744,8 @@ impl FirstSets {
first.add_one(tt.clone());
return first;
}
TokenTree::Delimited(span, ref delimited) => {
first.add_one(delimited.open_tt(span));
TokenTree::Delimited(_span, ref delimited) => {
first.add_one(delimited.open_tt().clone());
return first;
}
TokenTree::Sequence(sp, ref seq_rep) => {
@ -934,9 +931,9 @@ fn check_matcher_core(
suffix_first = build_suffix_first();
}
}
TokenTree::Delimited(span, ref d) => {
let my_suffix = TokenSet::singleton(d.close_tt(span));
check_matcher_core(sess, features, def, first_sets, &d.tts, &my_suffix);
TokenTree::Delimited(_span, ref d) => {
let my_suffix = TokenSet::singleton(d.close_tt().clone());
check_matcher_core(sess, features, def, first_sets, d.inner_tts(), &my_suffix);
// don't track non NT tokens
last.replace_with_irrelevant();

View File

@ -45,10 +45,8 @@ pub(super) fn parse(
node_id: NodeId,
features: &Features,
edition: Edition,
) -> Vec<TokenTree> {
// Will contain the final collection of `self::TokenTree`
let mut result = Vec::new();
result: &mut Vec<TokenTree>,
) {
// For each token tree in `input`, parse the token into a `self::TokenTree`, consuming
// additional trees if need be.
let mut trees = input.trees();
@ -115,7 +113,6 @@ pub(super) fn parse(
_ => result.push(tree),
}
}
result
}
/// Asks for the `macro_metavar_expr` feature if it is not already declared
@ -208,7 +205,8 @@ fn parse_tree(
// If we didn't find a metavar expression above, then we must have a
// repetition sequence in the macro (e.g. `$(pat)*`). Parse the
// contents of the sequence itself
let sequence = parse(tts, parsing_patterns, sess, node_id, features, edition);
let mut sequence = vec![];
parse(tts, parsing_patterns, sess, node_id, features, edition, &mut sequence);
// Get the Kleene operator and optional separator
let (separator, kleene) =
parse_sep_and_kleene_op(&mut trees, delim_span.entire(), sess);
@ -225,8 +223,8 @@ fn parse_tree(
)
}
// `tree` is followed by an `ident`. This could be `$meta_var` or the `$crate` special
// metavariable that names the crate of the invocation.
// `tree` is followed by an `ident`. This could be `$meta_var` or the `$crate`
// special metavariable that names the crate of the invocation.
Some(tokenstream::TokenTree::Token(token)) if token.is_ident() => {
let (ident, is_raw) = token.ident().unwrap();
let span = ident.span.with_lo(span.lo());
@ -270,13 +268,15 @@ fn parse_tree(
// `tree` is the beginning of a delimited set of tokens (e.g., `(` or `{`). We need to
// descend into the delimited set and further parse it.
tokenstream::TokenTree::Delimited(span, delim, tts) => TokenTree::Delimited(
span,
Lrc::new(Delimited {
delim,
tts: parse(tts, parsing_patterns, sess, node_id, features, edition),
}),
),
tokenstream::TokenTree::Delimited(span, delim, tts) => {
let mut all_tts = vec![];
// Add the explicit open and close delimiters, which
// `tokenstream::TokenTree::Delimited` lacks.
all_tts.push(TokenTree::token(token::OpenDelim(delim), span.open));
parse(tts, parsing_patterns, sess, node_id, features, edition, &mut all_tts);
all_tts.push(TokenTree::token(token::CloseDelim(delim), span.close));
TokenTree::Delimited(span, Lrc::new(Delimited { delim, all_tts }))
}
}
}

View File

@ -10,7 +10,7 @@ use rustc_errors::{pluralize, PResult};
use rustc_errors::{DiagnosticBuilder, ErrorGuaranteed};
use rustc_span::hygiene::{LocalExpnId, Transparency};
use rustc_span::symbol::{sym, Ident, MacroRulesNormalizedIdent};
use rustc_span::Span;
use rustc_span::{Span, DUMMY_SP};
use smallvec::{smallvec, SmallVec};
use std::mem;
@ -34,8 +34,14 @@ enum Frame {
impl Frame {
/// Construct a new frame around the delimited set of tokens.
fn new(tts: Vec<mbe::TokenTree>) -> Frame {
let forest = Lrc::new(mbe::Delimited { delim: token::NoDelim, tts });
fn new(mut tts: Vec<mbe::TokenTree>) -> Frame {
// Need to add empty delimeters.
let open_tt = mbe::TokenTree::token(token::OpenDelim(token::NoDelim), DUMMY_SP);
let close_tt = mbe::TokenTree::token(token::CloseDelim(token::NoDelim), DUMMY_SP);
tts.insert(0, open_tt);
tts.push(close_tt);
let forest = Lrc::new(mbe::Delimited { delim: token::NoDelim, all_tts: tts });
Frame::Delimited { forest, idx: 0, span: DelimSpan::dummy() }
}
}
@ -46,12 +52,14 @@ impl Iterator for Frame {
fn next(&mut self) -> Option<mbe::TokenTree> {
match *self {
Frame::Delimited { ref forest, ref mut idx, .. } => {
let res = forest.inner_tts().get(*idx).cloned();
*idx += 1;
forest.tts.get(*idx - 1).cloned()
res
}
Frame::Sequence { ref forest, ref mut idx, .. } => {
let res = forest.tts.get(*idx).cloned();
*idx += 1;
forest.tts.get(*idx - 1).cloned()
res
}
}
}
@ -376,8 +384,8 @@ fn lockstep_iter_size(
) -> LockstepIterSize {
use mbe::TokenTree;
match *tree {
TokenTree::Delimited(_, ref delimed) => {
delimed.tts.iter().fold(LockstepIterSize::Unconstrained, |size, tt| {
TokenTree::Delimited(_, ref delimited) => {
delimited.inner_tts().iter().fold(LockstepIterSize::Unconstrained, |size, tt| {
size.with(lockstep_iter_size(tt, interpolations, repeats))
})
}