From 281002d42c3465319181a0af50d7068935477be2 Mon Sep 17 00:00:00 2001
From: Nadrieril <nadrieril+git@gmail.com>
Date: Sun, 10 Dec 2023 20:42:30 +0100
Subject: [PATCH] Extract exhaustiveness into its own crate

---
 Cargo.lock                                    |  22 +
 compiler/rustc_driver_impl/Cargo.toml         |   1 +
 compiler/rustc_driver_impl/src/lib.rs         |   1 +
 compiler/rustc_mir_build/Cargo.toml           |   1 +
 compiler/rustc_mir_build/messages.ftl         |  20 -
 compiler/rustc_mir_build/src/errors.rs        |  95 +--
 .../src/thir/pattern/check_match.rs           |   6 +-
 .../rustc_mir_build/src/thir/pattern/mod.rs   |   3 -
 compiler/rustc_pattern_analysis/Cargo.toml    |  22 +
 compiler/rustc_pattern_analysis/messages.ftl  |  19 +
 .../src/constructor.rs}                       | 789 +-----------------
 compiler/rustc_pattern_analysis/src/errors.rs |  95 +++
 compiler/rustc_pattern_analysis/src/lib.rs    |  13 +
 compiler/rustc_pattern_analysis/src/pat.rs    | 744 +++++++++++++++++
 .../src}/usefulness.rs                        |  50 +-
 15 files changed, 981 insertions(+), 900 deletions(-)
 create mode 100644 compiler/rustc_pattern_analysis/Cargo.toml
 create mode 100644 compiler/rustc_pattern_analysis/messages.ftl
 rename compiler/{rustc_mir_build/src/thir/pattern/deconstruct_pat.rs => rustc_pattern_analysis/src/constructor.rs} (59%)
 create mode 100644 compiler/rustc_pattern_analysis/src/errors.rs
 create mode 100644 compiler/rustc_pattern_analysis/src/lib.rs
 create mode 100644 compiler/rustc_pattern_analysis/src/pat.rs
 rename compiler/{rustc_mir_build/src/thir/pattern => rustc_pattern_analysis/src}/usefulness.rs (98%)

diff --git a/Cargo.lock b/Cargo.lock
index 6b9bb721e01..9f82b2e1640 100644
--- a/Cargo.lock
+++ b/Cargo.lock
@@ -3756,6 +3756,7 @@ dependencies = [
  "rustc_monomorphize",
  "rustc_parse",
  "rustc_passes",
+ "rustc_pattern_analysis",
  "rustc_privacy",
  "rustc_query_system",
  "rustc_resolve",
@@ -4229,6 +4230,7 @@ dependencies = [
  "rustc_infer",
  "rustc_macros",
  "rustc_middle",
+ "rustc_pattern_analysis",
  "rustc_session",
  "rustc_span",
  "rustc_target",
@@ -4364,6 +4366,26 @@ dependencies = [
  "tracing",
 ]
 
+[[package]]
+name = "rustc_pattern_analysis"
+version = "0.0.0"
+dependencies = [
+ "rustc_apfloat",
+ "rustc_arena",
+ "rustc_data_structures",
+ "rustc_errors",
+ "rustc_fluent_macro",
+ "rustc_hir",
+ "rustc_index",
+ "rustc_macros",
+ "rustc_middle",
+ "rustc_session",
+ "rustc_span",
+ "rustc_target",
+ "smallvec",
+ "tracing",
+]
+
 [[package]]
 name = "rustc_privacy"
 version = "0.0.0"
diff --git a/compiler/rustc_driver_impl/Cargo.toml b/compiler/rustc_driver_impl/Cargo.toml
index f2a8c54b6d5..49042984553 100644
--- a/compiler/rustc_driver_impl/Cargo.toml
+++ b/compiler/rustc_driver_impl/Cargo.toml
@@ -38,6 +38,7 @@ rustc_mir_transform = { path = "../rustc_mir_transform" }
 rustc_monomorphize = { path = "../rustc_monomorphize" }
 rustc_parse = { path = "../rustc_parse" }
 rustc_passes = { path = "../rustc_passes" }
+rustc_pattern_analysis = { path = "../rustc_pattern_analysis" }
 rustc_privacy = { path = "../rustc_privacy" }
 rustc_query_system = { path = "../rustc_query_system" }
 rustc_resolve = { path = "../rustc_resolve" }
diff --git a/compiler/rustc_driver_impl/src/lib.rs b/compiler/rustc_driver_impl/src/lib.rs
index 1f60400b513..8b7a4dbff9d 100644
--- a/compiler/rustc_driver_impl/src/lib.rs
+++ b/compiler/rustc_driver_impl/src/lib.rs
@@ -128,6 +128,7 @@ pub static DEFAULT_LOCALE_RESOURCES: &[&str] = &[
     rustc_monomorphize::DEFAULT_LOCALE_RESOURCE,
     rustc_parse::DEFAULT_LOCALE_RESOURCE,
     rustc_passes::DEFAULT_LOCALE_RESOURCE,
+    rustc_pattern_analysis::DEFAULT_LOCALE_RESOURCE,
     rustc_privacy::DEFAULT_LOCALE_RESOURCE,
     rustc_query_system::DEFAULT_LOCALE_RESOURCE,
     rustc_resolve::DEFAULT_LOCALE_RESOURCE,
diff --git a/compiler/rustc_mir_build/Cargo.toml b/compiler/rustc_mir_build/Cargo.toml
index db542234052..6d681dc295e 100644
--- a/compiler/rustc_mir_build/Cargo.toml
+++ b/compiler/rustc_mir_build/Cargo.toml
@@ -17,6 +17,7 @@ rustc_index = { path = "../rustc_index" }
 rustc_infer = { path = "../rustc_infer" }
 rustc_macros = { path = "../rustc_macros" }
 rustc_middle = { path = "../rustc_middle" }
+rustc_pattern_analysis = { path = "../rustc_pattern_analysis" }
 rustc_session = { path = "../rustc_session" }
 rustc_span = { path = "../rustc_span" }
 rustc_target = { path = "../rustc_target" }
diff --git a/compiler/rustc_mir_build/messages.ftl b/compiler/rustc_mir_build/messages.ftl
index c8d6c2114e9..615b553434f 100644
--- a/compiler/rustc_mir_build/messages.ftl
+++ b/compiler/rustc_mir_build/messages.ftl
@@ -237,15 +237,6 @@ mir_build_non_const_path = runtime values cannot be referenced in patterns
 mir_build_non_exhaustive_match_all_arms_guarded =
     match arms with guards don't count towards exhaustivity
 
-mir_build_non_exhaustive_omitted_pattern = some variants are not matched explicitly
-    .help = ensure that all variants are matched explicitly by adding the suggested match arms
-    .note = the matched value is of type `{$scrut_ty}` and the `non_exhaustive_omitted_patterns` attribute was found
-
-mir_build_non_exhaustive_omitted_pattern_lint_on_arm = the lint level must be set on the whole match
-    .help = it no longer has any effect to set the lint level on an individual match arm
-    .label = remove this attribute
-    .suggestion = set the lint level on the whole match
-
 mir_build_non_exhaustive_patterns_type_not_empty = non-exhaustive patterns: type `{$ty}` is non-empty
     .def_note = `{$peeled_ty}` defined here
     .type_note = the matched value is of type `{$ty}`
@@ -260,10 +251,6 @@ mir_build_non_partial_eq_match =
 mir_build_nontrivial_structural_match =
     to use a constant of type `{$non_sm_ty}` in a pattern, the constant's initializer must be trivial or `{$non_sm_ty}` must be annotated with `#[derive(PartialEq, Eq)]`
 
-mir_build_overlapping_range_endpoints = multiple patterns overlap on their endpoints
-    .range = ... with this range
-    .note = you likely meant to write mutually exclusive ranges
-
 mir_build_pattern_not_covered = refutable pattern in {$origin}
     .pattern_ty = the matched value is of type `{$pattern_ty}`
 
@@ -317,13 +304,6 @@ mir_build_unconditional_recursion = function cannot return without recursing
 
 mir_build_unconditional_recursion_call_site_label = recursive call site
 
-mir_build_uncovered = {$count ->
-        [1] pattern `{$witness_1}`
-        [2] patterns `{$witness_1}` and `{$witness_2}`
-        [3] patterns `{$witness_1}`, `{$witness_2}` and `{$witness_3}`
-        *[other] patterns `{$witness_1}`, `{$witness_2}`, `{$witness_3}` and {$remainder} more
-    } not covered
-
 mir_build_union_field_requires_unsafe =
     access to union field is unsafe and requires unsafe block
     .note = the field may not be properly initialized: using uninitialized data will cause undefined behavior
diff --git a/compiler/rustc_mir_build/src/errors.rs b/compiler/rustc_mir_build/src/errors.rs
index 8d2a559e73c..1509e2517da 100644
--- a/compiler/rustc_mir_build/src/errors.rs
+++ b/compiler/rustc_mir_build/src/errors.rs
@@ -1,15 +1,12 @@
-use crate::{
-    fluent_generated as fluent,
-    thir::pattern::{deconstruct_pat::WitnessPat, MatchCheckCtxt},
-};
+use crate::fluent_generated as fluent;
 use rustc_errors::DiagnosticArgValue;
 use rustc_errors::{
     error_code, AddToDiagnostic, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed,
     Handler, IntoDiagnostic, MultiSpan, SubdiagnosticMessage,
 };
 use rustc_macros::{Diagnostic, LintDiagnostic, Subdiagnostic};
-use rustc_middle::thir::Pat;
 use rustc_middle::ty::{self, Ty};
+use rustc_pattern_analysis::{errors::Uncovered, usefulness::MatchCheckCtxt};
 use rustc_span::symbol::Symbol;
 use rustc_span::Span;
 
@@ -812,94 +809,6 @@ pub struct NonPartialEqMatch<'tcx> {
     pub non_peq_ty: Ty<'tcx>,
 }
 
-#[derive(LintDiagnostic)]
-#[diag(mir_build_overlapping_range_endpoints)]
-#[note]
-pub struct OverlappingRangeEndpoints<'tcx> {
-    #[label(mir_build_range)]
-    pub range: Span,
-    #[subdiagnostic]
-    pub overlap: Vec<Overlap<'tcx>>,
-}
-
-pub struct Overlap<'tcx> {
-    pub span: Span,
-    pub range: Pat<'tcx>,
-}
-
-impl<'tcx> AddToDiagnostic for Overlap<'tcx> {
-    fn add_to_diagnostic_with<F>(self, diag: &mut Diagnostic, _: F)
-    where
-        F: Fn(&mut Diagnostic, SubdiagnosticMessage) -> SubdiagnosticMessage,
-    {
-        let Overlap { span, range } = self;
-
-        // FIXME(mejrs) unfortunately `#[derive(LintDiagnostic)]`
-        // does not support `#[subdiagnostic(eager)]`...
-        let message = format!("this range overlaps on `{range}`...");
-        diag.span_label(span, message);
-    }
-}
-
-#[derive(LintDiagnostic)]
-#[diag(mir_build_non_exhaustive_omitted_pattern)]
-#[help]
-#[note]
-pub(crate) struct NonExhaustiveOmittedPattern<'tcx> {
-    pub scrut_ty: Ty<'tcx>,
-    #[subdiagnostic]
-    pub uncovered: Uncovered<'tcx>,
-}
-
-#[derive(LintDiagnostic)]
-#[diag(mir_build_non_exhaustive_omitted_pattern_lint_on_arm)]
-#[help]
-pub(crate) struct NonExhaustiveOmittedPatternLintOnArm {
-    #[label]
-    pub lint_span: Span,
-    #[suggestion(code = "#[{lint_level}({lint_name})]\n", applicability = "maybe-incorrect")]
-    pub suggest_lint_on_match: Option<Span>,
-    pub lint_level: &'static str,
-    pub lint_name: &'static str,
-}
-
-#[derive(Subdiagnostic)]
-#[label(mir_build_uncovered)]
-pub(crate) struct Uncovered<'tcx> {
-    #[primary_span]
-    span: Span,
-    count: usize,
-    witness_1: Pat<'tcx>,
-    witness_2: Pat<'tcx>,
-    witness_3: Pat<'tcx>,
-    remainder: usize,
-}
-
-impl<'tcx> Uncovered<'tcx> {
-    pub fn new<'p>(
-        span: Span,
-        cx: &MatchCheckCtxt<'p, 'tcx>,
-        witnesses: Vec<WitnessPat<'tcx>>,
-    ) -> Self {
-        let witness_1 = witnesses.get(0).unwrap().to_diagnostic_pat(cx);
-        Self {
-            span,
-            count: witnesses.len(),
-            // Substitute dummy values if witnesses is smaller than 3. These will never be read.
-            witness_2: witnesses
-                .get(1)
-                .map(|w| w.to_diagnostic_pat(cx))
-                .unwrap_or_else(|| witness_1.clone()),
-            witness_3: witnesses
-                .get(2)
-                .map(|w| w.to_diagnostic_pat(cx))
-                .unwrap_or_else(|| witness_1.clone()),
-            witness_1,
-            remainder: witnesses.len().saturating_sub(3),
-        }
-    }
-}
-
 #[derive(Diagnostic)]
 #[diag(mir_build_pattern_not_covered, code = "E0005")]
 pub(crate) struct PatternNotCovered<'s, 'tcx> {
diff --git a/compiler/rustc_mir_build/src/thir/pattern/check_match.rs b/compiler/rustc_mir_build/src/thir/pattern/check_match.rs
index 41510d31530..ca5823a860e 100644
--- a/compiler/rustc_mir_build/src/thir/pattern/check_match.rs
+++ b/compiler/rustc_mir_build/src/thir/pattern/check_match.rs
@@ -1,5 +1,7 @@
-use super::deconstruct_pat::{Constructor, DeconstructedPat, WitnessPat};
-use super::usefulness::{
+use rustc_pattern_analysis::constructor::Constructor;
+use rustc_pattern_analysis::errors::Uncovered;
+use rustc_pattern_analysis::pat::{DeconstructedPat, WitnessPat};
+use rustc_pattern_analysis::usefulness::{
     compute_match_usefulness, MatchArm, MatchCheckCtxt, Usefulness, UsefulnessReport,
 };
 
diff --git a/compiler/rustc_mir_build/src/thir/pattern/mod.rs b/compiler/rustc_mir_build/src/thir/pattern/mod.rs
index eb548ad29eb..af0dab4ebc7 100644
--- a/compiler/rustc_mir_build/src/thir/pattern/mod.rs
+++ b/compiler/rustc_mir_build/src/thir/pattern/mod.rs
@@ -2,11 +2,8 @@
 
 mod check_match;
 mod const_to_pat;
-pub(crate) mod deconstruct_pat;
-mod usefulness;
 
 pub(crate) use self::check_match::check_match;
-pub(crate) use self::usefulness::MatchCheckCtxt;
 
 use crate::errors::*;
 use crate::thir::util::UserAnnotatedTyHelpers;
diff --git a/compiler/rustc_pattern_analysis/Cargo.toml b/compiler/rustc_pattern_analysis/Cargo.toml
new file mode 100644
index 00000000000..0639944a45c
--- /dev/null
+++ b/compiler/rustc_pattern_analysis/Cargo.toml
@@ -0,0 +1,22 @@
+[package]
+name = "rustc_pattern_analysis"
+version = "0.0.0"
+edition = "2021"
+
+[dependencies]
+# tidy-alphabetical-start
+rustc_apfloat = "0.2.0"
+rustc_arena = { path = "../rustc_arena" }
+rustc_data_structures = { path = "../rustc_data_structures" }
+rustc_errors = { path = "../rustc_errors" }
+rustc_fluent_macro = { path = "../rustc_fluent_macro" }
+rustc_hir = { path = "../rustc_hir" }
+rustc_index = { path = "../rustc_index" }
+rustc_macros = { path = "../rustc_macros" }
+rustc_middle = { path = "../rustc_middle" }
+rustc_session = { path = "../rustc_session" }
+rustc_span = { path = "../rustc_span" }
+rustc_target = { path = "../rustc_target" }
+smallvec = { version = "1.8.1", features = ["union", "may_dangle"] }
+tracing = "0.1"
+# tidy-alphabetical-end
diff --git a/compiler/rustc_pattern_analysis/messages.ftl b/compiler/rustc_pattern_analysis/messages.ftl
new file mode 100644
index 00000000000..827928f97d7
--- /dev/null
+++ b/compiler/rustc_pattern_analysis/messages.ftl
@@ -0,0 +1,19 @@
+pattern_analysis_non_exhaustive_omitted_pattern = some variants are not matched explicitly
+    .help = ensure that all variants are matched explicitly by adding the suggested match arms
+    .note = the matched value is of type `{$scrut_ty}` and the `non_exhaustive_omitted_patterns` attribute was found
+
+pattern_analysis_non_exhaustive_omitted_pattern_lint_on_arm = the lint level must be set on the whole match
+    .help = it no longer has any effect to set the lint level on an individual match arm
+    .label = remove this attribute
+    .suggestion = set the lint level on the whole match
+
+pattern_analysis_overlapping_range_endpoints = multiple patterns overlap on their endpoints
+    .label = ... with this range
+    .note = you likely meant to write mutually exclusive ranges
+
+pattern_analysis_uncovered = {$count ->
+        [1] pattern `{$witness_1}`
+        [2] patterns `{$witness_1}` and `{$witness_2}`
+        [3] patterns `{$witness_1}`, `{$witness_2}` and `{$witness_3}`
+        *[other] patterns `{$witness_1}`, `{$witness_2}`, `{$witness_3}` and {$remainder} more
+    } not covered
diff --git a/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs b/compiler/rustc_pattern_analysis/src/constructor.rs
similarity index 59%
rename from compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs
rename to compiler/rustc_pattern_analysis/src/constructor.rs
index ef20b0f039b..4c12cb3b029 100644
--- a/compiler/rustc_mir_build/src/thir/pattern/deconstruct_pat.rs
+++ b/compiler/rustc_pattern_analysis/src/constructor.rs
@@ -1,6 +1,5 @@
 //! As explained in [`super::usefulness`], values and patterns are made from constructors applied to
-//! fields. This file defines a `Constructor` enum, a `Fields` struct, and various operations to
-//! manipulate them and convert them from/to patterns.
+//! fields. This file defines a `Constructor` enum and various operations to manipulate them.
 //!
 //! There are two important bits of core logic in this file: constructor inclusion and constructor
 //! splitting. Constructor inclusion, i.e. whether a constructor is included in/covered by another,
@@ -149,49 +148,31 @@
 //! we assume they never cover each other. In order to respect the invariants of
 //! [`SplitConstructorSet`], we give each `Opaque` constructor a unique id so we can recognize it.
 
-use std::cell::Cell;
 use std::cmp::{self, max, min, Ordering};
 use std::fmt;
 use std::iter::once;
 
-use smallvec::{smallvec, SmallVec};
+use smallvec::SmallVec;
 
 use rustc_apfloat::ieee::{DoubleS, IeeeFloat, SingleS};
-use rustc_data_structures::captures::Captures;
 use rustc_data_structures::fx::FxHashSet;
 use rustc_hir::RangeEnd;
-use rustc_index::{Idx, IndexVec};
+use rustc_index::IndexVec;
 use rustc_middle::middle::stability::EvalResult;
 use rustc_middle::mir;
 use rustc_middle::mir::interpret::Scalar;
-use rustc_middle::thir::{FieldPat, Pat, PatKind, PatRange, PatRangeBoundary};
+use rustc_middle::thir::{Pat, PatKind, PatRange, PatRangeBoundary};
 use rustc_middle::ty::layout::IntegerExt;
-use rustc_middle::ty::{self, Ty, TyCtxt, VariantDef};
-use rustc_span::{Span, DUMMY_SP};
-use rustc_target::abi::{FieldIdx, Integer, VariantIdx, FIRST_VARIANT};
+use rustc_middle::ty::{self, Ty, TyCtxt};
+use rustc_span::DUMMY_SP;
+use rustc_target::abi::{Integer, VariantIdx, FIRST_VARIANT};
 
 use self::Constructor::*;
 use self::MaybeInfiniteInt::*;
 use self::SliceKind::*;
 
-use super::usefulness::{MatchCheckCtxt, PatCtxt};
-
-/// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
-fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> {
-    fn expand<'p, 'tcx>(pat: &'p Pat<'tcx>, vec: &mut Vec<&'p Pat<'tcx>>) {
-        if let PatKind::Or { pats } = &pat.kind {
-            for pat in pats.iter() {
-                expand(pat, vec);
-            }
-        } else {
-            vec.push(pat)
-        }
-    }
-
-    let mut pats = Vec::new();
-    expand(pat, &mut pats);
-    pats
-}
+use crate::pat::Fields;
+use crate::usefulness::{MatchCheckCtxt, PatCtxt};
 
 /// Whether we have seen a constructor in the column or not.
 #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
@@ -204,7 +185,7 @@ enum Presence {
 /// natural order on the original type. For example, `-128i8` is encoded as `0` and `127i8` as
 /// `255`. See `signed_bias` for details.
 #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
-pub(crate) enum MaybeInfiniteInt {
+pub enum MaybeInfiniteInt {
     NegInfinity,
     /// Encoded value. DO NOT CONSTRUCT BY HAND; use `new_finite`.
     Finite(u128),
@@ -232,7 +213,7 @@ impl MaybeInfiniteInt {
         let x = bits ^ bias;
         Finite(x)
     }
-    fn from_pat_range_bdy<'tcx>(
+    pub(crate) fn from_pat_range_bdy<'tcx>(
         bdy: PatRangeBoundary<'tcx>,
         ty: Ty<'tcx>,
         tcx: TyCtxt<'tcx>,
@@ -279,7 +260,7 @@ impl MaybeInfiniteInt {
     }
 
     /// Note: this will not turn a finite value into an infinite one or vice-versa.
-    pub(crate) fn minus_one(self) -> Self {
+    pub fn minus_one(self) -> Self {
         match self {
             Finite(n) => match n.checked_sub(1) {
                 Some(m) => Finite(m),
@@ -290,7 +271,7 @@ impl MaybeInfiniteInt {
         }
     }
     /// Note: this will not turn a finite value into an infinite one or vice-versa.
-    pub(crate) fn plus_one(self) -> Self {
+    pub fn plus_one(self) -> Self {
         match self {
             Finite(n) => match n.checked_add(1) {
                 Some(m) => Finite(m),
@@ -308,7 +289,7 @@ impl MaybeInfiniteInt {
 /// `IntRange` is never used to encode an empty range or a "range" that wraps around the (offset)
 /// space: i.e., `range.lo < range.hi`.
 #[derive(Clone, Copy, PartialEq, Eq)]
-pub(crate) struct IntRange {
+pub struct IntRange {
     pub(crate) lo: MaybeInfiniteInt, // Must not be `PosInfinity`.
     pub(crate) hi: MaybeInfiniteInt, // Must not be `NegInfinity`.
 }
@@ -320,20 +301,20 @@ impl IntRange {
     }
 
     /// Best effort; will not know that e.g. `255u8..` is a singleton.
-    pub(super) fn is_singleton(&self) -> bool {
+    pub fn is_singleton(&self) -> bool {
         // Since `lo` and `hi` can't be the same `Infinity` and `plus_one` never changes from finite
         // to infinite, this correctly only detects ranges that contain exacly one `Finite(x)`.
         self.lo.plus_one() == self.hi
     }
 
     #[inline]
-    fn from_bits<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, bits: u128) -> IntRange {
+    pub fn from_bits<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, bits: u128) -> IntRange {
         let x = MaybeInfiniteInt::new_finite(tcx, ty, bits);
         IntRange { lo: x, hi: x.plus_one() }
     }
 
     #[inline]
-    fn from_range(lo: MaybeInfiniteInt, mut hi: MaybeInfiniteInt, end: RangeEnd) -> IntRange {
+    pub fn from_range(lo: MaybeInfiniteInt, mut hi: MaybeInfiniteInt, end: RangeEnd) -> IntRange {
         if end == RangeEnd::Included {
             hi = hi.plus_one();
         }
@@ -443,7 +424,7 @@ impl IntRange {
 
     /// Whether the range denotes the fictitious values before `isize::MIN` or after
     /// `usize::MAX`/`isize::MAX` (see doc of [`IntRange::split`] for why these exist).
-    pub(crate) fn is_beyond_boundaries<'tcx>(&self, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> bool {
+    pub fn is_beyond_boundaries<'tcx>(&self, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> bool {
         ty.is_ptr_sized_integral() && {
             // The two invalid ranges are `NegInfinity..isize::MIN` (represented as
             // `NegInfinity..0`), and `{u,i}size::MAX+1..PosInfinity`. `to_diagnostic_pat_range_bdy`
@@ -507,7 +488,7 @@ impl fmt::Debug for IntRange {
 }
 
 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
-enum SliceKind {
+pub enum SliceKind {
     /// Patterns of length `n` (`[x, y]`).
     FixedLen(usize),
     /// Patterns using the `..` notation (`[x, .., y]`).
@@ -537,15 +518,15 @@ impl SliceKind {
 
 /// A constructor for array and slice patterns.
 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
-pub(super) struct Slice {
+pub struct Slice {
     /// `None` if the matched value is a slice, `Some(n)` if it is an array of size `n`.
-    array_len: Option<usize>,
+    pub(crate) array_len: Option<usize>,
     /// The kind of pattern it is: fixed-length `[x, y]` or variable length `[x, .., y]`.
-    kind: SliceKind,
+    pub(crate) kind: SliceKind,
 }
 
 impl Slice {
-    fn new(array_len: Option<usize>, kind: SliceKind) -> Self {
+    pub fn new(array_len: Option<usize>, kind: SliceKind) -> Self {
         let kind = match (array_len, kind) {
             // If the middle `..` has length 0, we effectively have a fixed-length pattern.
             (Some(len), VarLen(prefix, suffix)) if prefix + suffix == len => FixedLen(len),
@@ -558,7 +539,7 @@ impl Slice {
         Slice { array_len, kind }
     }
 
-    fn arity(self) -> usize {
+    pub(crate) fn arity(self) -> usize {
         self.kind.arity()
     }
 
@@ -729,10 +710,10 @@ impl Slice {
 
 /// A globally unique id to distinguish `Opaque` patterns.
 #[derive(Clone, Debug, PartialEq, Eq)]
-pub(super) struct OpaqueId(u32);
+pub struct OpaqueId(u32);
 
 impl OpaqueId {
-    fn new() -> Self {
+    pub fn new() -> Self {
         use std::sync::atomic::{AtomicU32, Ordering};
         static OPAQUE_ID: AtomicU32 = AtomicU32::new(0);
         OpaqueId(OPAQUE_ID.fetch_add(1, Ordering::SeqCst))
@@ -747,7 +728,7 @@ impl OpaqueId {
 /// constructor. `Constructor::apply` reconstructs the pattern from a pair of `Constructor` and
 /// `Fields`.
 #[derive(Clone, Debug, PartialEq)]
-pub(super) enum Constructor<'tcx> {
+pub enum Constructor<'tcx> {
     /// The constructor for patterns that have a single constructor, like tuples, struct patterns,
     /// and references. Fixed-length arrays are treated separately with `Slice`.
     Single,
@@ -816,7 +797,7 @@ impl<'tcx> Constructor<'tcx> {
         }
     }
 
-    fn variant_index_for_adt(&self, adt: ty::AdtDef<'tcx>) -> VariantIdx {
+    pub(crate) fn variant_index_for_adt(&self, adt: ty::AdtDef<'tcx>) -> VariantIdx {
         match *self {
             Variant(idx) => idx,
             Single => {
@@ -829,7 +810,7 @@ impl<'tcx> Constructor<'tcx> {
 
     /// The number of fields for this constructor. This must be kept in sync with
     /// `Fields::wildcards`.
-    pub(super) fn arity(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> usize {
+    pub(crate) fn arity(&self, pcx: &PatCtxt<'_, '_, 'tcx>) -> usize {
         match self {
             Single | Variant(_) => match pcx.ty.kind() {
                 ty::Tuple(fs) => fs.len(),
@@ -866,7 +847,7 @@ impl<'tcx> Constructor<'tcx> {
     /// this checks for inclusion.
     // We inline because this has a single call site in `Matrix::specialize_constructor`.
     #[inline]
-    pub(super) fn is_covered_by<'p>(&self, pcx: &PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
+    pub(crate) fn is_covered_by<'p>(&self, pcx: &PatCtxt<'_, 'p, 'tcx>, other: &Self) -> bool {
         match (self, other) {
             (Wildcard, _) => {
                 span_bug!(
@@ -923,7 +904,7 @@ impl<'tcx> Constructor<'tcx> {
 }
 
 #[derive(Debug, Clone, Copy)]
-pub(super) enum VariantVisibility {
+pub enum VariantVisibility {
     /// Variant that doesn't fit the other cases, i.e. most variants.
     Visible,
     /// Variant behind an unstable gate or with the `#[doc(hidden)]` attribute. It will not be
@@ -941,7 +922,7 @@ pub(super) enum VariantVisibility {
 /// In terms of division of responsibility, [`ConstructorSet::split`] handles all of the
 /// `exhaustive_patterns` feature.
 #[derive(Debug)]
-pub(super) enum ConstructorSet {
+pub enum ConstructorSet {
     /// The type has a single constructor, e.g. `&T` or a struct. `empty` tracks whether the
     /// constructor is empty.
     Single { empty: bool },
@@ -997,7 +978,7 @@ impl ConstructorSet {
     ///
     /// See at the top of the file for considerations of emptiness.
     #[instrument(level = "debug", skip(cx), ret)]
-    pub(super) fn for_ty<'p, 'tcx>(cx: &MatchCheckCtxt<'p, 'tcx>, ty: Ty<'tcx>) -> Self {
+    pub fn for_ty<'p, 'tcx>(cx: &MatchCheckCtxt<'p, 'tcx>, ty: Ty<'tcx>) -> Self {
         let make_range = |start, end| {
             IntRange::from_range(
                 MaybeInfiniteInt::new_finite(cx.tcx, ty, start),
@@ -1258,707 +1239,3 @@ impl ConstructorSet {
         SplitConstructorSet { present, missing, missing_empty }
     }
 }
-
-/// A value can be decomposed into a constructor applied to some fields. This struct represents
-/// those fields, generalized to allow patterns in each field. See also `Constructor`.
-///
-/// This is constructed for a constructor using [`Fields::wildcards()`]. The idea is that
-/// [`Fields::wildcards()`] constructs a list of fields where all entries are wildcards, and then
-/// given a pattern we fill some of the fields with its subpatterns.
-/// In the following example `Fields::wildcards` returns `[_, _, _, _]`. Then in
-/// `extract_pattern_arguments` we fill some of the entries, and the result is
-/// `[Some(0), _, _, _]`.
-/// ```compile_fail,E0004
-/// # fn foo() -> [Option<u8>; 4] { [None; 4] }
-/// let x: [Option<u8>; 4] = foo();
-/// match x {
-///     [Some(0), ..] => {}
-/// }
-/// ```
-///
-/// Note that the number of fields of a constructor may not match the fields declared in the
-/// original struct/variant. This happens if a private or `non_exhaustive` field is uninhabited,
-/// because the code mustn't observe that it is uninhabited. In that case that field is not
-/// included in `fields`. For that reason, when you have a `FieldIdx` you must use
-/// `index_with_declared_idx`.
-#[derive(Debug, Clone, Copy)]
-pub(super) struct Fields<'p, 'tcx> {
-    fields: &'p [DeconstructedPat<'p, 'tcx>],
-}
-
-impl<'p, 'tcx> Fields<'p, 'tcx> {
-    fn empty() -> Self {
-        Fields { fields: &[] }
-    }
-
-    fn singleton(cx: &MatchCheckCtxt<'p, 'tcx>, field: DeconstructedPat<'p, 'tcx>) -> Self {
-        let field: &_ = cx.pattern_arena.alloc(field);
-        Fields { fields: std::slice::from_ref(field) }
-    }
-
-    pub(super) fn from_iter(
-        cx: &MatchCheckCtxt<'p, 'tcx>,
-        fields: impl IntoIterator<Item = DeconstructedPat<'p, 'tcx>>,
-    ) -> Self {
-        let fields: &[_] = cx.pattern_arena.alloc_from_iter(fields);
-        Fields { fields }
-    }
-
-    fn wildcards_from_tys(
-        cx: &MatchCheckCtxt<'p, 'tcx>,
-        tys: impl IntoIterator<Item = Ty<'tcx>>,
-    ) -> Self {
-        Fields::from_iter(cx, tys.into_iter().map(|ty| DeconstructedPat::wildcard(ty, DUMMY_SP)))
-    }
-
-    // In the cases of either a `#[non_exhaustive]` field list or a non-public field, we hide
-    // uninhabited fields in order not to reveal the uninhabitedness of the whole variant.
-    // This lists the fields we keep along with their types.
-    fn list_variant_nonhidden_fields<'a>(
-        cx: &'a MatchCheckCtxt<'p, 'tcx>,
-        ty: Ty<'tcx>,
-        variant: &'a VariantDef,
-    ) -> impl Iterator<Item = (FieldIdx, Ty<'tcx>)> + Captures<'a> + Captures<'p> {
-        let ty::Adt(adt, args) = ty.kind() else { bug!() };
-        // Whether we must not match the fields of this variant exhaustively.
-        let is_non_exhaustive = variant.is_field_list_non_exhaustive() && !adt.did().is_local();
-
-        variant.fields.iter().enumerate().filter_map(move |(i, field)| {
-            let ty = field.ty(cx.tcx, args);
-            // `field.ty()` doesn't normalize after substituting.
-            let ty = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
-            let is_visible = adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
-            let is_uninhabited = cx.tcx.features().exhaustive_patterns && cx.is_uninhabited(ty);
-
-            if is_uninhabited && (!is_visible || is_non_exhaustive) {
-                None
-            } else {
-                Some((FieldIdx::new(i), ty))
-            }
-        })
-    }
-
-    /// Creates a new list of wildcard fields for a given constructor. The result must have a
-    /// length of `constructor.arity()`.
-    #[instrument(level = "trace")]
-    pub(super) fn wildcards(pcx: &PatCtxt<'_, 'p, 'tcx>, constructor: &Constructor<'tcx>) -> Self {
-        let ret = match constructor {
-            Single | Variant(_) => match pcx.ty.kind() {
-                ty::Tuple(fs) => Fields::wildcards_from_tys(pcx.cx, fs.iter()),
-                ty::Ref(_, rty, _) => Fields::wildcards_from_tys(pcx.cx, once(*rty)),
-                ty::Adt(adt, args) => {
-                    if adt.is_box() {
-                        // The only legal patterns of type `Box` (outside `std`) are `_` and box
-                        // patterns. If we're here we can assume this is a box pattern.
-                        Fields::wildcards_from_tys(pcx.cx, once(args.type_at(0)))
-                    } else {
-                        let variant = &adt.variant(constructor.variant_index_for_adt(*adt));
-                        let tys = Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant)
-                            .map(|(_, ty)| ty);
-                        Fields::wildcards_from_tys(pcx.cx, tys)
-                    }
-                }
-                _ => bug!("Unexpected type for `Single` constructor: {:?}", pcx),
-            },
-            Slice(slice) => match *pcx.ty.kind() {
-                ty::Slice(ty) | ty::Array(ty, _) => {
-                    let arity = slice.arity();
-                    Fields::wildcards_from_tys(pcx.cx, (0..arity).map(|_| ty))
-                }
-                _ => bug!("bad slice pattern {:?} {:?}", constructor, pcx),
-            },
-            Bool(..)
-            | IntRange(..)
-            | F32Range(..)
-            | F64Range(..)
-            | Str(..)
-            | Opaque(..)
-            | NonExhaustive
-            | Hidden
-            | Missing { .. }
-            | Wildcard => Fields::empty(),
-            Or => {
-                bug!("called `Fields::wildcards` on an `Or` ctor")
-            }
-        };
-        debug!(?ret);
-        ret
-    }
-
-    /// Returns the list of patterns.
-    pub(super) fn iter_patterns<'a>(
-        &'a self,
-    ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
-        self.fields.iter()
-    }
-}
-
-/// Values and patterns can be represented as a constructor applied to some fields. This represents
-/// a pattern in this form.
-/// This also uses interior mutability to keep track of whether the pattern has been found reachable
-/// during analysis. For this reason they cannot be cloned.
-/// A `DeconstructedPat` will almost always come from user input; the only exception are some
-/// `Wildcard`s introduced during specialization.
-pub(crate) struct DeconstructedPat<'p, 'tcx> {
-    ctor: Constructor<'tcx>,
-    fields: Fields<'p, 'tcx>,
-    ty: Ty<'tcx>,
-    span: Span,
-    /// Whether removing this arm would change the behavior of the match expression.
-    useful: Cell<bool>,
-}
-
-impl<'p, 'tcx> DeconstructedPat<'p, 'tcx> {
-    pub(super) fn wildcard(ty: Ty<'tcx>, span: Span) -> Self {
-        Self::new(Wildcard, Fields::empty(), ty, span)
-    }
-
-    pub(super) fn new(
-        ctor: Constructor<'tcx>,
-        fields: Fields<'p, 'tcx>,
-        ty: Ty<'tcx>,
-        span: Span,
-    ) -> Self {
-        DeconstructedPat { ctor, fields, ty, span, useful: Cell::new(false) }
-    }
-
-    /// Note: the input patterns must have been lowered through
-    /// `super::check_match::MatchVisitor::lower_pattern`.
-    pub(crate) fn from_pat(cx: &MatchCheckCtxt<'p, 'tcx>, pat: &Pat<'tcx>) -> Self {
-        let mkpat = |pat| DeconstructedPat::from_pat(cx, pat);
-        let ctor;
-        let fields;
-        match &pat.kind {
-            PatKind::AscribeUserType { subpattern, .. }
-            | PatKind::InlineConstant { subpattern, .. } => return mkpat(subpattern),
-            PatKind::Binding { subpattern: Some(subpat), .. } => return mkpat(subpat),
-            PatKind::Binding { subpattern: None, .. } | PatKind::Wild => {
-                ctor = Wildcard;
-                fields = Fields::empty();
-            }
-            PatKind::Deref { subpattern } => {
-                ctor = Single;
-                fields = Fields::singleton(cx, mkpat(subpattern));
-            }
-            PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
-                match pat.ty.kind() {
-                    ty::Tuple(fs) => {
-                        ctor = Single;
-                        let mut wilds: SmallVec<[_; 2]> =
-                            fs.iter().map(|ty| DeconstructedPat::wildcard(ty, pat.span)).collect();
-                        for pat in subpatterns {
-                            wilds[pat.field.index()] = mkpat(&pat.pattern);
-                        }
-                        fields = Fields::from_iter(cx, wilds);
-                    }
-                    ty::Adt(adt, args) if adt.is_box() => {
-                        // The only legal patterns of type `Box` (outside `std`) are `_` and box
-                        // patterns. If we're here we can assume this is a box pattern.
-                        // FIXME(Nadrieril): A `Box` can in theory be matched either with `Box(_,
-                        // _)` or a box pattern. As a hack to avoid an ICE with the former, we
-                        // ignore other fields than the first one. This will trigger an error later
-                        // anyway.
-                        // See https://github.com/rust-lang/rust/issues/82772 ,
-                        // explanation: https://github.com/rust-lang/rust/pull/82789#issuecomment-796921977
-                        // The problem is that we can't know from the type whether we'll match
-                        // normally or through box-patterns. We'll have to figure out a proper
-                        // solution when we introduce generalized deref patterns. Also need to
-                        // prevent mixing of those two options.
-                        let pattern = subpatterns.into_iter().find(|pat| pat.field.index() == 0);
-                        let pat = if let Some(pat) = pattern {
-                            mkpat(&pat.pattern)
-                        } else {
-                            DeconstructedPat::wildcard(args.type_at(0), pat.span)
-                        };
-                        ctor = Single;
-                        fields = Fields::singleton(cx, pat);
-                    }
-                    ty::Adt(adt, _) => {
-                        ctor = match pat.kind {
-                            PatKind::Leaf { .. } => Single,
-                            PatKind::Variant { variant_index, .. } => Variant(variant_index),
-                            _ => bug!(),
-                        };
-                        let variant = &adt.variant(ctor.variant_index_for_adt(*adt));
-                        // For each field in the variant, we store the relevant index into `self.fields` if any.
-                        let mut field_id_to_id: Vec<Option<usize>> =
-                            (0..variant.fields.len()).map(|_| None).collect();
-                        let tys = Fields::list_variant_nonhidden_fields(cx, pat.ty, variant)
-                            .enumerate()
-                            .map(|(i, (field, ty))| {
-                                field_id_to_id[field.index()] = Some(i);
-                                ty
-                            });
-                        let mut wilds: SmallVec<[_; 2]> =
-                            tys.map(|ty| DeconstructedPat::wildcard(ty, pat.span)).collect();
-                        for pat in subpatterns {
-                            if let Some(i) = field_id_to_id[pat.field.index()] {
-                                wilds[i] = mkpat(&pat.pattern);
-                            }
-                        }
-                        fields = Fields::from_iter(cx, wilds);
-                    }
-                    _ => bug!("pattern has unexpected type: pat: {:?}, ty: {:?}", pat, pat.ty),
-                }
-            }
-            PatKind::Constant { value } => {
-                match pat.ty.kind() {
-                    ty::Bool => {
-                        ctor = match value.try_eval_bool(cx.tcx, cx.param_env) {
-                            Some(b) => Bool(b),
-                            None => Opaque(OpaqueId::new()),
-                        };
-                        fields = Fields::empty();
-                    }
-                    ty::Char | ty::Int(_) | ty::Uint(_) => {
-                        ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
-                            Some(bits) => IntRange(IntRange::from_bits(cx.tcx, pat.ty, bits)),
-                            None => Opaque(OpaqueId::new()),
-                        };
-                        fields = Fields::empty();
-                    }
-                    ty::Float(ty::FloatTy::F32) => {
-                        ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
-                            Some(bits) => {
-                                use rustc_apfloat::Float;
-                                let value = rustc_apfloat::ieee::Single::from_bits(bits);
-                                F32Range(value, value, RangeEnd::Included)
-                            }
-                            None => Opaque(OpaqueId::new()),
-                        };
-                        fields = Fields::empty();
-                    }
-                    ty::Float(ty::FloatTy::F64) => {
-                        ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
-                            Some(bits) => {
-                                use rustc_apfloat::Float;
-                                let value = rustc_apfloat::ieee::Double::from_bits(bits);
-                                F64Range(value, value, RangeEnd::Included)
-                            }
-                            None => Opaque(OpaqueId::new()),
-                        };
-                        fields = Fields::empty();
-                    }
-                    ty::Ref(_, t, _) if t.is_str() => {
-                        // We want a `&str` constant to behave like a `Deref` pattern, to be compatible
-                        // with other `Deref` patterns. This could have been done in `const_to_pat`,
-                        // but that causes issues with the rest of the matching code.
-                        // So here, the constructor for a `"foo"` pattern is `&` (represented by
-                        // `Single`), and has one field. That field has constructor `Str(value)` and no
-                        // fields.
-                        // Note: `t` is `str`, not `&str`.
-                        let subpattern =
-                            DeconstructedPat::new(Str(*value), Fields::empty(), *t, pat.span);
-                        ctor = Single;
-                        fields = Fields::singleton(cx, subpattern)
-                    }
-                    // All constants that can be structurally matched have already been expanded
-                    // into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
-                    // opaque.
-                    _ => {
-                        ctor = Opaque(OpaqueId::new());
-                        fields = Fields::empty();
-                    }
-                }
-            }
-            PatKind::Range(box PatRange { lo, hi, end, .. }) => {
-                let ty = pat.ty;
-                ctor = match ty.kind() {
-                    ty::Char | ty::Int(_) | ty::Uint(_) => {
-                        let lo =
-                            MaybeInfiniteInt::from_pat_range_bdy(*lo, ty, cx.tcx, cx.param_env);
-                        let hi =
-                            MaybeInfiniteInt::from_pat_range_bdy(*hi, ty, cx.tcx, cx.param_env);
-                        IntRange(IntRange::from_range(lo, hi, *end))
-                    }
-                    ty::Float(fty) => {
-                        use rustc_apfloat::Float;
-                        let lo = lo.as_finite().map(|c| c.eval_bits(cx.tcx, cx.param_env));
-                        let hi = hi.as_finite().map(|c| c.eval_bits(cx.tcx, cx.param_env));
-                        match fty {
-                            ty::FloatTy::F32 => {
-                                use rustc_apfloat::ieee::Single;
-                                let lo = lo.map(Single::from_bits).unwrap_or(-Single::INFINITY);
-                                let hi = hi.map(Single::from_bits).unwrap_or(Single::INFINITY);
-                                F32Range(lo, hi, *end)
-                            }
-                            ty::FloatTy::F64 => {
-                                use rustc_apfloat::ieee::Double;
-                                let lo = lo.map(Double::from_bits).unwrap_or(-Double::INFINITY);
-                                let hi = hi.map(Double::from_bits).unwrap_or(Double::INFINITY);
-                                F64Range(lo, hi, *end)
-                            }
-                        }
-                    }
-                    _ => bug!("invalid type for range pattern: {}", ty),
-                };
-                fields = Fields::empty();
-            }
-            PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
-                let array_len = match pat.ty.kind() {
-                    ty::Array(_, length) => {
-                        Some(length.eval_target_usize(cx.tcx, cx.param_env) as usize)
-                    }
-                    ty::Slice(_) => None,
-                    _ => span_bug!(pat.span, "bad ty {:?} for slice pattern", pat.ty),
-                };
-                let kind = if slice.is_some() {
-                    VarLen(prefix.len(), suffix.len())
-                } else {
-                    FixedLen(prefix.len() + suffix.len())
-                };
-                ctor = Slice(Slice::new(array_len, kind));
-                fields =
-                    Fields::from_iter(cx, prefix.iter().chain(suffix.iter()).map(|p| mkpat(&*p)));
-            }
-            PatKind::Or { .. } => {
-                ctor = Or;
-                let pats = expand_or_pat(pat);
-                fields = Fields::from_iter(cx, pats.into_iter().map(mkpat));
-            }
-            PatKind::Never => {
-                // FIXME(never_patterns): handle `!` in exhaustiveness. This is a sane default
-                // in the meantime.
-                ctor = Wildcard;
-                fields = Fields::empty();
-            }
-            PatKind::Error(_) => {
-                ctor = Opaque(OpaqueId::new());
-                fields = Fields::empty();
-            }
-        }
-        DeconstructedPat::new(ctor, fields, pat.ty, pat.span)
-    }
-
-    pub(super) fn is_or_pat(&self) -> bool {
-        matches!(self.ctor, Or)
-    }
-    /// Expand this (possibly-nested) or-pattern into its alternatives.
-    pub(super) fn flatten_or_pat(&'p self) -> SmallVec<[&'p Self; 1]> {
-        if self.is_or_pat() {
-            self.iter_fields().flat_map(|p| p.flatten_or_pat()).collect()
-        } else {
-            smallvec![self]
-        }
-    }
-
-    pub(super) fn ctor(&self) -> &Constructor<'tcx> {
-        &self.ctor
-    }
-    pub(super) fn ty(&self) -> Ty<'tcx> {
-        self.ty
-    }
-    pub(super) fn span(&self) -> Span {
-        self.span
-    }
-
-    pub(super) fn iter_fields<'a>(
-        &'a self,
-    ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
-        self.fields.iter_patterns()
-    }
-
-    /// Specialize this pattern with a constructor.
-    /// `other_ctor` can be different from `self.ctor`, but must be covered by it.
-    pub(super) fn specialize<'a>(
-        &'a self,
-        pcx: &PatCtxt<'_, 'p, 'tcx>,
-        other_ctor: &Constructor<'tcx>,
-    ) -> SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]> {
-        match (&self.ctor, other_ctor) {
-            (Wildcard, _) => {
-                // We return a wildcard for each field of `other_ctor`.
-                Fields::wildcards(pcx, other_ctor).iter_patterns().collect()
-            }
-            (Slice(self_slice), Slice(other_slice))
-                if self_slice.arity() != other_slice.arity() =>
-            {
-                // The only tricky case: two slices of different arity. Since `self_slice` covers
-                // `other_slice`, `self_slice` must be `VarLen`, i.e. of the form
-                // `[prefix, .., suffix]`. Moreover `other_slice` is guaranteed to have a larger
-                // arity. So we fill the middle part with enough wildcards to reach the length of
-                // the new, larger slice.
-                match self_slice.kind {
-                    FixedLen(_) => bug!("{:?} doesn't cover {:?}", self_slice, other_slice),
-                    VarLen(prefix, suffix) => {
-                        let (ty::Slice(inner_ty) | ty::Array(inner_ty, _)) = *self.ty.kind() else {
-                            bug!("bad slice pattern {:?} {:?}", self.ctor, self.ty);
-                        };
-                        let prefix = &self.fields.fields[..prefix];
-                        let suffix = &self.fields.fields[self_slice.arity() - suffix..];
-                        let wildcard: &_ = pcx
-                            .cx
-                            .pattern_arena
-                            .alloc(DeconstructedPat::wildcard(inner_ty, DUMMY_SP));
-                        let extra_wildcards = other_slice.arity() - self_slice.arity();
-                        let extra_wildcards = (0..extra_wildcards).map(|_| wildcard);
-                        prefix.iter().chain(extra_wildcards).chain(suffix).collect()
-                    }
-                }
-            }
-            _ => self.fields.iter_patterns().collect(),
-        }
-    }
-
-    /// We keep track for each pattern if it was ever useful during the analysis. This is used
-    /// with `redundant_spans` to report redundant subpatterns arising from or patterns.
-    pub(super) fn set_useful(&self) {
-        self.useful.set(true)
-    }
-    pub(super) fn is_useful(&self) -> bool {
-        if self.useful.get() {
-            true
-        } else if self.is_or_pat() && self.iter_fields().any(|f| f.is_useful()) {
-            // We always expand or patterns in the matrix, so we will never see the actual
-            // or-pattern (the one with constructor `Or`) in the column. As such, it will not be
-            // marked as useful itself, only its children will. We recover this information here.
-            self.set_useful();
-            true
-        } else {
-            false
-        }
-    }
-
-    /// Report the spans of subpatterns that were not useful, if any.
-    pub(super) fn redundant_spans(&self) -> Vec<Span> {
-        let mut spans = Vec::new();
-        self.collect_redundant_spans(&mut spans);
-        spans
-    }
-    fn collect_redundant_spans(&self, spans: &mut Vec<Span>) {
-        // We don't look at subpatterns if we already reported the whole pattern as redundant.
-        if !self.is_useful() {
-            spans.push(self.span);
-        } else {
-            for p in self.iter_fields() {
-                p.collect_redundant_spans(spans);
-            }
-        }
-    }
-}
-
-/// This is mostly copied from the `Pat` impl. This is best effort and not good enough for a
-/// `Display` impl.
-impl<'p, 'tcx> fmt::Debug for DeconstructedPat<'p, 'tcx> {
-    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
-        // Printing lists is a chore.
-        let mut first = true;
-        let mut start_or_continue = |s| {
-            if first {
-                first = false;
-                ""
-            } else {
-                s
-            }
-        };
-        let mut start_or_comma = || start_or_continue(", ");
-
-        match &self.ctor {
-            Single | Variant(_) => match self.ty.kind() {
-                ty::Adt(def, _) if def.is_box() => {
-                    // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
-                    // of `std`). So this branch is only reachable when the feature is enabled and
-                    // the pattern is a box pattern.
-                    let subpattern = self.iter_fields().next().unwrap();
-                    write!(f, "box {subpattern:?}")
-                }
-                ty::Adt(..) | ty::Tuple(..) => {
-                    let variant = match self.ty.kind() {
-                        ty::Adt(adt, _) => Some(adt.variant(self.ctor.variant_index_for_adt(*adt))),
-                        ty::Tuple(_) => None,
-                        _ => unreachable!(),
-                    };
-
-                    if let Some(variant) = variant {
-                        write!(f, "{}", variant.name)?;
-                    }
-
-                    // Without `cx`, we can't know which field corresponds to which, so we can't
-                    // get the names of the fields. Instead we just display everything as a tuple
-                    // struct, which should be good enough.
-                    write!(f, "(")?;
-                    for p in self.iter_fields() {
-                        write!(f, "{}", start_or_comma())?;
-                        write!(f, "{p:?}")?;
-                    }
-                    write!(f, ")")
-                }
-                // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
-                // be careful to detect strings here. However a string literal pattern will never
-                // be reported as a non-exhaustiveness witness, so we can ignore this issue.
-                ty::Ref(_, _, mutbl) => {
-                    let subpattern = self.iter_fields().next().unwrap();
-                    write!(f, "&{}{:?}", mutbl.prefix_str(), subpattern)
-                }
-                _ => write!(f, "_"),
-            },
-            Slice(slice) => {
-                let mut subpatterns = self.fields.iter_patterns();
-                write!(f, "[")?;
-                match slice.kind {
-                    FixedLen(_) => {
-                        for p in subpatterns {
-                            write!(f, "{}{:?}", start_or_comma(), p)?;
-                        }
-                    }
-                    VarLen(prefix_len, _) => {
-                        for p in subpatterns.by_ref().take(prefix_len) {
-                            write!(f, "{}{:?}", start_or_comma(), p)?;
-                        }
-                        write!(f, "{}", start_or_comma())?;
-                        write!(f, "..")?;
-                        for p in subpatterns {
-                            write!(f, "{}{:?}", start_or_comma(), p)?;
-                        }
-                    }
-                }
-                write!(f, "]")
-            }
-            Bool(b) => write!(f, "{b}"),
-            // Best-effort, will render signed ranges incorrectly
-            IntRange(range) => write!(f, "{range:?}"),
-            F32Range(lo, hi, end) => write!(f, "{lo}{end}{hi}"),
-            F64Range(lo, hi, end) => write!(f, "{lo}{end}{hi}"),
-            Str(value) => write!(f, "{value}"),
-            Opaque(..) => write!(f, "<constant pattern>"),
-            Or => {
-                for pat in self.iter_fields() {
-                    write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
-                }
-                Ok(())
-            }
-            Wildcard | Missing { .. } | NonExhaustive | Hidden => write!(f, "_ : {:?}", self.ty),
-        }
-    }
-}
-
-/// Same idea as `DeconstructedPat`, except this is a fictitious pattern built up for diagnostics
-/// purposes. As such they don't use interning and can be cloned.
-#[derive(Debug, Clone)]
-pub(crate) struct WitnessPat<'tcx> {
-    ctor: Constructor<'tcx>,
-    pub(crate) fields: Vec<WitnessPat<'tcx>>,
-    ty: Ty<'tcx>,
-}
-
-impl<'tcx> WitnessPat<'tcx> {
-    pub(super) fn new(ctor: Constructor<'tcx>, fields: Vec<Self>, ty: Ty<'tcx>) -> Self {
-        Self { ctor, fields, ty }
-    }
-    pub(super) fn wildcard(ty: Ty<'tcx>) -> Self {
-        Self::new(Wildcard, Vec::new(), ty)
-    }
-
-    /// Construct a pattern that matches everything that starts with this constructor.
-    /// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern
-    /// `Some(_)`.
-    pub(super) fn wild_from_ctor(pcx: &PatCtxt<'_, '_, 'tcx>, ctor: Constructor<'tcx>) -> Self {
-        // Reuse `Fields::wildcards` to get the types.
-        let fields = Fields::wildcards(pcx, &ctor)
-            .iter_patterns()
-            .map(|deco_pat| Self::wildcard(deco_pat.ty()))
-            .collect();
-        Self::new(ctor, fields, pcx.ty)
-    }
-
-    pub(super) fn ctor(&self) -> &Constructor<'tcx> {
-        &self.ctor
-    }
-    pub(super) fn ty(&self) -> Ty<'tcx> {
-        self.ty
-    }
-
-    /// Convert back to a `thir::Pat` for diagnostic purposes. This panics for patterns that don't
-    /// appear in diagnostics, like float ranges.
-    pub(crate) fn to_diagnostic_pat(&self, cx: &MatchCheckCtxt<'_, 'tcx>) -> Pat<'tcx> {
-        let is_wildcard = |pat: &Pat<'_>| matches!(pat.kind, PatKind::Wild);
-        let mut subpatterns = self.iter_fields().map(|p| Box::new(p.to_diagnostic_pat(cx)));
-        let kind = match &self.ctor {
-            Bool(b) => PatKind::Constant { value: mir::Const::from_bool(cx.tcx, *b) },
-            IntRange(range) => return range.to_diagnostic_pat(self.ty, cx.tcx),
-            Single | Variant(_) => match self.ty.kind() {
-                ty::Tuple(..) => PatKind::Leaf {
-                    subpatterns: subpatterns
-                        .enumerate()
-                        .map(|(i, pattern)| FieldPat { field: FieldIdx::new(i), pattern })
-                        .collect(),
-                },
-                ty::Adt(adt_def, _) if adt_def.is_box() => {
-                    // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
-                    // of `std`). So this branch is only reachable when the feature is enabled and
-                    // the pattern is a box pattern.
-                    PatKind::Deref { subpattern: subpatterns.next().unwrap() }
-                }
-                ty::Adt(adt_def, args) => {
-                    let variant_index = self.ctor.variant_index_for_adt(*adt_def);
-                    let variant = &adt_def.variant(variant_index);
-                    let subpatterns = Fields::list_variant_nonhidden_fields(cx, self.ty, variant)
-                        .zip(subpatterns)
-                        .map(|((field, _ty), pattern)| FieldPat { field, pattern })
-                        .collect();
-
-                    if adt_def.is_enum() {
-                        PatKind::Variant { adt_def: *adt_def, args, variant_index, subpatterns }
-                    } else {
-                        PatKind::Leaf { subpatterns }
-                    }
-                }
-                // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
-                // be careful to reconstruct the correct constant pattern here. However a string
-                // literal pattern will never be reported as a non-exhaustiveness witness, so we
-                // ignore this issue.
-                ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
-                _ => bug!("unexpected ctor for type {:?} {:?}", self.ctor, self.ty),
-            },
-            Slice(slice) => {
-                match slice.kind {
-                    FixedLen(_) => PatKind::Slice {
-                        prefix: subpatterns.collect(),
-                        slice: None,
-                        suffix: Box::new([]),
-                    },
-                    VarLen(prefix, _) => {
-                        let mut subpatterns = subpatterns.peekable();
-                        let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix).collect();
-                        if slice.array_len.is_some() {
-                            // Improves diagnostics a bit: if the type is a known-size array, instead
-                            // of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
-                            // This is incorrect if the size is not known, since `[_, ..]` captures
-                            // arrays of lengths `>= 1` whereas `[..]` captures any length.
-                            while !prefix.is_empty() && is_wildcard(prefix.last().unwrap()) {
-                                prefix.pop();
-                            }
-                            while subpatterns.peek().is_some()
-                                && is_wildcard(subpatterns.peek().unwrap())
-                            {
-                                subpatterns.next();
-                            }
-                        }
-                        let suffix: Box<[_]> = subpatterns.collect();
-                        let wild = Pat::wildcard_from_ty(self.ty);
-                        PatKind::Slice {
-                            prefix: prefix.into_boxed_slice(),
-                            slice: Some(Box::new(wild)),
-                            suffix,
-                        }
-                    }
-                }
-            }
-            &Str(value) => PatKind::Constant { value },
-            Wildcard | NonExhaustive | Hidden => PatKind::Wild,
-            Missing { .. } => bug!(
-                "trying to convert a `Missing` constructor into a `Pat`; this is probably a bug,
-                `Missing` should have been processed in `apply_constructors`"
-            ),
-            F32Range(..) | F64Range(..) | Opaque(..) | Or => {
-                bug!("can't convert to pattern: {:?}", self)
-            }
-        };
-
-        Pat { ty: self.ty, span: DUMMY_SP, kind }
-    }
-
-    pub(super) fn iter_fields<'a>(&'a self) -> impl Iterator<Item = &'a WitnessPat<'tcx>> {
-        self.fields.iter()
-    }
-}
diff --git a/compiler/rustc_pattern_analysis/src/errors.rs b/compiler/rustc_pattern_analysis/src/errors.rs
new file mode 100644
index 00000000000..0dddcb505e8
--- /dev/null
+++ b/compiler/rustc_pattern_analysis/src/errors.rs
@@ -0,0 +1,95 @@
+use crate::{pat::WitnessPat, usefulness::MatchCheckCtxt};
+
+use rustc_errors::{AddToDiagnostic, Diagnostic, SubdiagnosticMessage};
+use rustc_macros::{LintDiagnostic, Subdiagnostic};
+use rustc_middle::thir::Pat;
+use rustc_middle::ty::Ty;
+use rustc_span::Span;
+
+#[derive(Subdiagnostic)]
+#[label(pattern_analysis_uncovered)]
+pub struct Uncovered<'tcx> {
+    #[primary_span]
+    span: Span,
+    count: usize,
+    witness_1: Pat<'tcx>,
+    witness_2: Pat<'tcx>,
+    witness_3: Pat<'tcx>,
+    remainder: usize,
+}
+
+impl<'tcx> Uncovered<'tcx> {
+    pub fn new<'p>(
+        span: Span,
+        cx: &MatchCheckCtxt<'p, 'tcx>,
+        witnesses: Vec<WitnessPat<'tcx>>,
+    ) -> Self {
+        let witness_1 = witnesses.get(0).unwrap().to_diagnostic_pat(cx);
+        Self {
+            span,
+            count: witnesses.len(),
+            // Substitute dummy values if witnesses is smaller than 3. These will never be read.
+            witness_2: witnesses
+                .get(1)
+                .map(|w| w.to_diagnostic_pat(cx))
+                .unwrap_or_else(|| witness_1.clone()),
+            witness_3: witnesses
+                .get(2)
+                .map(|w| w.to_diagnostic_pat(cx))
+                .unwrap_or_else(|| witness_1.clone()),
+            witness_1,
+            remainder: witnesses.len().saturating_sub(3),
+        }
+    }
+}
+
+#[derive(LintDiagnostic)]
+#[diag(pattern_analysis_overlapping_range_endpoints)]
+#[note]
+pub struct OverlappingRangeEndpoints<'tcx> {
+    #[label]
+    pub range: Span,
+    #[subdiagnostic]
+    pub overlap: Vec<Overlap<'tcx>>,
+}
+
+pub struct Overlap<'tcx> {
+    pub span: Span,
+    pub range: Pat<'tcx>,
+}
+
+impl<'tcx> AddToDiagnostic for Overlap<'tcx> {
+    fn add_to_diagnostic_with<F>(self, diag: &mut Diagnostic, _: F)
+    where
+        F: Fn(&mut Diagnostic, SubdiagnosticMessage) -> SubdiagnosticMessage,
+    {
+        let Overlap { span, range } = self;
+
+        // FIXME(mejrs) unfortunately `#[derive(LintDiagnostic)]`
+        // does not support `#[subdiagnostic(eager)]`...
+        let message = format!("this range overlaps on `{range}`...");
+        diag.span_label(span, message);
+    }
+}
+
+#[derive(LintDiagnostic)]
+#[diag(pattern_analysis_non_exhaustive_omitted_pattern)]
+#[help]
+#[note]
+pub(crate) struct NonExhaustiveOmittedPattern<'tcx> {
+    pub scrut_ty: Ty<'tcx>,
+    #[subdiagnostic]
+    pub uncovered: Uncovered<'tcx>,
+}
+
+#[derive(LintDiagnostic)]
+#[diag(pattern_analysis_non_exhaustive_omitted_pattern_lint_on_arm)]
+#[help]
+pub(crate) struct NonExhaustiveOmittedPatternLintOnArm {
+    #[label]
+    pub lint_span: Span,
+    #[suggestion(code = "#[{lint_level}({lint_name})]\n", applicability = "maybe-incorrect")]
+    pub suggest_lint_on_match: Option<Span>,
+    pub lint_level: &'static str,
+    pub lint_name: &'static str,
+}
diff --git a/compiler/rustc_pattern_analysis/src/lib.rs b/compiler/rustc_pattern_analysis/src/lib.rs
new file mode 100644
index 00000000000..bf131a37809
--- /dev/null
+++ b/compiler/rustc_pattern_analysis/src/lib.rs
@@ -0,0 +1,13 @@
+//! Analysis of patterns, notably match exhaustiveness checking.
+
+pub mod constructor;
+pub mod errors;
+pub mod pat;
+pub mod usefulness;
+
+#[macro_use]
+extern crate tracing;
+#[macro_use]
+extern crate rustc_middle;
+
+rustc_fluent_macro::fluent_messages! { "../messages.ftl" }
diff --git a/compiler/rustc_pattern_analysis/src/pat.rs b/compiler/rustc_pattern_analysis/src/pat.rs
new file mode 100644
index 00000000000..ded992cda93
--- /dev/null
+++ b/compiler/rustc_pattern_analysis/src/pat.rs
@@ -0,0 +1,744 @@
+//! As explained in [`crate::usefulness`], values and patterns are made from constructors applied to
+//! fields. This file defines types that represent patterns in this way.
+use std::cell::Cell;
+use std::fmt;
+use std::iter::once;
+
+use smallvec::{smallvec, SmallVec};
+
+use rustc_data_structures::captures::Captures;
+use rustc_hir::RangeEnd;
+use rustc_index::Idx;
+use rustc_middle::mir;
+use rustc_middle::thir::{FieldPat, Pat, PatKind, PatRange};
+use rustc_middle::ty::{self, Ty, VariantDef};
+use rustc_span::{Span, DUMMY_SP};
+use rustc_target::abi::FieldIdx;
+
+use self::Constructor::*;
+use self::SliceKind::*;
+
+use crate::constructor::{Constructor, IntRange, MaybeInfiniteInt, OpaqueId, Slice, SliceKind};
+use crate::usefulness::{MatchCheckCtxt, PatCtxt};
+
+/// A value can be decomposed into a constructor applied to some fields. This struct represents
+/// those fields, generalized to allow patterns in each field. See also `Constructor`.
+///
+/// This is constructed for a constructor using [`Fields::wildcards()`]. The idea is that
+/// [`Fields::wildcards()`] constructs a list of fields where all entries are wildcards, and then
+/// given a pattern we fill some of the fields with its subpatterns.
+/// In the following example `Fields::wildcards` returns `[_, _, _, _]`. Then in
+/// `extract_pattern_arguments` we fill some of the entries, and the result is
+/// `[Some(0), _, _, _]`.
+/// ```compile_fail,E0004
+/// # fn foo() -> [Option<u8>; 4] { [None; 4] }
+/// let x: [Option<u8>; 4] = foo();
+/// match x {
+///     [Some(0), ..] => {}
+/// }
+/// ```
+///
+/// Note that the number of fields of a constructor may not match the fields declared in the
+/// original struct/variant. This happens if a private or `non_exhaustive` field is uninhabited,
+/// because the code mustn't observe that it is uninhabited. In that case that field is not
+/// included in `fields`. For that reason, when you have a `FieldIdx` you must use
+/// `index_with_declared_idx`.
+#[derive(Debug, Clone, Copy)]
+pub struct Fields<'p, 'tcx> {
+    fields: &'p [DeconstructedPat<'p, 'tcx>],
+}
+
+impl<'p, 'tcx> Fields<'p, 'tcx> {
+    fn empty() -> Self {
+        Fields { fields: &[] }
+    }
+
+    fn singleton(cx: &MatchCheckCtxt<'p, 'tcx>, field: DeconstructedPat<'p, 'tcx>) -> Self {
+        let field: &_ = cx.pattern_arena.alloc(field);
+        Fields { fields: std::slice::from_ref(field) }
+    }
+
+    pub fn from_iter(
+        cx: &MatchCheckCtxt<'p, 'tcx>,
+        fields: impl IntoIterator<Item = DeconstructedPat<'p, 'tcx>>,
+    ) -> Self {
+        let fields: &[_] = cx.pattern_arena.alloc_from_iter(fields);
+        Fields { fields }
+    }
+
+    fn wildcards_from_tys(
+        cx: &MatchCheckCtxt<'p, 'tcx>,
+        tys: impl IntoIterator<Item = Ty<'tcx>>,
+    ) -> Self {
+        Fields::from_iter(cx, tys.into_iter().map(|ty| DeconstructedPat::wildcard(ty, DUMMY_SP)))
+    }
+
+    // In the cases of either a `#[non_exhaustive]` field list or a non-public field, we hide
+    // uninhabited fields in order not to reveal the uninhabitedness of the whole variant.
+    // This lists the fields we keep along with their types.
+    pub(crate) fn list_variant_nonhidden_fields<'a>(
+        cx: &'a MatchCheckCtxt<'p, 'tcx>,
+        ty: Ty<'tcx>,
+        variant: &'a VariantDef,
+    ) -> impl Iterator<Item = (FieldIdx, Ty<'tcx>)> + Captures<'a> + Captures<'p> {
+        let ty::Adt(adt, args) = ty.kind() else { bug!() };
+        // Whether we must not match the fields of this variant exhaustively.
+        let is_non_exhaustive = variant.is_field_list_non_exhaustive() && !adt.did().is_local();
+
+        variant.fields.iter().enumerate().filter_map(move |(i, field)| {
+            let ty = field.ty(cx.tcx, args);
+            // `field.ty()` doesn't normalize after substituting.
+            let ty = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
+            let is_visible = adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
+            let is_uninhabited = cx.tcx.features().exhaustive_patterns && cx.is_uninhabited(ty);
+
+            if is_uninhabited && (!is_visible || is_non_exhaustive) {
+                None
+            } else {
+                Some((FieldIdx::new(i), ty))
+            }
+        })
+    }
+
+    /// Creates a new list of wildcard fields for a given constructor. The result must have a
+    /// length of `constructor.arity()`.
+    #[instrument(level = "trace")]
+    pub(super) fn wildcards(pcx: &PatCtxt<'_, 'p, 'tcx>, constructor: &Constructor<'tcx>) -> Self {
+        let ret = match constructor {
+            Single | Variant(_) => match pcx.ty.kind() {
+                ty::Tuple(fs) => Fields::wildcards_from_tys(pcx.cx, fs.iter()),
+                ty::Ref(_, rty, _) => Fields::wildcards_from_tys(pcx.cx, once(*rty)),
+                ty::Adt(adt, args) => {
+                    if adt.is_box() {
+                        // The only legal patterns of type `Box` (outside `std`) are `_` and box
+                        // patterns. If we're here we can assume this is a box pattern.
+                        Fields::wildcards_from_tys(pcx.cx, once(args.type_at(0)))
+                    } else {
+                        let variant = &adt.variant(constructor.variant_index_for_adt(*adt));
+                        let tys = Fields::list_variant_nonhidden_fields(pcx.cx, pcx.ty, variant)
+                            .map(|(_, ty)| ty);
+                        Fields::wildcards_from_tys(pcx.cx, tys)
+                    }
+                }
+                _ => bug!("Unexpected type for `Single` constructor: {:?}", pcx),
+            },
+            Slice(slice) => match *pcx.ty.kind() {
+                ty::Slice(ty) | ty::Array(ty, _) => {
+                    let arity = slice.arity();
+                    Fields::wildcards_from_tys(pcx.cx, (0..arity).map(|_| ty))
+                }
+                _ => bug!("bad slice pattern {:?} {:?}", constructor, pcx),
+            },
+            Bool(..)
+            | IntRange(..)
+            | F32Range(..)
+            | F64Range(..)
+            | Str(..)
+            | Opaque(..)
+            | NonExhaustive
+            | Hidden
+            | Missing { .. }
+            | Wildcard => Fields::empty(),
+            Or => {
+                bug!("called `Fields::wildcards` on an `Or` ctor")
+            }
+        };
+        debug!(?ret);
+        ret
+    }
+
+    /// Returns the list of patterns.
+    pub(super) fn iter_patterns<'a>(
+        &'a self,
+    ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
+        self.fields.iter()
+    }
+}
+
+/// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
+fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> {
+    fn expand<'p, 'tcx>(pat: &'p Pat<'tcx>, vec: &mut Vec<&'p Pat<'tcx>>) {
+        if let PatKind::Or { pats } = &pat.kind {
+            for pat in pats.iter() {
+                expand(pat, vec);
+            }
+        } else {
+            vec.push(pat)
+        }
+    }
+
+    let mut pats = Vec::new();
+    expand(pat, &mut pats);
+    pats
+}
+
+/// Values and patterns can be represented as a constructor applied to some fields. This represents
+/// a pattern in this form.
+/// This also uses interior mutability to keep track of whether the pattern has been found reachable
+/// during analysis. For this reason they cannot be cloned.
+/// A `DeconstructedPat` will almost always come from user input; the only exception are some
+/// `Wildcard`s introduced during specialization.
+pub struct DeconstructedPat<'p, 'tcx> {
+    ctor: Constructor<'tcx>,
+    fields: Fields<'p, 'tcx>,
+    ty: Ty<'tcx>,
+    span: Span,
+    /// Whether removing this arm would change the behavior of the match expression.
+    useful: Cell<bool>,
+}
+
+impl<'p, 'tcx> DeconstructedPat<'p, 'tcx> {
+    pub(super) fn wildcard(ty: Ty<'tcx>, span: Span) -> Self {
+        Self::new(Wildcard, Fields::empty(), ty, span)
+    }
+
+    pub(super) fn new(
+        ctor: Constructor<'tcx>,
+        fields: Fields<'p, 'tcx>,
+        ty: Ty<'tcx>,
+        span: Span,
+    ) -> Self {
+        DeconstructedPat { ctor, fields, ty, span, useful: Cell::new(false) }
+    }
+
+    /// Note: the input patterns must have been lowered through
+    /// `rustc_mir_build::thir::pattern::check_match::MatchVisitor::lower_pattern`.
+    pub fn from_pat(cx: &MatchCheckCtxt<'p, 'tcx>, pat: &Pat<'tcx>) -> Self {
+        let mkpat = |pat| DeconstructedPat::from_pat(cx, pat);
+        let ctor;
+        let fields;
+        match &pat.kind {
+            PatKind::AscribeUserType { subpattern, .. }
+            | PatKind::InlineConstant { subpattern, .. } => return mkpat(subpattern),
+            PatKind::Binding { subpattern: Some(subpat), .. } => return mkpat(subpat),
+            PatKind::Binding { subpattern: None, .. } | PatKind::Wild => {
+                ctor = Wildcard;
+                fields = Fields::empty();
+            }
+            PatKind::Deref { subpattern } => {
+                ctor = Single;
+                fields = Fields::singleton(cx, mkpat(subpattern));
+            }
+            PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
+                match pat.ty.kind() {
+                    ty::Tuple(fs) => {
+                        ctor = Single;
+                        let mut wilds: SmallVec<[_; 2]> =
+                            fs.iter().map(|ty| DeconstructedPat::wildcard(ty, pat.span)).collect();
+                        for pat in subpatterns {
+                            wilds[pat.field.index()] = mkpat(&pat.pattern);
+                        }
+                        fields = Fields::from_iter(cx, wilds);
+                    }
+                    ty::Adt(adt, args) if adt.is_box() => {
+                        // The only legal patterns of type `Box` (outside `std`) are `_` and box
+                        // patterns. If we're here we can assume this is a box pattern.
+                        // FIXME(Nadrieril): A `Box` can in theory be matched either with `Box(_,
+                        // _)` or a box pattern. As a hack to avoid an ICE with the former, we
+                        // ignore other fields than the first one. This will trigger an error later
+                        // anyway.
+                        // See https://github.com/rust-lang/rust/issues/82772 ,
+                        // explanation: https://github.com/rust-lang/rust/pull/82789#issuecomment-796921977
+                        // The problem is that we can't know from the type whether we'll match
+                        // normally or through box-patterns. We'll have to figure out a proper
+                        // solution when we introduce generalized deref patterns. Also need to
+                        // prevent mixing of those two options.
+                        let pattern = subpatterns.into_iter().find(|pat| pat.field.index() == 0);
+                        let pat = if let Some(pat) = pattern {
+                            mkpat(&pat.pattern)
+                        } else {
+                            DeconstructedPat::wildcard(args.type_at(0), pat.span)
+                        };
+                        ctor = Single;
+                        fields = Fields::singleton(cx, pat);
+                    }
+                    ty::Adt(adt, _) => {
+                        ctor = match pat.kind {
+                            PatKind::Leaf { .. } => Single,
+                            PatKind::Variant { variant_index, .. } => Variant(variant_index),
+                            _ => bug!(),
+                        };
+                        let variant = &adt.variant(ctor.variant_index_for_adt(*adt));
+                        // For each field in the variant, we store the relevant index into `self.fields` if any.
+                        let mut field_id_to_id: Vec<Option<usize>> =
+                            (0..variant.fields.len()).map(|_| None).collect();
+                        let tys = Fields::list_variant_nonhidden_fields(cx, pat.ty, variant)
+                            .enumerate()
+                            .map(|(i, (field, ty))| {
+                                field_id_to_id[field.index()] = Some(i);
+                                ty
+                            });
+                        let mut wilds: SmallVec<[_; 2]> =
+                            tys.map(|ty| DeconstructedPat::wildcard(ty, pat.span)).collect();
+                        for pat in subpatterns {
+                            if let Some(i) = field_id_to_id[pat.field.index()] {
+                                wilds[i] = mkpat(&pat.pattern);
+                            }
+                        }
+                        fields = Fields::from_iter(cx, wilds);
+                    }
+                    _ => bug!("pattern has unexpected type: pat: {:?}, ty: {:?}", pat, pat.ty),
+                }
+            }
+            PatKind::Constant { value } => {
+                match pat.ty.kind() {
+                    ty::Bool => {
+                        ctor = match value.try_eval_bool(cx.tcx, cx.param_env) {
+                            Some(b) => Bool(b),
+                            None => Opaque(OpaqueId::new()),
+                        };
+                        fields = Fields::empty();
+                    }
+                    ty::Char | ty::Int(_) | ty::Uint(_) => {
+                        ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
+                            Some(bits) => IntRange(IntRange::from_bits(cx.tcx, pat.ty, bits)),
+                            None => Opaque(OpaqueId::new()),
+                        };
+                        fields = Fields::empty();
+                    }
+                    ty::Float(ty::FloatTy::F32) => {
+                        ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
+                            Some(bits) => {
+                                use rustc_apfloat::Float;
+                                let value = rustc_apfloat::ieee::Single::from_bits(bits);
+                                F32Range(value, value, RangeEnd::Included)
+                            }
+                            None => Opaque(OpaqueId::new()),
+                        };
+                        fields = Fields::empty();
+                    }
+                    ty::Float(ty::FloatTy::F64) => {
+                        ctor = match value.try_eval_bits(cx.tcx, cx.param_env) {
+                            Some(bits) => {
+                                use rustc_apfloat::Float;
+                                let value = rustc_apfloat::ieee::Double::from_bits(bits);
+                                F64Range(value, value, RangeEnd::Included)
+                            }
+                            None => Opaque(OpaqueId::new()),
+                        };
+                        fields = Fields::empty();
+                    }
+                    ty::Ref(_, t, _) if t.is_str() => {
+                        // We want a `&str` constant to behave like a `Deref` pattern, to be compatible
+                        // with other `Deref` patterns. This could have been done in `const_to_pat`,
+                        // but that causes issues with the rest of the matching code.
+                        // So here, the constructor for a `"foo"` pattern is `&` (represented by
+                        // `Single`), and has one field. That field has constructor `Str(value)` and no
+                        // fields.
+                        // Note: `t` is `str`, not `&str`.
+                        let subpattern =
+                            DeconstructedPat::new(Str(*value), Fields::empty(), *t, pat.span);
+                        ctor = Single;
+                        fields = Fields::singleton(cx, subpattern)
+                    }
+                    // All constants that can be structurally matched have already been expanded
+                    // into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
+                    // opaque.
+                    _ => {
+                        ctor = Opaque(OpaqueId::new());
+                        fields = Fields::empty();
+                    }
+                }
+            }
+            PatKind::Range(patrange) => {
+                let PatRange { lo, hi, end, .. } = patrange.as_ref();
+                let ty = pat.ty;
+                ctor = match ty.kind() {
+                    ty::Char | ty::Int(_) | ty::Uint(_) => {
+                        let lo =
+                            MaybeInfiniteInt::from_pat_range_bdy(*lo, ty, cx.tcx, cx.param_env);
+                        let hi =
+                            MaybeInfiniteInt::from_pat_range_bdy(*hi, ty, cx.tcx, cx.param_env);
+                        IntRange(IntRange::from_range(lo, hi, *end))
+                    }
+                    ty::Float(fty) => {
+                        use rustc_apfloat::Float;
+                        let lo = lo.as_finite().map(|c| c.eval_bits(cx.tcx, cx.param_env));
+                        let hi = hi.as_finite().map(|c| c.eval_bits(cx.tcx, cx.param_env));
+                        match fty {
+                            ty::FloatTy::F32 => {
+                                use rustc_apfloat::ieee::Single;
+                                let lo = lo.map(Single::from_bits).unwrap_or(-Single::INFINITY);
+                                let hi = hi.map(Single::from_bits).unwrap_or(Single::INFINITY);
+                                F32Range(lo, hi, *end)
+                            }
+                            ty::FloatTy::F64 => {
+                                use rustc_apfloat::ieee::Double;
+                                let lo = lo.map(Double::from_bits).unwrap_or(-Double::INFINITY);
+                                let hi = hi.map(Double::from_bits).unwrap_or(Double::INFINITY);
+                                F64Range(lo, hi, *end)
+                            }
+                        }
+                    }
+                    _ => bug!("invalid type for range pattern: {}", ty),
+                };
+                fields = Fields::empty();
+            }
+            PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
+                let array_len = match pat.ty.kind() {
+                    ty::Array(_, length) => {
+                        Some(length.eval_target_usize(cx.tcx, cx.param_env) as usize)
+                    }
+                    ty::Slice(_) => None,
+                    _ => span_bug!(pat.span, "bad ty {:?} for slice pattern", pat.ty),
+                };
+                let kind = if slice.is_some() {
+                    VarLen(prefix.len(), suffix.len())
+                } else {
+                    FixedLen(prefix.len() + suffix.len())
+                };
+                ctor = Slice(Slice::new(array_len, kind));
+                fields =
+                    Fields::from_iter(cx, prefix.iter().chain(suffix.iter()).map(|p| mkpat(&*p)));
+            }
+            PatKind::Or { .. } => {
+                ctor = Or;
+                let pats = expand_or_pat(pat);
+                fields = Fields::from_iter(cx, pats.into_iter().map(mkpat));
+            }
+            PatKind::Never => {
+                // FIXME(never_patterns): handle `!` in exhaustiveness. This is a sane default
+                // in the meantime.
+                ctor = Wildcard;
+                fields = Fields::empty();
+            }
+            PatKind::Error(_) => {
+                ctor = Opaque(OpaqueId::new());
+                fields = Fields::empty();
+            }
+        }
+        DeconstructedPat::new(ctor, fields, pat.ty, pat.span)
+    }
+
+    pub(super) fn is_or_pat(&self) -> bool {
+        matches!(self.ctor, Or)
+    }
+    /// Expand this (possibly-nested) or-pattern into its alternatives.
+    pub(super) fn flatten_or_pat(&'p self) -> SmallVec<[&'p Self; 1]> {
+        if self.is_or_pat() {
+            self.iter_fields().flat_map(|p| p.flatten_or_pat()).collect()
+        } else {
+            smallvec![self]
+        }
+    }
+
+    pub fn ctor(&self) -> &Constructor<'tcx> {
+        &self.ctor
+    }
+    pub fn ty(&self) -> Ty<'tcx> {
+        self.ty
+    }
+    pub fn span(&self) -> Span {
+        self.span
+    }
+
+    pub fn iter_fields<'a>(
+        &'a self,
+    ) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
+        self.fields.iter_patterns()
+    }
+
+    /// Specialize this pattern with a constructor.
+    /// `other_ctor` can be different from `self.ctor`, but must be covered by it.
+    pub(super) fn specialize<'a>(
+        &'a self,
+        pcx: &PatCtxt<'_, 'p, 'tcx>,
+        other_ctor: &Constructor<'tcx>,
+    ) -> SmallVec<[&'p DeconstructedPat<'p, 'tcx>; 2]> {
+        match (&self.ctor, other_ctor) {
+            (Wildcard, _) => {
+                // We return a wildcard for each field of `other_ctor`.
+                Fields::wildcards(pcx, other_ctor).iter_patterns().collect()
+            }
+            (Slice(self_slice), Slice(other_slice))
+                if self_slice.arity() != other_slice.arity() =>
+            {
+                // The only tricky case: two slices of different arity. Since `self_slice` covers
+                // `other_slice`, `self_slice` must be `VarLen`, i.e. of the form
+                // `[prefix, .., suffix]`. Moreover `other_slice` is guaranteed to have a larger
+                // arity. So we fill the middle part with enough wildcards to reach the length of
+                // the new, larger slice.
+                match self_slice.kind {
+                    FixedLen(_) => bug!("{:?} doesn't cover {:?}", self_slice, other_slice),
+                    VarLen(prefix, suffix) => {
+                        let (ty::Slice(inner_ty) | ty::Array(inner_ty, _)) = *self.ty.kind() else {
+                            bug!("bad slice pattern {:?} {:?}", self.ctor, self.ty);
+                        };
+                        let prefix = &self.fields.fields[..prefix];
+                        let suffix = &self.fields.fields[self_slice.arity() - suffix..];
+                        let wildcard: &_ = pcx
+                            .cx
+                            .pattern_arena
+                            .alloc(DeconstructedPat::wildcard(inner_ty, DUMMY_SP));
+                        let extra_wildcards = other_slice.arity() - self_slice.arity();
+                        let extra_wildcards = (0..extra_wildcards).map(|_| wildcard);
+                        prefix.iter().chain(extra_wildcards).chain(suffix).collect()
+                    }
+                }
+            }
+            _ => self.fields.iter_patterns().collect(),
+        }
+    }
+
+    /// We keep track for each pattern if it was ever useful during the analysis. This is used
+    /// with `redundant_spans` to report redundant subpatterns arising from or patterns.
+    pub(super) fn set_useful(&self) {
+        self.useful.set(true)
+    }
+    pub(super) fn is_useful(&self) -> bool {
+        if self.useful.get() {
+            true
+        } else if self.is_or_pat() && self.iter_fields().any(|f| f.is_useful()) {
+            // We always expand or patterns in the matrix, so we will never see the actual
+            // or-pattern (the one with constructor `Or`) in the column. As such, it will not be
+            // marked as useful itself, only its children will. We recover this information here.
+            self.set_useful();
+            true
+        } else {
+            false
+        }
+    }
+
+    /// Report the spans of subpatterns that were not useful, if any.
+    pub(super) fn redundant_spans(&self) -> Vec<Span> {
+        let mut spans = Vec::new();
+        self.collect_redundant_spans(&mut spans);
+        spans
+    }
+    fn collect_redundant_spans(&self, spans: &mut Vec<Span>) {
+        // We don't look at subpatterns if we already reported the whole pattern as redundant.
+        if !self.is_useful() {
+            spans.push(self.span);
+        } else {
+            for p in self.iter_fields() {
+                p.collect_redundant_spans(spans);
+            }
+        }
+    }
+}
+
+/// This is mostly copied from the `Pat` impl. This is best effort and not good enough for a
+/// `Display` impl.
+impl<'p, 'tcx> fmt::Debug for DeconstructedPat<'p, 'tcx> {
+    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+        // Printing lists is a chore.
+        let mut first = true;
+        let mut start_or_continue = |s| {
+            if first {
+                first = false;
+                ""
+            } else {
+                s
+            }
+        };
+        let mut start_or_comma = || start_or_continue(", ");
+
+        match &self.ctor {
+            Single | Variant(_) => match self.ty.kind() {
+                ty::Adt(def, _) if def.is_box() => {
+                    // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
+                    // of `std`). So this branch is only reachable when the feature is enabled and
+                    // the pattern is a box pattern.
+                    let subpattern = self.iter_fields().next().unwrap();
+                    write!(f, "box {subpattern:?}")
+                }
+                ty::Adt(..) | ty::Tuple(..) => {
+                    let variant = match self.ty.kind() {
+                        ty::Adt(adt, _) => Some(adt.variant(self.ctor.variant_index_for_adt(*adt))),
+                        ty::Tuple(_) => None,
+                        _ => unreachable!(),
+                    };
+
+                    if let Some(variant) = variant {
+                        write!(f, "{}", variant.name)?;
+                    }
+
+                    // Without `cx`, we can't know which field corresponds to which, so we can't
+                    // get the names of the fields. Instead we just display everything as a tuple
+                    // struct, which should be good enough.
+                    write!(f, "(")?;
+                    for p in self.iter_fields() {
+                        write!(f, "{}", start_or_comma())?;
+                        write!(f, "{p:?}")?;
+                    }
+                    write!(f, ")")
+                }
+                // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
+                // be careful to detect strings here. However a string literal pattern will never
+                // be reported as a non-exhaustiveness witness, so we can ignore this issue.
+                ty::Ref(_, _, mutbl) => {
+                    let subpattern = self.iter_fields().next().unwrap();
+                    write!(f, "&{}{:?}", mutbl.prefix_str(), subpattern)
+                }
+                _ => write!(f, "_"),
+            },
+            Slice(slice) => {
+                let mut subpatterns = self.fields.iter_patterns();
+                write!(f, "[")?;
+                match slice.kind {
+                    FixedLen(_) => {
+                        for p in subpatterns {
+                            write!(f, "{}{:?}", start_or_comma(), p)?;
+                        }
+                    }
+                    VarLen(prefix_len, _) => {
+                        for p in subpatterns.by_ref().take(prefix_len) {
+                            write!(f, "{}{:?}", start_or_comma(), p)?;
+                        }
+                        write!(f, "{}", start_or_comma())?;
+                        write!(f, "..")?;
+                        for p in subpatterns {
+                            write!(f, "{}{:?}", start_or_comma(), p)?;
+                        }
+                    }
+                }
+                write!(f, "]")
+            }
+            Bool(b) => write!(f, "{b}"),
+            // Best-effort, will render signed ranges incorrectly
+            IntRange(range) => write!(f, "{range:?}"),
+            F32Range(lo, hi, end) => write!(f, "{lo}{end}{hi}"),
+            F64Range(lo, hi, end) => write!(f, "{lo}{end}{hi}"),
+            Str(value) => write!(f, "{value}"),
+            Opaque(..) => write!(f, "<constant pattern>"),
+            Or => {
+                for pat in self.iter_fields() {
+                    write!(f, "{}{:?}", start_or_continue(" | "), pat)?;
+                }
+                Ok(())
+            }
+            Wildcard | Missing { .. } | NonExhaustive | Hidden => write!(f, "_ : {:?}", self.ty),
+        }
+    }
+}
+
+/// Same idea as `DeconstructedPat`, except this is a fictitious pattern built up for diagnostics
+/// purposes. As such they don't use interning and can be cloned.
+#[derive(Debug, Clone)]
+pub struct WitnessPat<'tcx> {
+    ctor: Constructor<'tcx>,
+    pub(crate) fields: Vec<WitnessPat<'tcx>>,
+    ty: Ty<'tcx>,
+}
+
+impl<'tcx> WitnessPat<'tcx> {
+    pub(super) fn new(ctor: Constructor<'tcx>, fields: Vec<Self>, ty: Ty<'tcx>) -> Self {
+        Self { ctor, fields, ty }
+    }
+    pub(super) fn wildcard(ty: Ty<'tcx>) -> Self {
+        Self::new(Wildcard, Vec::new(), ty)
+    }
+
+    /// Construct a pattern that matches everything that starts with this constructor.
+    /// For example, if `ctor` is a `Constructor::Variant` for `Option::Some`, we get the pattern
+    /// `Some(_)`.
+    pub(super) fn wild_from_ctor(pcx: &PatCtxt<'_, '_, 'tcx>, ctor: Constructor<'tcx>) -> Self {
+        // Reuse `Fields::wildcards` to get the types.
+        let fields = Fields::wildcards(pcx, &ctor)
+            .iter_patterns()
+            .map(|deco_pat| Self::wildcard(deco_pat.ty()))
+            .collect();
+        Self::new(ctor, fields, pcx.ty)
+    }
+
+    pub fn ctor(&self) -> &Constructor<'tcx> {
+        &self.ctor
+    }
+    pub fn ty(&self) -> Ty<'tcx> {
+        self.ty
+    }
+
+    /// Convert back to a `thir::Pat` for diagnostic purposes. This panics for patterns that don't
+    /// appear in diagnostics, like float ranges.
+    pub fn to_diagnostic_pat(&self, cx: &MatchCheckCtxt<'_, 'tcx>) -> Pat<'tcx> {
+        let is_wildcard = |pat: &Pat<'_>| matches!(pat.kind, PatKind::Wild);
+        let mut subpatterns = self.iter_fields().map(|p| Box::new(p.to_diagnostic_pat(cx)));
+        let kind = match &self.ctor {
+            Bool(b) => PatKind::Constant { value: mir::Const::from_bool(cx.tcx, *b) },
+            IntRange(range) => return range.to_diagnostic_pat(self.ty, cx.tcx),
+            Single | Variant(_) => match self.ty.kind() {
+                ty::Tuple(..) => PatKind::Leaf {
+                    subpatterns: subpatterns
+                        .enumerate()
+                        .map(|(i, pattern)| FieldPat { field: FieldIdx::new(i), pattern })
+                        .collect(),
+                },
+                ty::Adt(adt_def, _) if adt_def.is_box() => {
+                    // Without `box_patterns`, the only legal pattern of type `Box` is `_` (outside
+                    // of `std`). So this branch is only reachable when the feature is enabled and
+                    // the pattern is a box pattern.
+                    PatKind::Deref { subpattern: subpatterns.next().unwrap() }
+                }
+                ty::Adt(adt_def, args) => {
+                    let variant_index = self.ctor.variant_index_for_adt(*adt_def);
+                    let variant = &adt_def.variant(variant_index);
+                    let subpatterns = Fields::list_variant_nonhidden_fields(cx, self.ty, variant)
+                        .zip(subpatterns)
+                        .map(|((field, _ty), pattern)| FieldPat { field, pattern })
+                        .collect();
+
+                    if adt_def.is_enum() {
+                        PatKind::Variant { adt_def: *adt_def, args, variant_index, subpatterns }
+                    } else {
+                        PatKind::Leaf { subpatterns }
+                    }
+                }
+                // Note: given the expansion of `&str` patterns done in `expand_pattern`, we should
+                // be careful to reconstruct the correct constant pattern here. However a string
+                // literal pattern will never be reported as a non-exhaustiveness witness, so we
+                // ignore this issue.
+                ty::Ref(..) => PatKind::Deref { subpattern: subpatterns.next().unwrap() },
+                _ => bug!("unexpected ctor for type {:?} {:?}", self.ctor, self.ty),
+            },
+            Slice(slice) => {
+                match slice.kind {
+                    FixedLen(_) => PatKind::Slice {
+                        prefix: subpatterns.collect(),
+                        slice: None,
+                        suffix: Box::new([]),
+                    },
+                    VarLen(prefix, _) => {
+                        let mut subpatterns = subpatterns.peekable();
+                        let mut prefix: Vec<_> = subpatterns.by_ref().take(prefix).collect();
+                        if slice.array_len.is_some() {
+                            // Improves diagnostics a bit: if the type is a known-size array, instead
+                            // of reporting `[x, _, .., _, y]`, we prefer to report `[x, .., y]`.
+                            // This is incorrect if the size is not known, since `[_, ..]` captures
+                            // arrays of lengths `>= 1` whereas `[..]` captures any length.
+                            while !prefix.is_empty() && is_wildcard(prefix.last().unwrap()) {
+                                prefix.pop();
+                            }
+                            while subpatterns.peek().is_some()
+                                && is_wildcard(subpatterns.peek().unwrap())
+                            {
+                                subpatterns.next();
+                            }
+                        }
+                        let suffix: Box<[_]> = subpatterns.collect();
+                        let wild = Pat::wildcard_from_ty(self.ty);
+                        PatKind::Slice {
+                            prefix: prefix.into_boxed_slice(),
+                            slice: Some(Box::new(wild)),
+                            suffix,
+                        }
+                    }
+                }
+            }
+            &Str(value) => PatKind::Constant { value },
+            Wildcard | NonExhaustive | Hidden => PatKind::Wild,
+            Missing { .. } => bug!(
+                "trying to convert a `Missing` constructor into a `Pat`; this is probably a bug,
+                `Missing` should have been processed in `apply_constructors`"
+            ),
+            F32Range(..) | F64Range(..) | Opaque(..) | Or => {
+                bug!("can't convert to pattern: {:?}", self)
+            }
+        };
+
+        Pat { ty: self.ty, span: DUMMY_SP, kind }
+    }
+
+    pub fn iter_fields<'a>(&'a self) -> impl Iterator<Item = &'a WitnessPat<'tcx>> {
+        self.fields.iter()
+    }
+}
diff --git a/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs b/compiler/rustc_pattern_analysis/src/usefulness.rs
similarity index 98%
rename from compiler/rustc_mir_build/src/thir/pattern/usefulness.rs
rename to compiler/rustc_pattern_analysis/src/usefulness.rs
index 637cc38be2c..5554f3fc36c 100644
--- a/compiler/rustc_mir_build/src/thir/pattern/usefulness.rs
+++ b/compiler/rustc_pattern_analysis/src/usefulness.rs
@@ -552,19 +552,17 @@
 //! reason not to, for example if they crucially depend on a particular feature like `or_patterns`.
 
 use self::ValidityConstraint::*;
-use super::deconstruct_pat::{
-    Constructor, ConstructorSet, DeconstructedPat, IntRange, MaybeInfiniteInt, SplitConstructorSet,
-    WitnessPat,
+use crate::constructor::{
+    Constructor, ConstructorSet, IntRange, MaybeInfiniteInt, SplitConstructorSet,
 };
 use crate::errors::{
     NonExhaustiveOmittedPattern, NonExhaustiveOmittedPatternLintOnArm, Overlap,
     OverlappingRangeEndpoints, Uncovered,
 };
-
-use rustc_data_structures::captures::Captures;
+use crate::pat::{DeconstructedPat, WitnessPat};
 
 use rustc_arena::TypedArena;
-use rustc_data_structures::stack::ensure_sufficient_stack;
+use rustc_data_structures::{captures::Captures, stack::ensure_sufficient_stack};
 use rustc_hir::def_id::DefId;
 use rustc_hir::HirId;
 use rustc_middle::ty::{self, Ty, TyCtxt};
@@ -575,27 +573,27 @@ use rustc_span::{Span, DUMMY_SP};
 use smallvec::{smallvec, SmallVec};
 use std::fmt;
 
-pub(crate) struct MatchCheckCtxt<'p, 'tcx> {
-    pub(crate) tcx: TyCtxt<'tcx>,
+pub struct MatchCheckCtxt<'p, 'tcx> {
+    pub tcx: TyCtxt<'tcx>,
     /// The module in which the match occurs. This is necessary for
     /// checking inhabited-ness of types because whether a type is (visibly)
     /// inhabited can depend on whether it was defined in the current module or
     /// not. E.g., `struct Foo { _private: ! }` cannot be seen to be empty
     /// outside its module and should not be matchable with an empty match statement.
-    pub(crate) module: DefId,
-    pub(crate) param_env: ty::ParamEnv<'tcx>,
-    pub(crate) pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>,
+    pub module: DefId,
+    pub param_env: ty::ParamEnv<'tcx>,
+    pub pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>,
     /// Lint level at the match.
-    pub(crate) match_lint_level: HirId,
+    pub match_lint_level: HirId,
     /// The span of the whole match, if applicable.
-    pub(crate) whole_match_span: Option<Span>,
+    pub whole_match_span: Option<Span>,
     /// Span of the scrutinee.
-    pub(crate) scrut_span: Span,
+    pub scrut_span: Span,
     /// Only produce `NON_EXHAUSTIVE_OMITTED_PATTERNS` lint on refutable patterns.
-    pub(crate) refutable: bool,
+    pub refutable: bool,
     /// Whether the data at the scrutinee is known to be valid. This is false if the scrutinee comes
     /// from a union field, a pointer deref, or a reference deref (pending opsem decisions).
-    pub(crate) known_valid_scrutinee: bool,
+    pub known_valid_scrutinee: bool,
 }
 
 impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
@@ -604,7 +602,7 @@ impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
     }
 
     /// Returns whether the given type is an enum from another crate declared `#[non_exhaustive]`.
-    pub(super) fn is_foreign_non_exhaustive_enum(&self, ty: Ty<'tcx>) -> bool {
+    pub fn is_foreign_non_exhaustive_enum(&self, ty: Ty<'tcx>) -> bool {
         match ty.kind() {
             ty::Adt(def, ..) => {
                 def.is_enum() && def.is_variant_list_non_exhaustive() && !def.did().is_local()
@@ -1535,16 +1533,16 @@ fn lint_overlapping_range_endpoints<'p, 'tcx>(
 
 /// The arm of a match expression.
 #[derive(Clone, Copy, Debug)]
-pub(crate) struct MatchArm<'p, 'tcx> {
+pub struct MatchArm<'p, 'tcx> {
     /// The pattern must have been lowered through `check_match::MatchVisitor::lower_pattern`.
-    pub(crate) pat: &'p DeconstructedPat<'p, 'tcx>,
-    pub(crate) hir_id: HirId,
-    pub(crate) has_guard: bool,
+    pub pat: &'p DeconstructedPat<'p, 'tcx>,
+    pub hir_id: HirId,
+    pub has_guard: bool,
 }
 
 /// Indicates whether or not a given arm is useful.
 #[derive(Clone, Debug)]
-pub(crate) enum Usefulness {
+pub enum Usefulness {
     /// The arm is useful. This additionally carries a set of or-pattern branches that have been
     /// found to be redundant despite the overall arm being useful. Used only in the presence of
     /// or-patterns, otherwise it stays empty.
@@ -1555,18 +1553,18 @@ pub(crate) enum Usefulness {
 }
 
 /// The output of checking a match for exhaustiveness and arm usefulness.
-pub(crate) struct UsefulnessReport<'p, 'tcx> {
+pub struct UsefulnessReport<'p, 'tcx> {
     /// For each arm of the input, whether that arm is useful after the arms above it.
-    pub(crate) arm_usefulness: Vec<(MatchArm<'p, 'tcx>, Usefulness)>,
+    pub arm_usefulness: Vec<(MatchArm<'p, 'tcx>, Usefulness)>,
     /// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
     /// exhaustiveness.
-    pub(crate) non_exhaustiveness_witnesses: Vec<WitnessPat<'tcx>>,
+    pub non_exhaustiveness_witnesses: Vec<WitnessPat<'tcx>>,
 }
 
 /// The entrypoint for this file. Computes whether a match is exhaustive and which of its arms are
 /// useful.
 #[instrument(skip(cx, arms), level = "debug")]
-pub(crate) fn compute_match_usefulness<'p, 'tcx>(
+pub fn compute_match_usefulness<'p, 'tcx>(
     cx: &MatchCheckCtxt<'p, 'tcx>,
     arms: &[MatchArm<'p, 'tcx>],
     scrut_ty: Ty<'tcx>,