Move lints to their own module

This commit is contained in:
Nadrieril 2023-12-11 10:40:31 +01:00
parent 3691a0aee5
commit 24adca0a26
4 changed files with 347 additions and 302 deletions

View File

@ -2,9 +2,8 @@ use rustc_pattern_analysis::constructor::Constructor;
use rustc_pattern_analysis::cx::MatchCheckCtxt;
use rustc_pattern_analysis::errors::Uncovered;
use rustc_pattern_analysis::pat::{DeconstructedPat, WitnessPat};
use rustc_pattern_analysis::usefulness::{
compute_match_usefulness, MatchArm, Usefulness, UsefulnessReport,
};
use rustc_pattern_analysis::usefulness::{Usefulness, UsefulnessReport};
use rustc_pattern_analysis::{analyze_match, MatchArm};
use crate::errors::*;
@ -436,7 +435,7 @@ impl<'thir, 'p, 'tcx> MatchVisitor<'thir, 'p, 'tcx> {
}
let scrut_ty = scrut.ty;
let report = compute_match_usefulness(&cx, &tarms, scrut_ty);
let report = analyze_match(&cx, &tarms, scrut_ty);
match source {
// Don't report arm reachability of desugared `match $iter.into_iter() { iter => .. }`
@ -550,7 +549,7 @@ impl<'thir, 'p, 'tcx> MatchVisitor<'thir, 'p, 'tcx> {
let cx = self.new_cx(refutability, None, scrut, pat.span);
let pat = self.lower_pattern(&cx, pat)?;
let arms = [MatchArm { pat, hir_id: self.lint_level, has_guard: false }];
let report = compute_match_usefulness(&cx, &arms, pat.ty());
let report = analyze_match(&cx, &arms, pat.ty());
Ok((cx, report))
}

View File

@ -3,6 +3,7 @@
pub mod constructor;
pub mod cx;
pub mod errors;
pub(crate) mod lints;
pub mod pat;
pub mod usefulness;
@ -12,3 +13,44 @@ extern crate tracing;
extern crate rustc_middle;
rustc_fluent_macro::fluent_messages! { "../messages.ftl" }
use lints::PatternColumn;
use rustc_hir::HirId;
use rustc_middle::ty::Ty;
use usefulness::{compute_match_usefulness, UsefulnessReport};
use crate::cx::MatchCheckCtxt;
use crate::lints::{lint_nonexhaustive_missing_variants, lint_overlapping_range_endpoints};
use crate::pat::DeconstructedPat;
/// The arm of a match expression.
#[derive(Clone, Copy, Debug)]
pub struct MatchArm<'p, 'tcx> {
/// The pattern must have been lowered through `check_match::MatchVisitor::lower_pattern`.
pub pat: &'p DeconstructedPat<'p, 'tcx>,
pub hir_id: HirId,
pub has_guard: bool,
}
/// The entrypoint for this crate. Computes whether a match is exhaustive and which of its arms are
/// useful, and runs some lints.
pub fn analyze_match<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
arms: &[MatchArm<'p, 'tcx>],
scrut_ty: Ty<'tcx>,
) -> UsefulnessReport<'p, 'tcx> {
let pat_column = PatternColumn::new(arms);
let report = compute_match_usefulness(cx, arms, scrut_ty);
// Lint on ranges that overlap on their endpoints, which is likely a mistake.
lint_overlapping_range_endpoints(cx, &pat_column);
// Run the non_exhaustive_omitted_patterns lint. Only run on refutable patterns to avoid hitting
// `if let`s. Only run if the match is exhaustive otherwise the error is redundant.
if cx.refutable && report.non_exhaustiveness_witnesses.is_empty() {
lint_nonexhaustive_missing_variants(cx, arms, &pat_column, scrut_ty)
}
report
}

View File

@ -0,0 +1,291 @@
use smallvec::SmallVec;
use rustc_data_structures::captures::Captures;
use rustc_middle::ty::{self, Ty};
use rustc_session::lint;
use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS;
use rustc_span::Span;
use crate::constructor::{Constructor, IntRange, MaybeInfiniteInt, SplitConstructorSet};
use crate::cx::MatchCheckCtxt;
use crate::errors::{
NonExhaustiveOmittedPattern, NonExhaustiveOmittedPatternLintOnArm, Overlap,
OverlappingRangeEndpoints, Uncovered,
};
use crate::pat::{DeconstructedPat, WitnessPat};
use crate::usefulness::PatCtxt;
use crate::MatchArm;
/// A column of patterns in the matrix, where a column is the intuitive notion of "subpatterns that
/// inspect the same subvalue/place".
/// This is used to traverse patterns column-by-column for lints. Despite similarities with
/// [`compute_exhaustiveness_and_usefulness`], this does a different traversal. Notably this is
/// linear in the depth of patterns, whereas `compute_exhaustiveness_and_usefulness` is worst-case
/// exponential (exhaustiveness is NP-complete). The core difference is that we treat sub-columns
/// separately.
///
/// This must not contain an or-pattern. `specialize` takes care to expand them.
///
/// This is not used in the main algorithm; only in lints.
#[derive(Debug)]
pub(crate) struct PatternColumn<'p, 'tcx> {
patterns: Vec<&'p DeconstructedPat<'p, 'tcx>>,
}
impl<'p, 'tcx> PatternColumn<'p, 'tcx> {
pub(crate) fn new(arms: &[MatchArm<'p, 'tcx>]) -> Self {
let mut patterns = Vec::with_capacity(arms.len());
for arm in arms {
if arm.pat.is_or_pat() {
patterns.extend(arm.pat.flatten_or_pat())
} else {
patterns.push(arm.pat)
}
}
Self { patterns }
}
fn is_empty(&self) -> bool {
self.patterns.is_empty()
}
fn head_ty(&self) -> Option<Ty<'tcx>> {
if self.patterns.len() == 0 {
return None;
}
// If the type is opaque and it is revealed anywhere in the column, we take the revealed
// version. Otherwise we could encounter constructors for the revealed type and crash.
let is_opaque = |ty: Ty<'tcx>| matches!(ty.kind(), ty::Alias(ty::Opaque, ..));
let first_ty = self.patterns[0].ty();
if is_opaque(first_ty) {
for pat in &self.patterns {
let ty = pat.ty();
if !is_opaque(ty) {
return Some(ty);
}
}
}
Some(first_ty)
}
/// Do constructor splitting on the constructors of the column.
fn analyze_ctors(&self, pcx: &PatCtxt<'_, 'p, 'tcx>) -> SplitConstructorSet<'tcx> {
let column_ctors = self.patterns.iter().map(|p| p.ctor());
pcx.cx.ctors_for_ty(pcx.ty).split(pcx, column_ctors)
}
fn iter<'a>(&'a self) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
self.patterns.iter().copied()
}
/// Does specialization: given a constructor, this takes the patterns from the column that match
/// the constructor, and outputs their fields.
/// This returns one column per field of the constructor. They usually all have the same length
/// (the number of patterns in `self` that matched `ctor`), except that we expand or-patterns
/// which may change the lengths.
fn specialize(&self, pcx: &PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>) -> Vec<Self> {
let arity = ctor.arity(pcx);
if arity == 0 {
return Vec::new();
}
// We specialize the column by `ctor`. This gives us `arity`-many columns of patterns. These
// columns may have different lengths in the presence of or-patterns (this is why we can't
// reuse `Matrix`).
let mut specialized_columns: Vec<_> =
(0..arity).map(|_| Self { patterns: Vec::new() }).collect();
let relevant_patterns =
self.patterns.iter().filter(|pat| ctor.is_covered_by(pcx, pat.ctor()));
for pat in relevant_patterns {
let specialized = pat.specialize(pcx, ctor);
for (subpat, column) in specialized.iter().zip(&mut specialized_columns) {
if subpat.is_or_pat() {
column.patterns.extend(subpat.flatten_or_pat())
} else {
column.patterns.push(subpat)
}
}
}
assert!(
!specialized_columns[0].is_empty(),
"ctor {ctor:?} was listed as present but isn't;
there is an inconsistency between `Constructor::is_covered_by` and `ConstructorSet::split`"
);
specialized_columns
}
}
/// Traverse the patterns to collect any variants of a non_exhaustive enum that fail to be mentioned
/// in a given column.
#[instrument(level = "debug", skip(cx), ret)]
fn collect_nonexhaustive_missing_variants<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
column: &PatternColumn<'p, 'tcx>,
) -> Vec<WitnessPat<'tcx>> {
let Some(ty) = column.head_ty() else {
return Vec::new();
};
let pcx = &PatCtxt::new_dummy(cx, ty);
let set = column.analyze_ctors(pcx);
if set.present.is_empty() {
// We can't consistently handle the case where no constructors are present (since this would
// require digging deep through any type in case there's a non_exhaustive enum somewhere),
// so for consistency we refuse to handle the top-level case, where we could handle it.
return vec![];
}
let mut witnesses = Vec::new();
if cx.is_foreign_non_exhaustive_enum(ty) {
witnesses.extend(
set.missing
.into_iter()
// This will list missing visible variants.
.filter(|c| !matches!(c, Constructor::Hidden | Constructor::NonExhaustive))
.map(|missing_ctor| WitnessPat::wild_from_ctor(pcx, missing_ctor)),
)
}
// Recurse into the fields.
for ctor in set.present {
let specialized_columns = column.specialize(pcx, &ctor);
let wild_pat = WitnessPat::wild_from_ctor(pcx, ctor);
for (i, col_i) in specialized_columns.iter().enumerate() {
// Compute witnesses for each column.
let wits_for_col_i = collect_nonexhaustive_missing_variants(cx, col_i);
// For each witness, we build a new pattern in the shape of `ctor(_, _, wit, _, _)`,
// adding enough wildcards to match `arity`.
for wit in wits_for_col_i {
let mut pat = wild_pat.clone();
pat.fields[i] = wit;
witnesses.push(pat);
}
}
}
witnesses
}
pub(crate) fn lint_nonexhaustive_missing_variants<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
arms: &[MatchArm<'p, 'tcx>],
pat_column: &PatternColumn<'p, 'tcx>,
scrut_ty: Ty<'tcx>,
) {
if !matches!(
cx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, cx.match_lint_level).0,
rustc_session::lint::Level::Allow
) {
let witnesses = collect_nonexhaustive_missing_variants(cx, pat_column);
if !witnesses.is_empty() {
// Report that a match of a `non_exhaustive` enum marked with `non_exhaustive_omitted_patterns`
// is not exhaustive enough.
//
// NB: The partner lint for structs lives in `compiler/rustc_hir_analysis/src/check/pat.rs`.
cx.tcx.emit_spanned_lint(
NON_EXHAUSTIVE_OMITTED_PATTERNS,
cx.match_lint_level,
cx.scrut_span,
NonExhaustiveOmittedPattern {
scrut_ty,
uncovered: Uncovered::new(cx.scrut_span, cx, witnesses),
},
);
}
} else {
// We used to allow putting the `#[allow(non_exhaustive_omitted_patterns)]` on a match
// arm. This no longer makes sense so we warn users, to avoid silently breaking their
// usage of the lint.
for arm in arms {
let (lint_level, lint_level_source) =
cx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, arm.hir_id);
if !matches!(lint_level, rustc_session::lint::Level::Allow) {
let decorator = NonExhaustiveOmittedPatternLintOnArm {
lint_span: lint_level_source.span(),
suggest_lint_on_match: cx.whole_match_span.map(|span| span.shrink_to_lo()),
lint_level: lint_level.as_str(),
lint_name: "non_exhaustive_omitted_patterns",
};
use rustc_errors::DecorateLint;
let mut err = cx.tcx.sess.struct_span_warn(arm.pat.span(), "");
err.set_primary_message(decorator.msg());
decorator.decorate_lint(&mut err);
err.emit();
}
}
}
}
/// Traverse the patterns to warn the user about ranges that overlap on their endpoints.
#[instrument(level = "debug", skip(cx))]
pub(crate) fn lint_overlapping_range_endpoints<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
column: &PatternColumn<'p, 'tcx>,
) {
let Some(ty) = column.head_ty() else {
return;
};
let pcx = &PatCtxt::new_dummy(cx, ty);
let set = column.analyze_ctors(pcx);
if matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_)) {
let emit_lint = |overlap: &IntRange, this_span: Span, overlapped_spans: &[Span]| {
let overlap_as_pat = cx.hoist_pat_range(overlap, ty);
let overlaps: Vec<_> = overlapped_spans
.iter()
.copied()
.map(|span| Overlap { range: overlap_as_pat.clone(), span })
.collect();
cx.tcx.emit_spanned_lint(
lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
cx.match_lint_level,
this_span,
OverlappingRangeEndpoints { overlap: overlaps, range: this_span },
);
};
// If two ranges overlapped, the split set will contain their intersection as a singleton.
let split_int_ranges = set.present.iter().filter_map(|c| c.as_int_range());
for overlap_range in split_int_ranges.clone() {
if overlap_range.is_singleton() {
let overlap: MaybeInfiniteInt = overlap_range.lo;
// Ranges that look like `lo..=overlap`.
let mut prefixes: SmallVec<[_; 1]> = Default::default();
// Ranges that look like `overlap..=hi`.
let mut suffixes: SmallVec<[_; 1]> = Default::default();
// Iterate on patterns that contained `overlap`.
for pat in column.iter() {
let this_span = pat.span();
let Constructor::IntRange(this_range) = pat.ctor() else { continue };
if this_range.is_singleton() {
// Don't lint when one of the ranges is a singleton.
continue;
}
if this_range.lo == overlap {
// `this_range` looks like `overlap..=this_range.hi`; it overlaps with any
// ranges that look like `lo..=overlap`.
if !prefixes.is_empty() {
emit_lint(overlap_range, this_span, &prefixes);
}
suffixes.push(this_span)
} else if this_range.hi == overlap.plus_one() {
// `this_range` looks like `this_range.lo..=overlap`; it overlaps with any
// ranges that look like `overlap..=hi`.
if !suffixes.is_empty() {
emit_lint(overlap_range, this_span, &suffixes);
}
prefixes.push(this_span)
}
}
}
}
} else {
// Recurse into the fields.
for ctor in set.present {
for col in column.specialize(pcx, &ctor) {
lint_overlapping_range_endpoints(cx, &col);
}
}
}
}

View File

@ -555,37 +555,29 @@ use smallvec::{smallvec, SmallVec};
use std::fmt;
use rustc_data_structures::{captures::Captures, stack::ensure_sufficient_stack};
use rustc_hir::HirId;
use rustc_middle::ty::{self, Ty};
use rustc_session::lint;
use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS;
use rustc_span::{Span, DUMMY_SP};
use crate::constructor::{
Constructor, ConstructorSet, IntRange, MaybeInfiniteInt, SplitConstructorSet,
};
use crate::constructor::{Constructor, ConstructorSet};
use crate::cx::MatchCheckCtxt;
use crate::errors::{
NonExhaustiveOmittedPattern, NonExhaustiveOmittedPatternLintOnArm, Overlap,
OverlappingRangeEndpoints, Uncovered,
};
use crate::pat::{DeconstructedPat, WitnessPat};
use crate::MatchArm;
use self::ValidityConstraint::*;
#[derive(Copy, Clone)]
pub(super) struct PatCtxt<'a, 'p, 'tcx> {
pub(super) cx: &'a MatchCheckCtxt<'p, 'tcx>,
pub(crate) struct PatCtxt<'a, 'p, 'tcx> {
pub(crate) cx: &'a MatchCheckCtxt<'p, 'tcx>,
/// Type of the current column under investigation.
pub(super) ty: Ty<'tcx>,
pub(crate) ty: Ty<'tcx>,
/// Whether the current pattern is the whole pattern as found in a match arm, or if it's a
/// subpattern.
pub(super) is_top_level: bool,
pub(crate) is_top_level: bool,
}
impl<'a, 'p, 'tcx> PatCtxt<'a, 'p, 'tcx> {
/// A `PatCtxt` when code other than `is_useful` needs one.
fn new_dummy(cx: &'a MatchCheckCtxt<'p, 'tcx>, ty: Ty<'tcx>) -> Self {
pub(crate) fn new_dummy(cx: &'a MatchCheckCtxt<'p, 'tcx>, ty: Ty<'tcx>) -> Self {
PatCtxt { cx, ty, is_top_level: false }
}
}
@ -1279,230 +1271,6 @@ fn compute_exhaustiveness_and_usefulness<'p, 'tcx>(
ret
}
/// A column of patterns in the matrix, where a column is the intuitive notion of "subpatterns that
/// inspect the same subvalue/place".
/// This is used to traverse patterns column-by-column for lints. Despite similarities with
/// [`compute_exhaustiveness_and_usefulness`], this does a different traversal. Notably this is
/// linear in the depth of patterns, whereas `compute_exhaustiveness_and_usefulness` is worst-case
/// exponential (exhaustiveness is NP-complete). The core difference is that we treat sub-columns
/// separately.
///
/// This must not contain an or-pattern. `specialize` takes care to expand them.
///
/// This is not used in the main algorithm; only in lints.
#[derive(Debug)]
struct PatternColumn<'p, 'tcx> {
patterns: Vec<&'p DeconstructedPat<'p, 'tcx>>,
}
impl<'p, 'tcx> PatternColumn<'p, 'tcx> {
fn new(patterns: Vec<&'p DeconstructedPat<'p, 'tcx>>) -> Self {
Self { patterns }
}
fn is_empty(&self) -> bool {
self.patterns.is_empty()
}
fn head_ty(&self) -> Option<Ty<'tcx>> {
if self.patterns.len() == 0 {
return None;
}
// If the type is opaque and it is revealed anywhere in the column, we take the revealed
// version. Otherwise we could encounter constructors for the revealed type and crash.
let is_opaque = |ty: Ty<'tcx>| matches!(ty.kind(), ty::Alias(ty::Opaque, ..));
let first_ty = self.patterns[0].ty();
if is_opaque(first_ty) {
for pat in &self.patterns {
let ty = pat.ty();
if !is_opaque(ty) {
return Some(ty);
}
}
}
Some(first_ty)
}
/// Do constructor splitting on the constructors of the column.
fn analyze_ctors(&self, pcx: &PatCtxt<'_, 'p, 'tcx>) -> SplitConstructorSet<'tcx> {
let column_ctors = self.patterns.iter().map(|p| p.ctor());
pcx.cx.ctors_for_ty(pcx.ty).split(pcx, column_ctors)
}
fn iter<'a>(&'a self) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'a> {
self.patterns.iter().copied()
}
/// Does specialization: given a constructor, this takes the patterns from the column that match
/// the constructor, and outputs their fields.
/// This returns one column per field of the constructor. They usually all have the same length
/// (the number of patterns in `self` that matched `ctor`), except that we expand or-patterns
/// which may change the lengths.
fn specialize(&self, pcx: &PatCtxt<'_, 'p, 'tcx>, ctor: &Constructor<'tcx>) -> Vec<Self> {
let arity = ctor.arity(pcx);
if arity == 0 {
return Vec::new();
}
// We specialize the column by `ctor`. This gives us `arity`-many columns of patterns. These
// columns may have different lengths in the presence of or-patterns (this is why we can't
// reuse `Matrix`).
let mut specialized_columns: Vec<_> =
(0..arity).map(|_| Self { patterns: Vec::new() }).collect();
let relevant_patterns =
self.patterns.iter().filter(|pat| ctor.is_covered_by(pcx, pat.ctor()));
for pat in relevant_patterns {
let specialized = pat.specialize(pcx, ctor);
for (subpat, column) in specialized.iter().zip(&mut specialized_columns) {
if subpat.is_or_pat() {
column.patterns.extend(subpat.flatten_or_pat())
} else {
column.patterns.push(subpat)
}
}
}
assert!(
!specialized_columns[0].is_empty(),
"ctor {ctor:?} was listed as present but isn't;
there is an inconsistency between `Constructor::is_covered_by` and `ConstructorSet::split`"
);
specialized_columns
}
}
/// Traverse the patterns to collect any variants of a non_exhaustive enum that fail to be mentioned
/// in a given column.
#[instrument(level = "debug", skip(cx), ret)]
fn collect_nonexhaustive_missing_variants<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
column: &PatternColumn<'p, 'tcx>,
) -> Vec<WitnessPat<'tcx>> {
let Some(ty) = column.head_ty() else {
return Vec::new();
};
let pcx = &PatCtxt::new_dummy(cx, ty);
let set = column.analyze_ctors(pcx);
if set.present.is_empty() {
// We can't consistently handle the case where no constructors are present (since this would
// require digging deep through any type in case there's a non_exhaustive enum somewhere),
// so for consistency we refuse to handle the top-level case, where we could handle it.
return vec![];
}
let mut witnesses = Vec::new();
if cx.is_foreign_non_exhaustive_enum(ty) {
witnesses.extend(
set.missing
.into_iter()
// This will list missing visible variants.
.filter(|c| !matches!(c, Constructor::Hidden | Constructor::NonExhaustive))
.map(|missing_ctor| WitnessPat::wild_from_ctor(pcx, missing_ctor)),
)
}
// Recurse into the fields.
for ctor in set.present {
let specialized_columns = column.specialize(pcx, &ctor);
let wild_pat = WitnessPat::wild_from_ctor(pcx, ctor);
for (i, col_i) in specialized_columns.iter().enumerate() {
// Compute witnesses for each column.
let wits_for_col_i = collect_nonexhaustive_missing_variants(cx, col_i);
// For each witness, we build a new pattern in the shape of `ctor(_, _, wit, _, _)`,
// adding enough wildcards to match `arity`.
for wit in wits_for_col_i {
let mut pat = wild_pat.clone();
pat.fields[i] = wit;
witnesses.push(pat);
}
}
}
witnesses
}
/// Traverse the patterns to warn the user about ranges that overlap on their endpoints.
#[instrument(level = "debug", skip(cx))]
fn lint_overlapping_range_endpoints<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
column: &PatternColumn<'p, 'tcx>,
) {
let Some(ty) = column.head_ty() else {
return;
};
let pcx = &PatCtxt::new_dummy(cx, ty);
let set = column.analyze_ctors(pcx);
if matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_)) {
let emit_lint = |overlap: &IntRange, this_span: Span, overlapped_spans: &[Span]| {
let overlap_as_pat = cx.hoist_pat_range(overlap, ty);
let overlaps: Vec<_> = overlapped_spans
.iter()
.copied()
.map(|span| Overlap { range: overlap_as_pat.clone(), span })
.collect();
cx.tcx.emit_spanned_lint(
lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
cx.match_lint_level,
this_span,
OverlappingRangeEndpoints { overlap: overlaps, range: this_span },
);
};
// If two ranges overlapped, the split set will contain their intersection as a singleton.
let split_int_ranges = set.present.iter().filter_map(|c| c.as_int_range());
for overlap_range in split_int_ranges.clone() {
if overlap_range.is_singleton() {
let overlap: MaybeInfiniteInt = overlap_range.lo;
// Ranges that look like `lo..=overlap`.
let mut prefixes: SmallVec<[_; 1]> = Default::default();
// Ranges that look like `overlap..=hi`.
let mut suffixes: SmallVec<[_; 1]> = Default::default();
// Iterate on patterns that contained `overlap`.
for pat in column.iter() {
let this_span = pat.span();
let Constructor::IntRange(this_range) = pat.ctor() else { continue };
if this_range.is_singleton() {
// Don't lint when one of the ranges is a singleton.
continue;
}
if this_range.lo == overlap {
// `this_range` looks like `overlap..=this_range.hi`; it overlaps with any
// ranges that look like `lo..=overlap`.
if !prefixes.is_empty() {
emit_lint(overlap_range, this_span, &prefixes);
}
suffixes.push(this_span)
} else if this_range.hi == overlap.plus_one() {
// `this_range` looks like `this_range.lo..=overlap`; it overlaps with any
// ranges that look like `overlap..=hi`.
if !suffixes.is_empty() {
emit_lint(overlap_range, this_span, &suffixes);
}
prefixes.push(this_span)
}
}
}
}
} else {
// Recurse into the fields.
for ctor in set.present {
for col in column.specialize(pcx, &ctor) {
lint_overlapping_range_endpoints(cx, &col);
}
}
}
}
/// The arm of a match expression.
#[derive(Clone, Copy, Debug)]
pub struct MatchArm<'p, 'tcx> {
/// The pattern must have been lowered through `check_match::MatchVisitor::lower_pattern`.
pub pat: &'p DeconstructedPat<'p, 'tcx>,
pub hir_id: HirId,
pub has_guard: bool,
}
/// Indicates whether or not a given arm is useful.
#[derive(Clone, Debug)]
pub enum Usefulness {
@ -1524,10 +1292,9 @@ pub struct UsefulnessReport<'p, 'tcx> {
pub non_exhaustiveness_witnesses: Vec<WitnessPat<'tcx>>,
}
/// The entrypoint for this file. Computes whether a match is exhaustive and which of its arms are
/// useful.
/// Computes whether a match is exhaustive and which of its arms are useful.
#[instrument(skip(cx, arms), level = "debug")]
pub fn compute_match_usefulness<'p, 'tcx>(
pub(crate) fn compute_match_usefulness<'p, 'tcx>(
cx: &MatchCheckCtxt<'p, 'tcx>,
arms: &[MatchArm<'p, 'tcx>],
scrut_ty: Ty<'tcx>,
@ -1551,59 +1318,5 @@ pub fn compute_match_usefulness<'p, 'tcx>(
(arm, usefulness)
})
.collect();
let report = UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses };
let pat_column = PatternColumn::new(matrix.heads().collect());
// Lint on ranges that overlap on their endpoints, which is likely a mistake.
lint_overlapping_range_endpoints(cx, &pat_column);
// Run the non_exhaustive_omitted_patterns lint. Only run on refutable patterns to avoid hitting
// `if let`s. Only run if the match is exhaustive otherwise the error is redundant.
if cx.refutable && report.non_exhaustiveness_witnesses.is_empty() {
if !matches!(
cx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, cx.match_lint_level).0,
rustc_session::lint::Level::Allow
) {
let witnesses = collect_nonexhaustive_missing_variants(cx, &pat_column);
if !witnesses.is_empty() {
// Report that a match of a `non_exhaustive` enum marked with `non_exhaustive_omitted_patterns`
// is not exhaustive enough.
//
// NB: The partner lint for structs lives in `compiler/rustc_hir_analysis/src/check/pat.rs`.
cx.tcx.emit_spanned_lint(
NON_EXHAUSTIVE_OMITTED_PATTERNS,
cx.match_lint_level,
cx.scrut_span,
NonExhaustiveOmittedPattern {
scrut_ty,
uncovered: Uncovered::new(cx.scrut_span, cx, witnesses),
},
);
}
} else {
// We used to allow putting the `#[allow(non_exhaustive_omitted_patterns)]` on a match
// arm. This no longer makes sense so we warn users, to avoid silently breaking their
// usage of the lint.
for arm in arms {
let (lint_level, lint_level_source) =
cx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, arm.hir_id);
if !matches!(lint_level, rustc_session::lint::Level::Allow) {
let decorator = NonExhaustiveOmittedPatternLintOnArm {
lint_span: lint_level_source.span(),
suggest_lint_on_match: cx.whole_match_span.map(|span| span.shrink_to_lo()),
lint_level: lint_level.as_str(),
lint_name: "non_exhaustive_omitted_patterns",
};
use rustc_errors::DecorateLint;
let mut err = cx.tcx.sess.struct_span_warn(arm.pat.span(), "");
err.set_primary_message(decorator.msg());
decorator.decorate_lint(&mut err);
err.emit();
}
}
}
}
report
UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses }
}