Rollup merge of #108839 - compiler-errors:canonicalize-the-root-var, r=lcnr

Canonicalize root var when making response from new solver

During trait solving, if we equate two inference variables `?0` and `?1` but don't equate them with any rigid types, then `InferCtxt::probe_ty_var` will return `Err` for both of these. The canonicalizer code will then canonicalize the variables independently(!), and the response will not reflect the fact that these two variables have been made equal.

This hinders inference and I also don't think it's sound? I haven't thought too much about it past that, so let's talk about it.

r? ``@lcnr``
This commit is contained in:
Matthias Krüger 2023-03-08 21:26:51 +01:00 committed by GitHub
commit 2428083558
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 104 additions and 15 deletions

View File

@ -374,9 +374,18 @@ impl<'cx, 'tcx> TypeFolder<TyCtxt<'tcx>> for Canonicalizer<'cx, 'tcx> {
}
}
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
fn fold_ty(&mut self, mut t: Ty<'tcx>) -> Ty<'tcx> {
match *t.kind() {
ty::Infer(ty::TyVar(vid)) => {
ty::Infer(ty::TyVar(mut vid)) => {
// We need to canonicalize the *root* of our ty var.
// This is so that our canonical response correctly reflects
// any equated inference vars correctly!
let root_vid = self.infcx.root_var(vid);
if root_vid != vid {
t = self.infcx.tcx.mk_ty_var(root_vid);
vid = root_vid;
}
debug!("canonical: type var found with vid {:?}", vid);
match self.infcx.probe_ty_var(vid) {
// `t` could be a float / int variable; canonicalize that instead.
@ -467,9 +476,18 @@ impl<'cx, 'tcx> TypeFolder<TyCtxt<'tcx>> for Canonicalizer<'cx, 'tcx> {
}
}
fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
fn fold_const(&mut self, mut ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
match ct.kind() {
ty::ConstKind::Infer(InferConst::Var(vid)) => {
ty::ConstKind::Infer(InferConst::Var(mut vid)) => {
// We need to canonicalize the *root* of our const var.
// This is so that our canonical response correctly reflects
// any equated inference vars correctly!
let root_vid = self.infcx.root_const_var(vid);
if root_vid != vid {
ct = self.infcx.tcx.mk_const(ty::InferConst::Var(root_vid), ct.ty());
vid = root_vid;
}
debug!("canonical: const var found with vid {:?}", vid);
match self.infcx.probe_const_var(vid) {
Ok(c) => {

View File

@ -1359,6 +1359,10 @@ impl<'tcx> InferCtxt<'tcx> {
self.inner.borrow_mut().type_variables().root_var(var)
}
pub fn root_const_var(&self, var: ty::ConstVid<'tcx>) -> ty::ConstVid<'tcx> {
self.inner.borrow_mut().const_unification_table().find(var)
}
/// Where possible, replaces type/const variables in
/// `value` with their final value. Note that region variables
/// are unaffected. If a type/const variable has not been unified, it

View File

@ -261,12 +261,23 @@ impl<'tcx> TypeFolder<TyCtxt<'tcx>> for Canonicalizer<'_, 'tcx> {
self.interner().mk_re_late_bound(self.binder_index, br)
}
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
fn fold_ty(&mut self, mut t: Ty<'tcx>) -> Ty<'tcx> {
let kind = match *t.kind() {
ty::Infer(ty::TyVar(vid)) => match self.infcx.probe_ty_var(vid) {
Ok(t) => return self.fold_ty(t),
Err(ui) => CanonicalVarKind::Ty(CanonicalTyVarKind::General(ui)),
},
ty::Infer(ty::TyVar(mut vid)) => {
// We need to canonicalize the *root* of our ty var.
// This is so that our canonical response correctly reflects
// any equated inference vars correctly!
let root_vid = self.infcx.root_var(vid);
if root_vid != vid {
t = self.infcx.tcx.mk_ty_var(root_vid);
vid = root_vid;
}
match self.infcx.probe_ty_var(vid) {
Ok(t) => return self.fold_ty(t),
Err(ui) => CanonicalVarKind::Ty(CanonicalTyVarKind::General(ui)),
}
}
ty::Infer(ty::IntVar(_)) => {
let nt = self.infcx.shallow_resolve(t);
if nt != t {
@ -338,13 +349,23 @@ impl<'tcx> TypeFolder<TyCtxt<'tcx>> for Canonicalizer<'_, 'tcx> {
self.interner().mk_bound(self.binder_index, bt)
}
fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> {
fn fold_const(&mut self, mut c: ty::Const<'tcx>) -> ty::Const<'tcx> {
let kind = match c.kind() {
ty::ConstKind::Infer(ty::InferConst::Var(vid)) => match self.infcx.probe_const_var(vid)
{
Ok(c) => return self.fold_const(c),
Err(universe) => CanonicalVarKind::Const(universe, c.ty()),
},
ty::ConstKind::Infer(ty::InferConst::Var(mut vid)) => {
// We need to canonicalize the *root* of our const var.
// This is so that our canonical response correctly reflects
// any equated inference vars correctly!
let root_vid = self.infcx.root_const_var(vid);
if root_vid != vid {
c = self.infcx.tcx.mk_const(ty::InferConst::Var(root_vid), c.ty());
vid = root_vid;
}
match self.infcx.probe_const_var(vid) {
Ok(c) => return self.fold_const(c),
Err(universe) => CanonicalVarKind::Const(universe, c.ty()),
}
}
ty::ConstKind::Infer(ty::InferConst::Fresh(_)) => {
bug!("fresh var during canonicalization: {c:?}")
}

View File

@ -238,6 +238,7 @@ impl<'a, 'tcx> EvalCtxt<'a, 'tcx> {
&& has_changed
&& !self.in_projection_eq_hack
&& !self.search_graph.in_cycle()
&& false
{
let (_orig_values, canonical_goal) = self.canonicalize_goal(goal);
let canonical_response =

View File

@ -0,0 +1,39 @@
// check-pass
// compile-flags: -Ztrait-solver=next
trait Mirror {
type Item;
}
struct Wrapper<T>(T);
impl<T> Mirror for Wrapper<T> {
type Item = T;
}
fn mirror<T>()
where
Wrapper<T>: Mirror<Item = i32>,
{
}
fn main() {
mirror::<_ /* ?0 */>();
// Solving `<Wrapper<?0> as Mirror>::Item = i32`
// First, we replace the term with a fresh infer var:
// `<Wrapper<?0> as Mirror>::Item = ?1`
// We select the impl candidate on line #6, which leads us to learn that
// `?0 == ?1`.
// That should be reflected in our canonical response, which should have
// `^0 = ^0, ^1 = ^0`
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// !! We used to return a totally unconstrained response here :< !!
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Then, during the "equate term" part of the projection solving, we
// instantiate the response from the unconstrained projection predicate,
// and equate `?0 == i32`.
}

View File

@ -0,0 +1,6 @@
// check-pass
// compile-flags: -Ztrait-solver=next
fn main() {
let x: Box<dyn Iterator<Item = ()>> = Box::new(std::iter::empty());
}