Check associated type bounds for object safety violations

This commit is contained in:
Matthew Jasper 2020-06-28 17:36:41 +01:00
parent 5b279c8016
commit 1b07991574
3 changed files with 88 additions and 39 deletions

View File

@ -160,6 +160,10 @@ fn object_safety_violations_for_trait(
if !spans.is_empty() {
violations.push(ObjectSafetyViolation::SupertraitSelf(spans));
}
let spans = bounds_reference_self(tcx, trait_def_id);
if !spans.is_empty() {
violations.push(ObjectSafetyViolation::SupertraitSelf(spans));
}
violations.extend(
tcx.associated_items(trait_def_id)
@ -239,51 +243,70 @@ fn predicates_reference_self(
} else {
tcx.predicates_of(trait_def_id)
};
let self_ty = tcx.types.self_param;
let has_self_ty = |arg: &GenericArg<'_>| arg.walk().any(|arg| arg == self_ty.into());
predicates
.predicates
.iter()
.map(|(predicate, sp)| (predicate.subst_supertrait(tcx, &trait_ref), sp))
.filter_map(|(predicate, &sp)| {
match predicate.skip_binders() {
ty::PredicateAtom::Trait(ref data, _) => {
// In the case of a trait predicate, we can skip the "self" type.
if data.trait_ref.substs[1..].iter().any(has_self_ty) { Some(sp) } else { None }
}
ty::PredicateAtom::Projection(ref data) => {
// And similarly for projections. This should be redundant with
// the previous check because any projection should have a
// matching `Trait` predicate with the same inputs, but we do
// the check to be safe.
//
// Note that we *do* allow projection *outputs* to contain
// `self` (i.e., `trait Foo: Bar<Output=Self::Result> { type Result; }`),
// we just require the user to specify *both* outputs
// in the object type (i.e., `dyn Foo<Output=(), Result=()>`).
//
// This is ALT2 in issue #56288, see that for discussion of the
// possible alternatives.
if data.projection_ty.trait_ref(tcx).substs[1..].iter().any(has_self_ty) {
Some(sp)
} else {
None
}
}
ty::PredicateAtom::WellFormed(..)
| ty::PredicateAtom::ObjectSafe(..)
| ty::PredicateAtom::TypeOutlives(..)
| ty::PredicateAtom::RegionOutlives(..)
| ty::PredicateAtom::ClosureKind(..)
| ty::PredicateAtom::Subtype(..)
| ty::PredicateAtom::ConstEvaluatable(..)
| ty::PredicateAtom::ConstEquate(..)
| ty::PredicateAtom::TypeWellFormedFromEnv(..) => None,
}
})
.map(|(predicate, sp)| (predicate.subst_supertrait(tcx, &trait_ref), *sp))
.filter_map(|predicate| predicate_references_self(tcx, predicate))
.collect()
}
fn bounds_reference_self(tcx: TyCtxt<'_>, trait_def_id: DefId) -> SmallVec<[Span; 1]> {
let trait_ref = ty::Binder::dummy(ty::TraitRef::identity(tcx, trait_def_id));
tcx.associated_items(trait_def_id)
.in_definition_order()
.filter(|item| item.kind == ty::AssocKind::Type)
.flat_map(|item| tcx.explicit_item_bounds(item.def_id))
.map(|(predicate, sp)| (predicate.subst_supertrait(tcx, &trait_ref), *sp))
.filter_map(|predicate| predicate_references_self(tcx, predicate))
.collect()
}
fn predicate_references_self(
tcx: TyCtxt<'tcx>,
(predicate, sp): (ty::Predicate<'tcx>, Span),
) -> Option<Span> {
let self_ty = tcx.types.self_param;
let has_self_ty = |arg: &GenericArg<'_>| arg.walk().any(|arg| arg == self_ty.into());
match predicate.skip_binders() {
ty::PredicateAtom::Trait(ref data, _) => {
// In the case of a trait predicate, we can skip the "self" type.
if data.trait_ref.substs[1..].iter().any(has_self_ty) { Some(sp) } else { None }
}
ty::PredicateAtom::Projection(ref data) => {
// And similarly for projections. This should be redundant with
// the previous check because any projection should have a
// matching `Trait` predicate with the same inputs, but we do
// the check to be safe.
//
// It's also won't be redundant if we allow type-generic associated
// types for trait objects.
//
// Note that we *do* allow projection *outputs* to contain
// `self` (i.e., `trait Foo: Bar<Output=Self::Result> { type Result; }`),
// we just require the user to specify *both* outputs
// in the object type (i.e., `dyn Foo<Output=(), Result=()>`).
//
// This is ALT2 in issue #56288, see that for discussion of the
// possible alternatives.
if data.projection_ty.trait_ref(tcx).substs[1..].iter().any(has_self_ty) {
Some(sp)
} else {
None
}
}
ty::PredicateAtom::WellFormed(..)
| ty::PredicateAtom::ObjectSafe(..)
| ty::PredicateAtom::TypeOutlives(..)
| ty::PredicateAtom::RegionOutlives(..)
| ty::PredicateAtom::ClosureKind(..)
| ty::PredicateAtom::Subtype(..)
| ty::PredicateAtom::ConstEvaluatable(..)
| ty::PredicateAtom::ConstEquate(..)
| ty::PredicateAtom::TypeWellFormedFromEnv(..) => None,
}
}
fn trait_has_sized_self(tcx: TyCtxt<'_>, trait_def_id: DefId) -> bool {
generics_require_sized_self(tcx, trait_def_id)
}

View File

@ -0,0 +1,12 @@
// Traits with bounds mentioning `Self` are not object safe
trait X {
type U: PartialEq<Self>;
}
fn f() -> Box<dyn X<U = u32>> {
//~^ ERROR the trait `X` cannot be made into an object
loop {}
}
fn main() {}

View File

@ -0,0 +1,14 @@
error[E0038]: the trait `X` cannot be made into an object
--> $DIR/object-safety-bounds.rs:7:11
|
LL | trait X {
| - this trait cannot be made into an object...
LL | type U: PartialEq<Self>;
| --------------- ...because it uses `Self` as a type parameter in this
...
LL | fn f() -> Box<dyn X<U = u32>> {
| ^^^^^^^^^^^^^^^^^^^ the trait `X` cannot be made into an object
error: aborting due to previous error
For more information about this error, try `rustc --explain E0038`.