rustc: streamline the Print/fmt::Display impls in ppaux and move them to ty::print::pretty.

This commit is contained in:
Eduard-Mihai Burtescu 2019-01-20 14:00:39 +02:00
parent 030cdc9729
commit 1a0f3a2856
4 changed files with 303 additions and 425 deletions

View File

@ -135,7 +135,6 @@ pub mod ty;
pub mod util {
pub mod captures;
pub mod common;
mod ppaux;
pub mod nodemap;
pub mod profiling;
pub mod bug;

View File

@ -13,11 +13,8 @@ use std::ops::Deref;
mod pretty;
pub use self::pretty::*;
// FIXME(eddyb) this module uses `pub(crate)` for things used only
// from `ppaux` - when that is removed, they can be re-privatized.
#[derive(Default)]
pub(crate) struct PrintConfig {
struct PrintConfig {
used_region_names: Option<FxHashSet<InternedString>>,
region_index: usize,
binder_depth: usize,
@ -26,7 +23,7 @@ pub(crate) struct PrintConfig {
pub struct PrintCx<'a, 'gcx, 'tcx, P> {
pub tcx: TyCtxt<'a, 'gcx, 'tcx>,
pub printer: P,
pub(crate) config: &'a mut PrintConfig,
config: &'a mut PrintConfig,
}
// HACK(eddyb) this is solely for `self: PrintCx<Self>`, e.g. to
@ -51,7 +48,7 @@ impl<'a, 'gcx, 'tcx, P> PrintCx<'a, 'gcx, 'tcx, P> {
})
}
pub(crate) fn with_tls_tcx<R>(printer: P, f: impl FnOnce(PrintCx<'_, '_, '_, P>) -> R) -> R {
pub fn with_tls_tcx<R>(printer: P, f: impl FnOnce(PrintCx<'_, '_, '_, P>) -> R) -> R {
ty::tls::with(|tcx| PrintCx::with(tcx, printer, f))
}
}

View File

@ -9,6 +9,7 @@ use crate::ty::subst::{Kind, Subst, SubstsRef, UnpackedKind};
use crate::mir::interpret::ConstValue;
use syntax::symbol::{keywords, Symbol};
use rustc_target::spec::abi::Abi;
use syntax::symbol::InternedString;
use std::cell::Cell;
@ -1357,3 +1358,302 @@ impl<T, P: PrettyPrinter> Print<'tcx, P> for ty::Binder<T>
cx.in_binder(self)
}
}
pub trait LiftAndPrintToFmt<'tcx> {
fn lift_and_print_to_fmt(
&self,
tcx: TyCtxt<'_, '_, 'tcx>,
f: &mut fmt::Formatter<'_>,
) -> fmt::Result;
}
impl<T> LiftAndPrintToFmt<'tcx> for T
where T: ty::Lift<'tcx>,
for<'a, 'b> <T as ty::Lift<'tcx>>::Lifted:
Print<'tcx, FmtPrinter<&'a mut fmt::Formatter<'b>>, Error = fmt::Error>
{
fn lift_and_print_to_fmt(
&self,
tcx: TyCtxt<'_, '_, 'tcx>,
f: &mut fmt::Formatter<'_>,
) -> fmt::Result {
PrintCx::with(tcx, FmtPrinter::new(f, Namespace::TypeNS), |cx| {
cx.tcx.lift(self).expect("could not lift for printing").print(cx)?;
Ok(())
})
}
}
// HACK(eddyb) this is separate because `ty::RegionKind` doesn't need lifting.
impl LiftAndPrintToFmt<'tcx> for ty::RegionKind {
fn lift_and_print_to_fmt(
&self,
tcx: TyCtxt<'_, '_, 'tcx>,
f: &mut fmt::Formatter<'_>,
) -> fmt::Result {
PrintCx::with(tcx, FmtPrinter::new(f, Namespace::TypeNS), |cx| {
self.print(cx)?;
Ok(())
})
}
}
macro_rules! forward_display_to_print {
(<$($T:ident),*> $ty:ty) => {
impl<$($T),*> fmt::Display for $ty
where Self: for<'a> LiftAndPrintToFmt<'a>
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
ty::tls::with(|tcx| self.lift_and_print_to_fmt(tcx, f))
}
}
};
($ty:ty) => {
forward_display_to_print!(<> $ty);
};
}
macro_rules! define_print_and_forward_display {
(($self:ident, $cx:ident): <$($T:ident),*> $ty:ty $print:block) => {
impl<$($T,)* P: PrettyPrinter> Print<'tcx, P> for $ty
where $($T: Print<'tcx, P, Output = P, Error = P::Error>),*
{
type Output = P;
type Error = fmt::Error;
fn print(&$self, $cx: PrintCx<'_, '_, 'tcx, P>) -> Result<Self::Output, Self::Error> {
#[allow(unused_mut)]
let mut $cx = $cx;
define_scoped_cx!($cx);
let _: () = $print;
#[allow(unreachable_code)]
Ok($cx.printer)
}
}
forward_display_to_print!(<$($T),*> $ty);
};
(($self:ident, $cx:ident): $($ty:ty $print:block)+) => {
$(define_print_and_forward_display!(($self, $cx): <> $ty $print);)+
};
}
forward_display_to_print!(ty::RegionKind);
forward_display_to_print!(Ty<'tcx>);
forward_display_to_print!(<T> ty::Binder<T>);
define_print_and_forward_display! {
(self, cx):
<T, U> ty::OutlivesPredicate<T, U> {
p!(print(self.0), write(" : "), print(self.1))
}
}
define_print_and_forward_display! {
(self, cx):
&'tcx ty::List<ty::ExistentialPredicate<'tcx>> {
// Generate the main trait ref, including associated types.
let mut first = true;
if let Some(principal) = self.principal() {
let mut resugared_principal = false;
// Special-case `Fn(...) -> ...` and resugar it.
let fn_trait_kind = cx.tcx.lang_items().fn_trait_kind(principal.def_id);
if !cx.tcx.sess.verbose() && fn_trait_kind.is_some() {
if let ty::Tuple(ref args) = principal.substs.type_at(0).sty {
let mut projections = self.projection_bounds();
if let (Some(proj), None) = (projections.next(), projections.next()) {
nest!(|cx| cx.print_def_path(principal.def_id, None, iter::empty()));
nest!(|cx| cx.pretty_fn_sig(args, false, proj.ty));
resugared_principal = true;
}
}
}
if !resugared_principal {
// Use a type that can't appear in defaults of type parameters.
let dummy_self = cx.tcx.mk_infer(ty::FreshTy(0));
let principal = principal.with_self_ty(cx.tcx, dummy_self);
nest!(|cx| cx.print_def_path(
principal.def_id,
Some(principal.substs),
self.projection_bounds(),
));
}
first = false;
}
// Builtin bounds.
// FIXME(eddyb) avoid printing twice (needed to ensure
// that the auto traits are sorted *and* printed via cx).
let mut auto_traits: Vec<_> = self.auto_traits().map(|did| {
(cx.tcx.def_path_str(did), did)
}).collect();
// The auto traits come ordered by `DefPathHash`. While
// `DefPathHash` is *stable* in the sense that it depends on
// neither the host nor the phase of the moon, it depends
// "pseudorandomly" on the compiler version and the target.
//
// To avoid that causing instabilities in compiletest
// output, sort the auto-traits alphabetically.
auto_traits.sort();
for (_, def_id) in auto_traits {
if !first {
p!(write(" + "));
}
first = false;
nest!(|cx| cx.print_def_path(def_id, None, iter::empty()));
}
}
&'tcx ty::List<Ty<'tcx>> {
p!(write("{{"));
let mut tys = self.iter();
if let Some(&ty) = tys.next() {
p!(print(ty));
for &ty in tys {
p!(write(", "), print(ty));
}
}
p!(write("}}"))
}
ty::TypeAndMut<'tcx> {
p!(write("{}", if self.mutbl == hir::MutMutable { "mut " } else { "" }),
print(self.ty))
}
ty::ExistentialTraitRef<'tcx> {
let dummy_self = cx.tcx.mk_infer(ty::FreshTy(0));
let trait_ref = *ty::Binder::bind(*self)
.with_self_ty(cx.tcx, dummy_self)
.skip_binder();
p!(print(trait_ref))
}
ty::FnSig<'tcx> {
if self.unsafety == hir::Unsafety::Unsafe {
p!(write("unsafe "));
}
if self.abi != Abi::Rust {
p!(write("extern {} ", self.abi));
}
p!(write("fn"));
nest!(|cx| cx.pretty_fn_sig(self.inputs(), self.c_variadic, self.output()));
}
ty::InferTy {
if cx.tcx.sess.verbose() {
p!(write("{:?}", self));
return Ok(cx.printer);
}
match *self {
ty::TyVar(_) => p!(write("_")),
ty::IntVar(_) => p!(write("{}", "{integer}")),
ty::FloatVar(_) => p!(write("{}", "{float}")),
ty::FreshTy(v) => p!(write("FreshTy({})", v)),
ty::FreshIntTy(v) => p!(write("FreshIntTy({})", v)),
ty::FreshFloatTy(v) => p!(write("FreshFloatTy({})", v))
}
}
ty::TraitRef<'tcx> {
nest!(|cx| cx.print_def_path(self.def_id, Some(self.substs), iter::empty()));
}
ConstValue<'tcx> {
match self {
ConstValue::Infer(..) => p!(write("_")),
ConstValue::Param(ParamConst { name, .. }) => p!(write("{}", name)),
_ => p!(write("{:?}", self)),
}
}
ty::Const<'tcx> {
p!(write("{} : {}", self.val, self.ty))
}
ty::LazyConst<'tcx> {
match self {
// FIXME(const_generics) this should print at least the type.
ty::LazyConst::Unevaluated(..) => p!(write("_ : _")),
ty::LazyConst::Evaluated(c) => p!(write("{}", c)),
}
}
ty::ParamTy {
p!(write("{}", self.name))
}
ty::ParamConst {
p!(write("{}", self.name))
}
ty::SubtypePredicate<'tcx> {
p!(print(self.a), write(" <: "), print(self.b))
}
ty::TraitPredicate<'tcx> {
p!(print(self.trait_ref.self_ty()), write(": "), print(self.trait_ref))
}
ty::ProjectionPredicate<'tcx> {
p!(print(self.projection_ty), write(" == "), print(self.ty))
}
ty::ProjectionTy<'tcx> {
nest!(|cx| cx.print_def_path(self.item_def_id, Some(self.substs), iter::empty()));
}
ty::ClosureKind {
match *self {
ty::ClosureKind::Fn => p!(write("Fn")),
ty::ClosureKind::FnMut => p!(write("FnMut")),
ty::ClosureKind::FnOnce => p!(write("FnOnce")),
}
}
ty::Predicate<'tcx> {
match *self {
ty::Predicate::Trait(ref data) => p!(print(data)),
ty::Predicate::Subtype(ref predicate) => p!(print(predicate)),
ty::Predicate::RegionOutlives(ref predicate) => p!(print(predicate)),
ty::Predicate::TypeOutlives(ref predicate) => p!(print(predicate)),
ty::Predicate::Projection(ref predicate) => p!(print(predicate)),
ty::Predicate::WellFormed(ty) => p!(print(ty), write(" well-formed")),
ty::Predicate::ObjectSafe(trait_def_id) => {
p!(write("the trait `"));
nest!(|cx| cx.print_def_path(trait_def_id, None, iter::empty()));
p!(write("` is object-safe"))
}
ty::Predicate::ClosureKind(closure_def_id, _closure_substs, kind) => {
p!(write("the closure `"));
nest!(|cx| cx.print_value_path(closure_def_id, None));
p!(write("` implements the trait `{}`", kind))
}
ty::Predicate::ConstEvaluatable(def_id, substs) => {
p!(write("the constant `"));
nest!(|cx| cx.print_value_path(def_id, Some(substs)));
p!(write("` can be evaluated"))
}
}
}
Kind<'tcx> {
match self.unpack() {
UnpackedKind::Lifetime(lt) => p!(print(lt)),
UnpackedKind::Type(ty) => p!(print(ty)),
UnpackedKind::Const(ct) => p!(print(ct)),
}
}
}

View File

@ -1,418 +0,0 @@
use crate::hir;
use crate::hir::def::Namespace;
use crate::ty::subst::{Kind, UnpackedKind};
use crate::ty::{self, ParamConst, Ty, TyCtxt};
use crate::ty::print::{FmtPrinter, PrettyPrinter, PrintCx, Print};
use crate::mir::interpret::ConstValue;
use std::fmt;
use std::iter;
use rustc_target::spec::abi::Abi;
pub trait LiftAndPrintToFmt<'tcx> {
fn lift_and_print_to_fmt(
&self,
tcx: TyCtxt<'_, '_, 'tcx>,
f: &mut fmt::Formatter<'_>,
) -> fmt::Result;
}
impl<T> LiftAndPrintToFmt<'tcx> for T
where T: ty::Lift<'tcx>,
for<'a, 'b> <T as ty::Lift<'tcx>>::Lifted:
Print<'tcx, FmtPrinter<&'a mut fmt::Formatter<'b>>, Error = fmt::Error>
{
fn lift_and_print_to_fmt(
&self,
tcx: TyCtxt<'_, '_, 'tcx>,
f: &mut fmt::Formatter<'_>,
) -> fmt::Result {
PrintCx::with(tcx, FmtPrinter::new(f, Namespace::TypeNS), |cx| {
cx.tcx.lift(self).expect("could not lift for printing").print(cx)?;
Ok(())
})
}
}
// HACK(eddyb) this is separate because `ty::RegionKind` doesn't need lifting.
impl LiftAndPrintToFmt<'tcx> for ty::RegionKind {
fn lift_and_print_to_fmt(
&self,
tcx: TyCtxt<'_, '_, 'tcx>,
f: &mut fmt::Formatter<'_>,
) -> fmt::Result {
PrintCx::with(tcx, FmtPrinter::new(f, Namespace::TypeNS), |cx| {
self.print(cx)?;
Ok(())
})
}
}
macro_rules! define_print {
(<$($T:ident),*> $target:ty) => {
impl<$($T),*> fmt::Display for $target
where Self: for<'a> LiftAndPrintToFmt<'a>
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
ty::tls::with(|tcx| self.lift_and_print_to_fmt(tcx, f))
}
}
};
(<$($T:ident),*> $target:ty, ($self:ident, $cx:ident) { display $disp:block }) => {
impl<$($T,)* P: PrettyPrinter> Print<'tcx, P> for $target
where $($T: Print<'tcx, P, Output = P, Error = P::Error>),*
{
type Output = P;
type Error = fmt::Error;
fn print(&$self, $cx: PrintCx<'_, '_, 'tcx, P>) -> Result<Self::Output, Self::Error> {
#[allow(unused_mut)]
let mut $cx = $cx;
define_scoped_cx!($cx);
let _: () = $disp;
#[allow(unreachable_code)]
Ok($cx.printer)
}
}
define_print!(<$($T),*> $target);
};
($target:ty) => {
define_print!(<> $target);
};
($target:ty, ($self:ident, $cx:ident) { display $disp:block }) => {
define_print!(<> $target, ($self, $cx) { display $disp });
};
}
macro_rules! nest {
($closure:expr) => {
scoped_cx!() = scoped_cx!().nest($closure)?
}
}
macro_rules! print_inner {
(write ($($data:expr),+)) => {
write!(scoped_cx!().printer, $($data),+)?
};
($kind:ident ($data:expr)) => {
nest!(|cx| $data.$kind(cx))
};
}
macro_rules! p {
($($kind:ident $data:tt),+) => {
{
$(print_inner!($kind $data));+
}
};
}
macro_rules! define_scoped_cx {
($cx:ident) => {
#[allow(unused_macros)]
macro_rules! scoped_cx {
() => ($cx)
}
};
}
define_print! {
&'tcx ty::List<ty::ExistentialPredicate<'tcx>>, (self, cx) {
display {
// Generate the main trait ref, including associated types.
let mut first = true;
if let Some(principal) = self.principal() {
let mut resugared_principal = false;
// Special-case `Fn(...) -> ...` and resugar it.
let fn_trait_kind = cx.tcx.lang_items().fn_trait_kind(principal.def_id);
if !cx.tcx.sess.verbose() && fn_trait_kind.is_some() {
if let ty::Tuple(ref args) = principal.substs.type_at(0).sty {
let mut projections = self.projection_bounds();
if let (Some(proj), None) = (projections.next(), projections.next()) {
nest!(|cx| cx.print_def_path(principal.def_id, None, iter::empty()));
nest!(|cx| cx.pretty_fn_sig(args, false, proj.ty));
resugared_principal = true;
}
}
}
if !resugared_principal {
// Use a type that can't appear in defaults of type parameters.
let dummy_self = cx.tcx.mk_infer(ty::FreshTy(0));
let principal = principal.with_self_ty(cx.tcx, dummy_self);
nest!(|cx| cx.print_def_path(
principal.def_id,
Some(principal.substs),
self.projection_bounds(),
));
}
first = false;
}
// Builtin bounds.
// FIXME(eddyb) avoid printing twice (needed to ensure
// that the auto traits are sorted *and* printed via cx).
let mut auto_traits: Vec<_> = self.auto_traits().map(|did| {
(cx.tcx.def_path_str(did), did)
}).collect();
// The auto traits come ordered by `DefPathHash`. While
// `DefPathHash` is *stable* in the sense that it depends on
// neither the host nor the phase of the moon, it depends
// "pseudorandomly" on the compiler version and the target.
//
// To avoid that causing instabilities in compiletest
// output, sort the auto-traits alphabetically.
auto_traits.sort();
for (_, def_id) in auto_traits {
if !first {
p!(write(" + "));
}
first = false;
nest!(|cx| cx.print_def_path(def_id, None, iter::empty()));
}
}
}
}
define_print! {
&'tcx ty::List<Ty<'tcx>>, (self, cx) {
display {
p!(write("{{"));
let mut tys = self.iter();
if let Some(&ty) = tys.next() {
p!(print(ty));
for &ty in tys {
p!(write(", "), print(ty));
}
}
p!(write("}}"))
}
}
}
define_print! {
ty::TypeAndMut<'tcx>, (self, cx) {
display {
p!(
write("{}", if self.mutbl == hir::MutMutable { "mut " } else { "" }),
print(self.ty))
}
}
}
define_print! {
ty::ExistentialTraitRef<'tcx>, (self, cx) {
display {
let dummy_self = cx.tcx.mk_infer(ty::FreshTy(0));
let trait_ref = *ty::Binder::bind(*self)
.with_self_ty(cx.tcx, dummy_self)
.skip_binder();
p!(print(trait_ref))
}
}
}
define_print! {
ty::RegionKind
}
define_print! {
ty::FnSig<'tcx>, (self, cx) {
display {
if self.unsafety == hir::Unsafety::Unsafe {
p!(write("unsafe "));
}
if self.abi != Abi::Rust {
p!(write("extern {} ", self.abi));
}
p!(write("fn"));
nest!(|cx| cx.pretty_fn_sig(self.inputs(), self.c_variadic, self.output()));
}
}
}
define_print! {
ty::InferTy, (self, cx) {
display {
if cx.tcx.sess.verbose() {
p!(write("{:?}", self));
return Ok(cx.printer);
}
match *self {
ty::TyVar(_) => p!(write("_")),
ty::IntVar(_) => p!(write("{}", "{integer}")),
ty::FloatVar(_) => p!(write("{}", "{float}")),
ty::FreshTy(v) => p!(write("FreshTy({})", v)),
ty::FreshIntTy(v) => p!(write("FreshIntTy({})", v)),
ty::FreshFloatTy(v) => p!(write("FreshFloatTy({})", v))
}
}
}
}
define_print! {
<T> ty::Binder<T>
}
define_print! {
ty::TraitRef<'tcx>, (self, cx) {
display {
nest!(|cx| cx.print_def_path(self.def_id, Some(self.substs), iter::empty()));
}
}
}
define_print! {
Ty<'tcx>
}
define_print! {
ConstValue<'tcx>, (self, cx) {
display {
match self {
ConstValue::Infer(..) => p!(write("_")),
ConstValue::Param(ParamConst { name, .. }) => p!(write("{}", name)),
_ => p!(write("{:?}", self)),
}
}
}
}
define_print! {
ty::Const<'tcx>, (self, cx) {
display {
p!(write("{} : {}", self.val, self.ty))
}
}
}
define_print! {
ty::LazyConst<'tcx>, (self, cx) {
display {
match self {
// FIXME(const_generics) this should print at least the type.
ty::LazyConst::Unevaluated(..) => p!(write("_ : _")),
ty::LazyConst::Evaluated(c) => p!(write("{}", c)),
}
}
}
}
define_print! {
ty::ParamTy, (self, cx) {
display {
p!(write("{}", self.name))
}
}
}
define_print! {
ty::ParamConst, (self, cx) {
display {
p!(write("{}", self.name))
}
}
}
define_print! {
<T, U> ty::OutlivesPredicate<T, U>, (self, cx) {
display {
p!(print(self.0), write(" : "), print(self.1))
}
}
}
define_print! {
ty::SubtypePredicate<'tcx>, (self, cx) {
display {
p!(print(self.a), write(" <: "), print(self.b))
}
}
}
define_print! {
ty::TraitPredicate<'tcx>, (self, cx) {
display {
p!(print(self.trait_ref.self_ty()), write(": "), print(self.trait_ref))
}
}
}
define_print! {
ty::ProjectionPredicate<'tcx>, (self, cx) {
display {
p!(print(self.projection_ty), write(" == "), print(self.ty))
}
}
}
define_print! {
ty::ProjectionTy<'tcx>, (self, cx) {
display {
nest!(|cx| cx.print_def_path(self.item_def_id, Some(self.substs), iter::empty()));
}
}
}
define_print! {
ty::ClosureKind, (self, cx) {
display {
match *self {
ty::ClosureKind::Fn => p!(write("Fn")),
ty::ClosureKind::FnMut => p!(write("FnMut")),
ty::ClosureKind::FnOnce => p!(write("FnOnce")),
}
}
}
}
define_print! {
ty::Predicate<'tcx>, (self, cx) {
display {
match *self {
ty::Predicate::Trait(ref data) => p!(print(data)),
ty::Predicate::Subtype(ref predicate) => p!(print(predicate)),
ty::Predicate::RegionOutlives(ref predicate) => p!(print(predicate)),
ty::Predicate::TypeOutlives(ref predicate) => p!(print(predicate)),
ty::Predicate::Projection(ref predicate) => p!(print(predicate)),
ty::Predicate::WellFormed(ty) => p!(print(ty), write(" well-formed")),
ty::Predicate::ObjectSafe(trait_def_id) => {
p!(write("the trait `"));
nest!(|cx| cx.print_def_path(trait_def_id, None, iter::empty()));
p!(write("` is object-safe"))
}
ty::Predicate::ClosureKind(closure_def_id, _closure_substs, kind) => {
p!(write("the closure `"));
nest!(|cx| cx.print_value_path(closure_def_id, None));
p!(write("` implements the trait `{}`", kind))
}
ty::Predicate::ConstEvaluatable(def_id, substs) => {
p!(write("the constant `"));
nest!(|cx| cx.print_value_path(def_id, Some(substs)));
p!(write("` can be evaluated"))
}
}
}
}
}
define_print! {
Kind<'tcx>, (self, cx) {
display {
match self.unpack() {
UnpackedKind::Lifetime(lt) => p!(print(lt)),
UnpackedKind::Type(ty) => p!(print(ty)),
UnpackedKind::Const(ct) => p!(print(ct)),
}
}
}
}